Multi-Agents based Dynamic Request Placement Strategiesin Fully
Distributed Infor mation Systems

Abstract

Inthis paper we propose several strategiesfor dynamic query placement in order to reducethere-
sponsetime of servicesonthe Internet. These strategies are based on the cooperation of multi-agents,
which are organized as acommunity of cognitive agents, and acommunity of reactive agents. Reac-
tive agents propose services. Cognitiveagents have the responsability of placing the queriesthat they
receive from users. To take such a decision, they are ableto cooperate and to learn about the state of
reactiveagents. Weal so developamodel of knowledge, which enabl e cognitiveagentsto characterize
the quality of service of thereactive agents on the Internet. When a query is submitted to a cognitive
agent, it uses its knowledge on the state of the system, possibly by cooperating with other cognitive
agents. Inorder to facilitate the composition of complex services, we a so define anew sub-contractor

agent type.
Keywords: Load balancing, agents, cooperation, document query

1 Introduction

Thefast devel opment of amore and more distributed and more and more multi-mediainformation on the
Internet, is one of the mgjor evolutions of present computer technology. Though the network bandwidth
increases, specially on backbones, the increase in the volume of documents and in the number of users
result in variable quantities of service and in the very mediocre access time.

Improving response times implies the use of multipletechniques, such asimage compression, document
filtering, cooperative retrieval, optimized documents placement, and task allocation. Within the U-Doc
[?] afrench project which is the implementation of a collection of assistance tools for hyper-documents
retrieval on the Internet, we have studied the optimized query placement in order to reduce the response
times.

Task alocation and |oad balancing was widely studiesin theliterature[?, ?, ?, ?, ?] in the context of dis-
tributed systems. The purpose is to optimize the use of resources in order to improve the throughput of
the distributed system, and thusto reduce the responsetime. There exist static and dynamic techniquesto
implement load sharing in distributed systems. In the Internet context, static solutionswhich are mainly
based on operationsresearch results[?, 7], are not applicable as they rely on a previous knowledge of the
state of the system and of the applications. Dynamic solutions[?, ?, ?, ?] try to avoid thislimit. How-
ever, they guess the availability of several parameters (number of processors, length o their waiting for
processing tasks, etc), allowing to determine the state of the system. But when accessing a document
or submitting a query on the Internet, the geographical location (quite commonly located in a different
continent) of the target site may make very imprecise (useless) the evaluation of these parameters. The
response time and transfer throughput are the only available informations. Therefore other approaches
are needed.

In this paper we propose several strategies for dynamic query placement, in order to reduce the response
time of serviceson thelnternet. They are based on the use of multi-agents[?, ?], organized into acommu-
nity of cognitive agents and acommunity of reactive agents. Reactive agentsare merely thefinal servers
(available services in the system such searchers, bibliographic databases, movie databases, etc.). Cogni-
tive agents are able to cooperate and to learn about the state of reactive agents. They have the responsi-
bility of placing the queries which they receive. We also develop a model of knowledge, which enables
coghitive agents to characterize the quality of servi (ie of the reactive agents on the Internet, and to learn

informationson the system state through their experience. Thuswhen aquery issubmitted to a cognitive
agent, it uses its knowledge on the system state to place the query. If its knowledgeis not sufficient to
takethisdecision, it enquires adefined group of cognitive agentstryingto complete itsknowledge. If the
knowledge obtai ned does not enable it to decide about the all ocation, it start arequest for biding negotia-
tion process [?]. Finaly, in order to enable composition of complex services with large added value, we
also define a new type of sub-contractor agent.

The paper is organized as follows: in paragraph 2 we describe the context of thiswork. In paragraph
3 we introduce the agents model, and the way in which the cognitive agents represent and learn their
knowledge. Strategies for dynamic query placement are described in paragraph 4. We introduce sub-
contractor agent in paragraph 5. As a conclusion, we compare our approach with other ones which are
also based on agents.

2 Context and Problems

We studied this problem in the context of the U-Doc project, which objective is the implementation of
a collection of assistance toolsto facilitate document access on the Internet, and the implementation of
their administration. We first briefly describe the U-Doc architecture[?] then our framework.

2.1 TheU-Doc Architecture

The U-Doc architecture is depicted in Figure ??. The client access request arrive to the extern interface
of U-Doc (mailer or DQBE). After have been formated, therequest it is delivered successively to: 1. the
Concepts Manager and thesaur us modul e which dividesthe request in more precise and domain Depen-
dant ones (e.g requests about colors, sounds, geography, etc.), 2. the Indexers module which search the
documentsin thelocal documents database, 3. the profiler to extract from inmediat request the long term
profile, 4. the Interrogateur delivers the clients' inmediat request, and the permanent request produces
by the Profiler to external Searchers (lycos, Yaoo, etc.) and evaluates the abstracts and titles gotten, 5.
the Glaneur to search the sel ected documents. Then these documents are delivered to the Storage system,
and finally to the client.

The Storage system keeps the documents, abstracts and annotationsin a cache memory and in thetertiary
memory. The Thesaurus manages a corpus of the reference documents (for instance articles of areview
previously chose to describe the concerned ared), and learns the correl ations among the conceptsin that
COrpus.

‘WEB/Usenel Servers ‘ ‘ Searchers (Lycos, ..) ‘ ‘ Client

Internet

U-Doc

‘ Gahterer ‘ ‘ Examiner DQBE/Mailer

N
Concepts Manager

i
Indexers

Texts

Database

Images
[polr }~———— Sounds
Video

Figure 1. Architecture of U-Doc.

2.2 Problem and our Framework

A document retrieval query rely onlocalization, format modification, translation, document sel ection op-
erators, which can be based on indices, and on information extraction (data meaning) on normalized doc-
uments such as SGML ones. In our architecture a rzetrieval query is decomposed by the DBQE module

into a set of document retrieval operators, represented by a data flow graph such asthe onein Figure ??
We suppose that techniques for query decomposition are known, as they are not the subject of this paper.
Following, based on a placement strategy ai ming response time optimization, these operators are placed
on specialized servers such as the ones which propose services for document searching. On the Internet,

/] .
userre t with
adoc grence

remote
document
localizatiol

remote
document
localizatio dictionary

rech by emote rech by) rech by
esp content 255‘9";2”‘ eng content ita content
docs docs docs
dictionary dictionary dictionary

Sub-request

freng | “ranslation

\

emote
ocument
access

Figure 2: Decomposition of a request by the DQBE/Mailer.

there are many such search services, such as Lycos, Yahoo, etc. A document can aso be replicated on
severa sites, such as proxies or mirrors. Presently, dynamic query placement in U-Doc takes place in
two places : firstly in the examiner for the choice of a search server on a previously defined list, when
the query comes from an user of the profiler, secondly, at the gatherer level, for the choice of adocument
when this document existsin several servers. In both cases, it may be useless the measure of classica
parameters hel ping the alocation problem. Therefore, we do not have aclassical task allocation problem
in the usua sense, as we cannot decide process allocation in the remote sites.

Onesolutioninour Internet framework of added val ue serviceswill besubmit thesame query toall servers
and choose the one which delivers the fastest answer. Thisisan easy but quite expensive solution. The
problemisthusto define dynamic placement strategieson the varioussubtasksof an R document retrieval
guery, in order to reduce the response time. We propose an heuristic solution, based on past experience
in terms of response times, and possibly on the experience of other sites.

2.3 TheProblem

Our main objectivein the U-Doc project is have short response times. To fulfill this objective we must
solvethe problem of how to choose the searcher and the document server (if there exist the choice) to get
shortest responsetime. Upon the previous explanation of the U-Doc architecture' s behaviour, the alloca-
tiontechniquesare necessitated by the I nterrogateur to sel ect a Searcher from aset previously established,
and also to the Glaneur to select one document server from the list obtained by the selected searcher.

The conditionsof our system are the actual ones, that is, Internet available searchers (Lycos, Yaoo, etc.)

do not giveinformation about its states useful to cal culate the response time of arequest (e.g. number of
3

waitingfor processing tasks, processing power of the server, sizeof thewaiting tasks. etc.). Then because
these conditionsand our aim to make transparent thisproblem to user, two solutionsare possible. Thefirst
isto chosethe servers (to search and to retrieve the document) randomly, the second is select the servers
taking into account the experience obtai ned of previousrel ationships. Because weare using agentshaving
thelearning capability our choiceisthe second. One of the strategies proposed is a combination of both,
however.

24 Modd

Though our approach was devel oped for the U-Doc distributed information system, the proposed mech-
anisms are general ones and can be applied in other context than our particular. Figure ?? depicts the
distributed system that we take as framework and we are using to simulate the performance of the algo-
rithms. The system is constituted of three sets distributed among a set of sites (computers) connected
by a network: a set of cognitive agent denoted by C'y = {C41, Ca2, Cas, ..., Can}. Another of
reactive agent denoted by theset R4 = {Rai1, Ra2, Ras, ..., Rap}, and aset of users, denoted by
U = {Uy, Uy, ...}. Asitelodgezero or one user, zero or one cognitive agent and zero or more reactive
agent .

The set of reactive agent represent the available servicesin the system. The same service can be delivered
by different reactive agents. Cognitive agents receive the tasks delivered by users, are able to communi-
cate with each other by sending messages over the communication network, learn about the system state
and have the skill to allocate a task based in its knowledge about the system (servers). Finally, users or
clientsdeliver theirstasks), = {t1, t1, ..., t.} tothecognitive agentsviaan interface.

In the U-Doc architecture, the set of reactive agents represent the set of searchers availables by Internet
(Lycos, Yaoo, €tc.). A delivered task is either a search request that should be addressed to one of the
searchers or arequest of access to get an specific document that must be delivered to one of the document
servers.

Cognitive Agent Reactifve Agents Cognitive Agent Reactifve Agents

System and
own Knowledge

System and
own Knowledge

7

SiteX

| |

SiteR

V

System and
own Knowledge

Network

Y

SiteV

V

System and
own Knowledge

Cognitive Agent Reactifve Agents Cognitive Agent Reactifve Agents

Figure 3. The system is organized in two communities: one of Reactive Agents delivering the services
availableover the system the other of Cognitive Agentskeeping the global state of the system. The major
objective of the Cognitive Agents community ishelpingto distributein afair way theload among thefirst
community.

4

A cognitive agent as depicted in Figure ?? in its structure contains a knowledge and a control element.
Control element implements the location policy (transfer policy is every time a task is received, decide
about its transfer, and selection policy is the arriving task must be allocated). To decide about the al-
location of atask the cognitive agent necessitates information about the state of the servers offering the
required service. As established in ?? on our framework, even if reactive agents are able to deliver use-
ful information to decide about an allocation, communication delays make useless they. We are using
the learning capability of our cognitive agentsto alleviate this problem Figure ?? showsthe information
learned by cognitive agents.

Cognitif Agent’s Knowledge about the System
Information about the
agents with it had and have
relationships

Name of the Serveur Quality of Update Validity
B.blservihc.el service. ime time

'D'E?%rcacpes'“ Tlaloc f(week day, time zone) 330 110
Bibliographical

DB acces odin f(week day, time zone, .) 400 20

Text Processing kuklcan f(week day, time zone,.) 370 100
Text Processing zeus f(week day, time zone,.) 440 150

Figure 4: Knowledge a cognitive agent has about the system state.

25 Learning and Knowledge

Cognitive agents are able to learn about the evolution of reactive agents' states. For this purpose, they
memorize for each agent, the next information that will be helpful to “predict” their service quality. We
denote ¢..; the quality of service x on the reactive agent .

e (,;: quality of service.

e T'h: throughput of aquery on the network.

e T': response time of areactive agent to a query.

e z: the service proposed by the reactive agent.

e [: an array containing the days of the week.

e H: anarray containing cognitive agent local time.
e V: validity duration of the knowledge.

e 1: acoefficient between 0 and 1, which represents the cognitive agent capability to remember the
past

In our Internet context the quality of aservice of areactive agent isfunction of the responsetime, of the
throughput, of the reactive agent local time (a server is more charged during the work timesthan at night)
and of the day of the week (week ends are lesloaded than other days). Thus a cognitive agent learns the
behaviour of areactive agent for each hour of the day and for each day of the week. To do thisit usethe
q; = Th/T formulato measure thisquality when it sendsit atask. The responsetimeisan indicator of
the reactive agent 'sload, while the throughput is an indicator of the network load.

It is necessary to take into account the changes of behaviour of a reactive agent however. In our case,
every time an answer of areactive agent is received, its quality service for that day and time is modified
asfollows:

Iz Iu*qw;r (1—u)q

Where 1 is comprised between 0 and 1, and represents the agent capability to remember the past. The
choice of the best . coefficient is determined by our simulation results.

However if theinformations have not been updated before somedelay V, they are considered out-of -date.
In that case, the cognitive agent must start a new learning phase on the whol e relevant knowledge.

3 Dynamic Requests Placement Strategies

Two criteria appear to be essentia in the dynamic request placement: first work distributionimplies that
an application must be widely distributed in order to use in the best way the available services, and the
locality criterion that aims reducing the overheads due to communi cations by dispatching the application
only over a neighborhood. These two criteria are easily expressed by an economic equation [?, 7], but
one can see in a straightforward way that these requirements are opposite. The strategies presented are
dynamic and non pre-emptives. They are based on: the behaviour of cognitive agent which collaborate
to achieve acommon goal; reactive agent which execute atask; abidding protocol [?] used by cognitive
agent to get information about the system state and finally on the capacity of learning of the cognitive
agent. The use of amulti-agentsapproach alowsusto deal withthetrade-off problem in adynamic way.

3.1 Strategy of Placement Based on Service Negotiation

Initially cognitive agents have no knowledge on the state of the system due to lack of experience. Then
to determine which reactive agent to choose, and to enrich at the sametimeitsknowledge, it startsa pro-
cess of negotiation similar to that of bidding found in free markets. Three phasesin a such process are
identified: first arequest-for-biddingislaunched besideall reactive agents proposing the service; second,
an evaluation of reactive agents’ repliesis executed; and third the contract attribution phase determines
the reactive agent on which the request is placed. If this negotiation mechanism is general and simple, it
necessitatesalot messages. Inacontext of alarge systemas|nternet, the cost associated to such acommu-
nication can be prohibitory and most important, the servers currently are not ableto reply to arequest for
bid (today thereis a grest effort to establish the actual minimal information needed in today distributed
systems, some formalisms like KQML [?] and kif [?] are been studied). Therefore, we propose below
strategies based on this simple biding negotiation protocol, but using the learning capacity of cognitive
agent, and different organi zations of the communitiesof reactive agent and cognitiveagent , to minimize
its number of timesit must be executed.

Let sum-up the strategic we are using and the semantic of some parameters the cognitive agent use to
decide upon the alocation of atask.

the knowledge of cognitive agent is for each reactive agent serving atype of service. thisinformationis
organized in an array having for each day a set of checking points meaning the behaviour of the reactive
agent learned of its experiences. By useful information we mean: that the information is fresh enough,
and based on enough of experiences to be confident.

Strategy 1: when the agents have an individual organization

We present here the behaviour of the system when no organization exists between the two communities
of agents. When a cognitive agent receives atask, his knowledge of the system’s state should be used
for the task allocation. If the knowledge is insufficient, the cognitive agent selects randomly a reactive
agent submits it the task and learns its behaviour. Upon the activity of the user delivering tasks to the

coghitive agent the knowledgeit has will became useful to take a decision easily.
6

Another approach that wetakeis create awatching reactive agent for service. When acognitiveagent ad-
dressitsreguest to thisreactive agent when it needs information. In this case the behaviour of the cogni-
tive agent isamost that described by the bidding negotiation described previously, excepting that the use
of knowledgeof the agent limit itsexecution. Thiscognitiveagent behaviour isdepicted by the procedure
1. Every time the cognitive agent receives areply it updatesits partial knowledge about the system.

Procedure1 Cogni ti ve Agent all ocation

Case event of {
Task T :
For each subtaskt € T do

If local information is enough to allocatet
alocate(t);

Else { * start the negotiation to get the service *
RFB(service);
evaluate(offers);
alocate(t);
update knowledge;

}
Load :

Example 1.

To show the behaviour of the algorithm we consider the next example having two services S = {s1, s2}
offered by reactive agents placed on sites A, B, C' and D. The service s; is offered by reactive agents
of thesites A and B whilethe service s, by sitesC' and D. Submitted requestsare R1, R2, R3 and R4
that make call respectively to services {s1, s2}, {s1}, {sl, s2} and {s1}.

Table ?? illustrates the chronograme of a request placement following the strategy based on service ne-
gotiation. Initially sites do not work. Similarly cognitive agents have no knowledge on the state of the
system. When a cognitive agent has to place the request R, that makes cal to services sl and s, the
former makes a call for proposasbeside four sites A, B, ' and D. Asall sites propose the same qual-
ity of service, the cognitive agent places without preference the request £, on A and (', it also modifies
correspondingly its knowledge on the quality of service of the two sites. During the arrival of request
R, the cognitive agent, consulting its knowledge, allocates this request on the site B that is becoming
the site proposing a best quality of servicefor s;. The execution of the totality of requests necessitates 6
broadcast and 24 point-to-point communications.

Cooper ative placement strategies

Cooperétive strategies are based on the organizations of reactive agent and cognitive agent in groups.
This organization has as objective reducing:

o the number of messages exchanged between agents.

o the quantity of information to manage at the level of each agent.
7

Table 1: Chronogram of the execution of the sequence Ry, Rs, R3, R4, Ry and Rs

Site/Req. s1/A s1/B s5/C s3/D X7 v Z7
temp Knowledge Knowledge Knowledge
T X/ Ry TR, TR, s1/A=¢,/B=0
so/C =r3/D =0
2 Y/Rs TR, Tk, TR, Vaid Inf. s1JA=1
s1/B=0
[€] X/Bs | 2r; Ra Tr, TR, Tr, Validint. Validint.
t4 X/R.0 1R, 0 0 1R, not valid inf. not valid inf.
Y/Ry O
t5 Z[R4 1R, 1R, not valid inf. not valid inf. s1/A=1
s1/B=0
16 X[R1 2R,,Rs | 2R4,Rs | 2Rp,Rs s1/A=s1/B=1
X /Ry so/C =0;s5/D =1

¢ the overhead associated to the placement algorithm.

The idea to organize process in groups has been implemented in different systems such as Amoeba[?],
PVM [7?], etc. and has proven to be a powerful mechanism to reduce the complexity in distribution costs.
organizing the agents in groups can be in function of the geographical distribution of the agents, then
we speak of geographical clustering, or in function of agents’ characteristics for instance: their service,
their homogeneity, etc. We speak then of virtual clustering. Each of these ways to organize the agents
communities has its advantages and drawbacks. The actual problem isthat for each application choose
the best organi zation.

Strategy when AR are organized in groups of collaborators

The principle of grouping e ementsis carry out aglobal load sharing by means of theload sharing among
the groups. When reactive agents are organized in virtual groups by service type. The outcome we ook
for isreducing the number of messages needed to carry out aglobal 1oad sharing. Some other advantages
of executing load sharing in groups are reduce the information a cognitive agent must manage, reduce
the overhead of the load sharing algorithm, and establishing a boundary helping the satisfaction of the
locality criterion.

Organizing in this way our communities necessitates a management for each group. In this case, our
approach associatesan administrator to each group (type) of reactive agents. Cognitiveagentscan address
it to obtain useful to allocationinformation. The administrator update itsinformations about the elements
of the group by sending them periodically "probe’ requests.

The agorithm an cognitive agent execute when it receives atask is depicted in the Procedure 2. In the
firstinstanceit will verify if theinformationit hasisenough to allocate thetask, other waysif it knowsthe
manager necessitated it will request him the missing information. Otherwise it start the biding protocol.
The drawback of thisalgorithmisthat a manager by serviceis necessitated.

Procedure2 Cogni ti ve Agent all ocation

Case event of {
Task T:
For each subtaskt € T do
If local information isuseful to allocate the subtask
alocate(t);
Else
I f the manager of the required service is known
negotiate with the manager the service;

alocate(t);
8

update knowledge;
Else { * start the negotiation to get the service *

RFB(service);
evaluate(offers);
alocate(t);
update knowledge; * about the manager and services *
}
Load :
}
Example 2.

We resume the same series of requests R, R,, Rs and R4 aswell as services s; and s, used in the ex-
amplel. Thereexists5sites A, B, ', D, and F. Theservice s, isoffered by reactive agentson sites A
and B while service s, isoffered by reactivesiteagentsC', D and F. Reactive agents are regrouped ac-
cording to their type of service, and therefore there existsamanager for service s; and another for service
s2. We also add another aspect concerning the duration of validity of the information that is supposed of
2 unitsof time. Request Ry, Rs and As arelaunched by cognitive agent on the site X, therequest R by
cognitive agent of thesite Y and the request R, by cognitiveagent 7.

An execution of the different requestsisillustrated in Table ??. To simplify our example, the quality for
each service is represented by a simple value. At time t=1, cognitive agent of site X starts request R,
that calls services s; and s,. By asking service managers M s; and M ss, it learns that sites A and B
propose the same quality of servicefor s; while C' and D propose the same for s5. Without preference,
R; isplaced on sites A and C'. At time t=4, the duration of the validity of knowledge being fixed at
2, knowledge acquired by cognitive agent of site X isexpired. Attimet = 5, request R, that simply
uses service s; is started by 7. At thistime the knowledge of cognitive agent of site 7 have allowed to
favorably place the request on site B. The placement of these reguests on the different reactive agents
necessitate 4 broadcast, 3 multi-casts and 29 point-to-point communications.

Table 2: Chronogram of the execution of the sequence R+, Rs, Rs3, R4, Ry and Rs

Site/Req. s1/A s1/B s3/C | s2/D 3/ B X7 Y7 Z7
temp Knowledge Knowledge Knowledge
@ X/Ry Tr, Tr, s1/A=¢,/B=0
so/C =r3/D =0
2 Y/R2 Tr, Try Tr, Valid Inf. s1/A=1
s1/B=0
t3 X/Rs 2R, ,R; 1r, Ir, lr, Vaidinf. Vaidinf.
t4 X/R,0 1R, 0 0 1R, not valid inf. not valid inf.
Y/Ry O
t5 Z[R4 1R, 1R, not valid inf. not valid inf. s1/A=1
s1/B=0
6 X/ Ry 2R,,Rs | 2R4,Rs 2R, LRy s1/A=¢e,/B=1
X /Ry so/C =0;s5/D =1

Strategy Organizing Cognitive Agentsin Virtual Groups

Todlow knowledge sharing between cognitiveagents, weorganizethemingroups. Each cognitiveagent knows
the elements of itsgroup. Thus, when a cognitive agent does not know how to place arequest dueto lack
of knowledge, it address arequest to others cognitive agent in the same group to enrich itsknowledge. If

9

after such knowledge enrichment, it still does not know how to place the request, it initiatesa negotiation
process.

Procedure3 Cogni ti ve Agent all ocation

Case event of {
Task T : *task allocation request*
For each subtaskt € T do
If local information isuseful to place the subtask
alocate(t);
Else { *the agent tries to obtain information from its friend*
enrich-knowledge(t, Friends);
If the enriched information isuseful to allocate t
alocate(t);
Else { *start the negotiation to get the service *
RFB(service);
evaluate(offers);
alocate(t);
update knowledge; * about the manager and services *

}

Load : * areply containing information about a reactive agent*

Strategy 3: offering complex services by sub-contractor agents

In multi-mediainformation systems, to be able to offer complex added value services, it is necessary to
allow the composition of services, that is,give the possibility to build a service from other less complex
ones offered by agents. An instanceof acomplex serviceisthe bibliographical research that is composed
from atrangdlator, alocalization server, a gatherer and a format translator. We introduce a new type of
agents we name sub-contractor who offers complex services. sub-contractor agents have a behavior of
reactive agent becausethey offer aservice (evenif complex, isaservice), but also the behaviour of a cog-
nitive agent since they construct their complex servicesfrom their knowledge on the other reactive agents
or sub-contractors (Figure ?? shows some of theinformation an sub-contractor keeps about the system).
Sharing the knowledge among sub-contractorsis useful, because not all the reactive agent have the same
validity time of informations. Then sharing information is interesting mainly to compleat them when is
necessary to take a decision about the all ocation. The results obtained in thisway have as characteristics:

o thetime of response of a subcontractor cognitive agent is cheaper because the communication is
at group level and not at system level (a mutlticast replace a broadcast).

o the quality computed can not be the best on the system.

Interactions between the different agents are illustrated by the Figure ??. The agorithm used by sub-
contractor agents to place requestsis briefly developed below. The agorithm implemented is shown in
procedure 4.

Procedure 4 Sub- contract or Cognitive Agent

Case event of {
10

System and Own Knowledge of a Subcontractor
Cognitif Agent

System'’s Information own Information
_ Information about the .
reactive agents with I’d_and have Information about the
some re|at|0nsh|ps state of my own skills
Name of the Serveur Load of the Validity -The name of the service
_service service. time -The quality of the service
Bibliographical .
DB acces Tlaloc 4 10 -The load of the service
.) -etc
i L) odin 2 20
Translation Service kuklcan 87 100 Bibliographical
Translation Service zeus 12 150 researc

Figure 5: A sub-contractor cognitive agent keeps information letting him to delivers the service of plan-
ning a complex task. In thisillustration the name of the serviceis bibliographica search, necessitating
the services of bibliographic database and atext processing.

sharing of knowledge at
sub-contractor level

sub-contractor sub-contractor
Agent of SS1 Agent of SS2

«Q

{ N
9

Figure 6: Interactions among the three agents communities.

RFB :
For each subtaskt € T do
If own information isuseful to allocate or subcontract the subtask
compute bid;
return(bid);
Else {
ask for useful information to its collaborators
If received information is enough
compute(bid)
return(bid);
Else
For each missing service{
start a negotiation
If all services are obtained
compute(bid);
update information
return(bid)
Else
delivers adiagnosti clT&ssage

}
}
Task : allocate(task)

Example 3

We consider three services sy, s, and sz, s; offered by reactiveagentsof fivesites A, B, ', Dand F/, s;
by A and B, s, by C'and F, and s3 by F'. We consider a so three sub-contractor agent types.S.Sy, S.S; and
553, each one proposing an added value service composed from sy, so and s3. The sub-contractor type
S5 using s; and s, isavailableon sites A, B and F'; The sub-contractor type 5.5, using s, isavailable
on sites C' and D while the sub-contractor type 553 using s; and s; isavailable on site C'. The validity
duration of the information is a function of the service, and is 1 for servicess; and s,, and 3 for service
s2. Three complex requests R, .S and T" are considered, R accessing sub-contractorstypes S'S; and S.S5,
S accessing 5.5, and S.S3 while T accesses S.S5.

An execution of these requestsisillustrated by Table ?? that showsthe evolution of knowledge obtained
on the different sites. The evolution of the quality of serviceisillustrated by Figure ??. At timet=1, the
request R making call to sub-contractorstypes.S.S; and 555 islaunched by a cognitive agent on site X .
Theformer, having no knowledge, makes arequest-for-bids (RFB) beside sub-contractorstypes 5.5, and
5.5, on al sites. Sub-contractors, due to lack of knowledge, also start a call for proposals beside their
reactive agents so as to complete their knowledge. Knowledge thus reverberated and obtained by the
cognitive agent on site X allowsit to place the request on sites A and €' without preference. Sites A and
C reverberate the work on services s1, so. At timet=2, request S launched by a cognitive agent on site
Y adso execute a RFB beside sub-contractors types S.S; and S.S,. These sub-contractors types, having
required knowledge, no longer need to get information besidetheir service suppliers. Request S isplaced
onsitesC' and D. At timet=3, request R isended while T is launched by a cognitive agent on site 7.
Not having knowledge, the cognitive agent of site Z makes acall for proposa beside sub-contractor 5.5
whose knowledgehave expired. Thisresultsin that sub-contractors.S.S; onsiteC and D inform mutually
to complete their knowledge. And finally the two sub-contractors have to inform beside reactive service
supplier agentsin order to refresh their knowledge, and the request ~ is placed on site D.

Table 3: Chronogram of the execution of the sequence Ry, Rs, Rs3, R4, Ry and Rs

time | Request/site SS1[A SS1/B SS1[E SSy[C SSo /D SS3/C Knowledge Knowledge Knowledge
of X of Y of Z
[RIX s1/A=0 1JA=0 | s1/A=0 1/A=0 1/A=0 SS1/A=0
started/X 1/B=0 1/B=0 | s1/B=0 1/B=0 1/B=0 SS1/B=0
s2/C =0 2/C =0 | s2/C =0 R SS1/E=0
2/D=0 2/D=0 | s2/D=0 SSy/C =0
R SS,/C =0
2 % idem idem idem idem s1/A=0 S idem SSy/C =1
1/B=0 SS3/D =0
s SSs /A =2
3 ROX 1JA=0 1/JA=0 | s1/A=0 askto D asktoC S JA=1 SS./C =1
TIZ 1/B=0 1/B=0 | s1/B=0 1JA=1 s1/A=1 | s1/B=1 SSy/D =1
2/C =0 2/C =0 so/C =0 s1/B=1 s1/B=1 s3/B =0
/D=0 2/D=0 | so/D=0 T
t4 RIX 1[A=2 1/A=2 R inv. inf inv. inf
1 /B=1 1/B=1 after RFB
SS1/A=2
SS1/B =2
and from D
SSa/C =0
SS,/D =1

12

4 Conclusion

While the prablem of dynamic placement and load balancing is rarely addressed in database and infor-
mation systems research [?, 7], the approach based on learning and agents cooperation is a recent one.
Schaerf et Al [?] have studied the interaction of various parameters and their effect on the system effi-
ciency. InArcadia[?], dynamic placement ismainly based on the cooperation of two agent types, ” system
agents’, and " application agents’. Both approaches usually assume some control of the system, in that
sensethat it is possibleto migrate a process on another siteto balance theload. They alsorely on severa
indicatorssuch asthe number of messagesreceived on asite. Thismakesthem inapplicablein the context
of Internet. The strategiesfor dynamic query placement which we have developed in this paper are part
of the U-Doc project, and assume a worldwide distribution of the information system at Internet scale.
Therely on the approach of multiple agents organized in acommunity of cognitive agentsand acommu-
nity of reactive agents. In order to optimize dynamic query placement, we mainly use the knowledge a
reactive agent obtains during its experiences and also alowing their cooperation to share informations.
The response time and the throughput are the only parameters that the cognitive agents use to build their
knowledge through their experiences. In order to enable complex services with large added value, sub-
contractor agents are also proposed. They implement service composition becoming usual, as shows our
own project which can be viewed as a sub-contractor agent composed of bibliographic database servers
and searcher servers. Our approach alleviatetheimpossibility of actual serversof reply arequest for bid,
take advantage of learning of agents to reduce the biding negotiation process. We have devel oped these
strategies of allocation taking into a count the actual conditionsof our project, and simulated them to up-
light their performance. The results of our simulations are positivesand will be validated actually in our
U-Dac project.

13

