
Multi-Agents based Dynamic Request Placement Strategies in Fully
Distributed Information Systems

Abstract

In this paper we propose several strategies for dynamic query placement in order to reduce the re-
sponse time of services on the Internet. These strategies are based on the cooperation of multi-agents,
which are organized as a community of cognitive agents, and a community of reactive agents. Reac-
tive agents propose services. Cognitive agents have the responsability of placing the queries that they
receive from users. To take such a decision, they are able to cooperate and to learn about the state of
reactive agents. We also develop a model of knowledge, which enable cognitiveagents to characterize
the quality of service of the reactive agents on the Internet. When a query is submitted to a cognitive
agent, it uses its knowledge on the state of the system, possibly by cooperating with other cognitive
agents. In order to facilitate the composition of complex services, we also define a new sub-contractor
agent type.

Keywords: Load balancing, agents, cooperation, document query

1 Introduction

The fast development of a more and more distributed and more and more multi-media information on the
Internet, is one of the major evolutions of present computer technology. Though the network bandwidth
increases, specially on backbones, the increase in the volume of documents and in the number of users
result in variable quantities of service and in the very mediocre access time.

Improving response times implies the use of multiple techniques, such as image compression, document
filtering, cooperative retrieval, optimized documents placement, and task allocation. Within the U-Doc
[?] a french project which is the implementation of a collection of assistance tools for hyper-documents
retrieval on the Internet, we have studied the optimized query placement in order to reduce the response
times.

Task allocation and load balancing was widely studies in the literature [?, ?, ?, ?, ?] in the context of dis-
tributed systems. The purpose is to optimize the use of resources in order to improve the throughput of
the distributed system, and thus to reduce the response time. There exist static and dynamic techniques to
implement load sharing in distributed systems. In the Internet context, static solutions which are mainly
based on operations research results [?, ?], are not applicable as they rely on a previous knowledge of the
state of the system and of the applications. Dynamic solutions [?, ?, ?, ?] try to avoid this limit. How-
ever, they guess the availability of several parameters (number of processors, length o their waiting for
processing tasks, etc), allowing to determine the state of the system. But when accessing a document
or submitting a query on the Internet, the geographical location (quite commonly located in a different
continent) of the target site may make very imprecise (useless) the evaluation of these parameters. The
response time and transfer throughput are the only available informations. Therefore other approaches
are needed.

In this paper we propose several strategies for dynamic query placement, in order to reduce the response
time of services on the Internet. They are based on the use of multi-agents [?, ?], organized into a commu-
nity of cognitive agents and a community of reactive agents. Reactive agents are merely the final servers
(available services in the system such searchers, bibliographic databases, movie databases, etc.). Cogni-
tive agents are able to cooperate and to learn about the state of reactive agents. They have the responsi-
bility of placing the queries which they receive. We also develop a model of knowledge, which enables
cognitive agents to characterize the quality of service of the reactive agents on the Internet, and to learn

1



informations on the system state through their experience. Thus when a query is submitted to a cognitive
agent, it uses its knowledge on the system state to place the query. If its knowledge is not sufficient to
take this decision, it enquires a defined group of cognitive agents trying to complete its knowledge. If the
knowledge obtained does not enable it to decide about the allocation, it start a request for biding negotia-
tion process [?]. Finally, in order to enable composition of complex services with large added value, we
also define a new type of sub-contractor agent.

The paper is organized as follows: in paragraph 2 we describe the context of this work. In paragraph
3 we introduce the agents model, and the way in which the cognitive agents represent and learn their
knowledge. Strategies for dynamic query placement are described in paragraph 4. We introduce sub-
contractor agent in paragraph 5. As a conclusion, we compare our approach with other ones which are
also based on agents.

2 Context and Problems
We studied this problem in the context of the U-Doc project, which objective is the implementation of
a collection of assistance tools to facilitate document access on the Internet, and the implementation of
their administration. We first briefly describe the U-Doc architecture [?] then our framework.

2.1 The U-Doc Architecture
The U-Doc architecture is depicted in Figure ??. The client access request arrive to the extern interface
of U-Doc (mailer or DQBE). After have been formated, the request it is delivered successively to: 1. the
Concepts Manager and thesaurus module which divides the request in more precise and domain Depen-
dant ones (e.g requests about colors, sounds, geography, etc.), 2. the Indexers module which search the
documents in the local documents database, 3. the profiler to extract from inmediat request the long term
profile, 4. the Interrogateur delivers the clients’ inmediat request, and the permanent request produces
by the Profiler to external Searchers (lycos, Yaoo, etc.) and evaluates the abstracts and titles gotten, 5.
the Glaneur to search the selected documents. Then these documents are delivered to the Storage system,
and finally to the client.

The Storage system keeps the documents, abstracts and annotations in a cache memory and in the tertiary
memory. The Thesaurus manages a corpus of the reference documents (for instance articles of a review
previously chose to describe the concerned area), and learns the correlations among the concepts in that
corpus.

Gahterer Examiner DQBE/Mailer

Database

Concepts Manager

Texts
Images
Sounds
Video

Indexers

Profiler

U-Doc

Internet

WEB/Usenet Servers Client(Lycos, ..)Searchers

Figure 1: Architecture of U-Doc.

2.2 Problem and our Framework
A document retrieval query rely on localization, format modification, translation, document selection op-
erators, which can be based on indices, and on information extraction (data meaning) on normalized doc-
uments such as SGML ones. In our architecture a retrieval query is decomposed by the DBQE module

2



into a set of document retrieval operators, represented by a data flow graph such as the one in Figure ??
We suppose that techniques for query decomposition are known, as they are not the subject of this paper.
Following, based on a placement strategy aiming response time optimization, these operators are placed
on specialized servers such as the ones which propose services for document searching. On the Internet,

eng
docs

ita
docs

esp
docs

fr-ita

dictionary

ita-fr
dictionarydictionary

esp-fr

fr-esp

dictionary
fr-eng

dictionary

eng-fr
dictionary

synthesis

translation

translation

translation

translation

translation

rech by
content

translation

rech by
content

rech by
content

remote
document

access

remote

localization
document

remote
access

document

remote
document

localization

user request with
a doc. reference

retrieved 
documents

Sub-request

Figure 2: Decomposition of a request by the DQBE/Mailer.

there are many such search services, such as Lycos, Yahoo, etc. A document can also be replicated on
several sites, such as proxies or mirrors. Presently, dynamic query placement in U-Doc takes place in
two places : firstly in the examiner for the choice of a search server on a previously defined list, when
the query comes from an user of the profiler, secondly, at the gatherer level, for the choice of a document
when this document exists in several servers. In both cases, it may be useless the measure of classical
parameters helping the allocation problem. Therefore, we do not have a classical task allocation problem
in the usual sense, as we cannot decide process allocation in the remote sites.

One solution in our Internet framework of added value services will be submit the same query to all servers
and choose the one which delivers the fastest answer. This is an easy but quite expensive solution. The
problem is thus to define dynamic placement strategies on the various subtasks of an R document retrieval
query, in order to reduce the response time. We propose an heuristic solution, based on past experience
in terms of response times, and possibly on the experience of other sites.

2.3 The Problem
Our main objective in the U-Doc project is have short response times. To fulfill this objective we must
solve the problem of how to choose the searcher and the document server (if there exist the choice) to get
shortest response time. Upon the previous explanation of the U-Doc architecture’s behaviour, the alloca-
tion techniques are necessitated by the Interrogateur to select a Searcher from a set previouslyestablished,
and also to the Glaneur to select one document server from the list obtained by the selected searcher.

The conditions of our system are the actual ones, that is, Internet available searchers (Lycos, Yaoo, etc.)
do not give information about its states useful to calculate the response time of a request (e.g. number of

3



waiting for processing tasks, processing power of the server, size of the waiting tasks. etc.). Then because
these conditions and our aim to make transparent this problem to user, two solutions are possible. The first
is to chose the servers (to search and to retrieve the document) randomly, the second is select the servers
taking into account the experience obtained of previous relationships. Because we are using agents having
the learning capability our choice is the second. One of the strategies proposed is a combination of both,
however.

2.4 Model

Though our approach was developed for the U-Doc distributed information system, the proposed mech-
anisms are general ones and can be applied in other context than our particular. Figure ?? depicts the
distributed system that we take as framework and we are using to simulate the performance of the algo-
rithms. The system is constituted of three sets distributed among a set of sites (computers) connected
by a network: a set of cognitive agent denoted by CA = fCA1; CA2; CA3; : : : ; CA�g. Another of
reactive agent denoted by the set RA = fRA1; RA2; RA3; : : : ; RA�g, and a set of users, denoted by
U = fU1; U2; : : :g. A site lodge zero or one user, zero or one cognitive agent and zero or more reactive
agent .

The set of reactive agent represent the available services in the system. The same service can be delivered
by different reactive agents. Cognitive agents receive the tasks delivered by users, are able to communi-
cate with each other by sending messages over the communication network, learn about the system state
and have the skill to allocate a task based in its knowledge about the system (servers). Finally, users or
clients deliver theirs tasks T
 = ft1; t1; : : : ; t�g to the cognitive agents via an interface.

In the U-Doc architecture, the set of reactive agents represent the set of searchers availables by Internet
(Lycos, Yaoo, etc.). A delivered task is either a search request that should be addressed to one of the
searchers or a request of access to get an specific document that must be delivered to one of the document
servers.

own Knowledge
System and

own Knowledge
System and

own Knowledge
System and

System and
own Knowledge

Control

Interface

Interface

Control

Interface

Control

Control

Interface

Site A Site X

Site V Site R

Reactifve Agents Reactifve AgentsCognitive AgentCognitive Agent

Cognitive Agent Reactifve Agents Cognitive Agent Reactifve Agents

User
Ireri

Lycos

Yahoo

French
Dic.

Spanish
Dic

Dic.

Network 

Spanish
Dic

Dic.
French

English

English
Dic

Yahoo
Mirror

Lycos
Mirror

Lycos
Mirror

Figure 3: The system is organized in two communities: one of Reactive Agents delivering the services
available over the system the other of Cognitive Agents keeping the global state of the system. The major
objective of the Cognitive Agents community is helping to distribute in a fair way the load among the first
community.

4



A cognitive agent as depicted in Figure ?? in its structure contains a knowledge and a control element.
Control element implements the location policy (transfer policy is every time a task is received, decide
about its transfer, and selection policy is the arriving task must be allocated). To decide about the al-
location of a task the cognitive agent necessitates information about the state of the servers offering the
required service. As established in ?? on our framework, even if reactive agents are able to deliver use-
ful information to decide about an allocation, communication delays make useless they. We are using
the learning capability of our cognitive agents to alleviate this problem Figure ?? shows the information
learned by cognitive agents.

Name of the Serveur Validity
timetime service.service

Text Processing

Text Processing

20

100

150

110330

440

370

400

Information about the 
agents with it had  and have

    relationships

Bibliographical
DB acces

Bibliographical
DB acces

Cognitif Agent’s Knowledge about the System

Quality of Update

Tlaloc

odin

kuklcan

zeus

f(week day, time zone)

f(week day, time zone, .)

f(week day, time zone,.)
f(week day, time zone,.)

Figure 4: Knowledge a cognitive agent has about the system state.

2.5 Learning and Knowledge

Cognitive agents are able to learn about the evolution of reactive agents’ states. For this purpose, they
memorize for each agent, the next information that will be helpful to “predict” their service quality. We
denote qxi the quality of service x on the reactive agent i.

� qxi: quality of service.

� Th: throughput of a query on the network.

� T : response time of a reactive agent to a query.

� x: the service proposed by the reactive agent.

� D: an array containing the days of the week.

� H : an array containing cognitive agent local time.

� V : validity duration of the knowledge.

� �: a coefficient between 0 and 1, which represents the cognitive agent capability to remember the
past

In our Internet context the quality of a service of a reactive agent is function of the response time, of the
throughput, of the reactive agent local time (a server is more charged during the work times than at night)
and of the day of the week (week ends are les loaded than other days). Thus a cognitive agent learns the
behaviour of a reactive agent for each hour of the day and for each day of the week. To do this it use the
qxi = Th=T formula to measure this quality when it sends it a task. The response time is an indicator of
the reactive agent ’s load, while the throughput is an indicator of the network load.

It is necessary to take into account the changes of behaviour of a reactive agent however. In our case,
every time an answer of a reactive agent is received, its quality service for that day and time is modified
as follows:

qx = � � qx+ (1� �)q
5



Where � is comprised between 0 and 1, and represents the agent capability to remember the past. The
choice of the best � coefficient is determined by our simulation results.

However if the informations have not been updated before some delay V, they are considered out-of-date.
In that case, the cognitive agent must start a new learning phase on the whole relevant knowledge.

3 Dynamic Requests Placement Strategies

Two criteria appear to be essential in the dynamic request placement: first work distribution implies that
an application must be widely distributed in order to use in the best way the available services, and the
locality criterion that aims reducing the overheads due to communications by dispatching the application
only over a neighborhood. These two criteria are easily expressed by an economic equation [?, ?], but
one can see in a straightforward way that these requirements are opposite. The strategies presented are
dynamic and non pre-emptives. They are based on: the behaviour of cognitive agent which collaborate
to achieve a common goal; reactive agent which execute a task; a bidding protocol [?] used by cognitive
agent to get information about the system state and finally on the capacity of learning of the cognitive
agent. The use of a multi-agents approach allows us to deal with the trade-off problem in a dynamic way.

3.1 Strategy of Placement Based on Service Negotiation

Initially cognitive agents have no knowledge on the state of the system due to lack of experience. Then
to determine which reactive agent to choose, and to enrich at the same time its knowledge, it starts a pro-
cess of negotiation similar to that of bidding found in free markets. Three phases in a such process are
identified: first a request-for-bidding is launched beside all reactive agents proposing the service; second,
an evaluation of reactive agents’ replies is executed; and third the contract attribution phase determines
the reactive agent on which the request is placed. If this negotiation mechanism is general and simple, it
necessitates a lot messages. In a context of a large system as Internet, the cost associated to such a commu-
nication can be prohibitory and most important, the servers currently are not able to reply to a request for
bid (today there is a great effort to establish the actual minimal information needed in today distributed
systems, some formalisms like KQML [?] and kif [?] are been studied). Therefore, we propose below
strategies based on this simple biding negotiation protocol, but using the learning capacity of cognitive
agent , and different organizations of the communities of reactive agent and cognitive agent , to minimize
its number of times it must be executed.

Let sum-up the strategic we are using and the semantic of some parameters the cognitive agent use to
decide upon the allocation of a task.

the knowledge of cognitive agent is for each reactive agent serving a type of service. this information is
organized in an array having for each day a set of checking points meaning the behaviour of the reactive
agent learned of its experiences. By useful information we mean: that the information is fresh enough,
and based on enough of experiences to be confident.

Strategy 1: when the agents have an individual organization

We present here the behaviour of the system when no organization exists between the two communities
of agents. When a cognitive agent receives a task, his knowledge of the system’s state should be used
for the task allocation. If the knowledge is insufficient, the cognitive agent selects randomly a reactive
agent submits it the task and learns its behaviour. Upon the activity of the user delivering tasks to the
cognitive agent the knowledge it has will became useful to take a decision easily.

6



Another approach that we take is create a watching reactive agent for service. When a cognitive agent ad-
dress its request to this reactive agent when it needs information. In this case the behaviour of the cogni-
tive agent is almost that described by the bidding negotiation described previously, excepting that the use
of knowledge of the agent limit its execution. Thiscognitive agent behaviour is depicted by the procedure
1. Every time the cognitive agent receives a reply it updates its partial knowledge about the system.

Procedure 1 Cognitive Agent allocation

Case event of f
Task T :

For each subtask t 2 T do
If local information is enough to allocate t

allocate(t);
Else f * start the negotiation to get the service *

RFB(service);
evaluate(offers);
allocate(t);
update knowledge;

g

Load : � � �
...

g

Example 1.

To show the behaviour of the algorithm we consider the next example having two services S = fs1; s2g
offered by reactive agents placed on sites A; B; C and D. The service s1 is offered by reactive agents
of the sitesA and B while the service s2 by sites C and D. Submitted requests are R1; R2; R3 and R4
that make call respectively to services fs1; s2g, fs1g, fs1; s2g and fs1g.

Table ?? illustrates the chronograme of a request placement following the strategy based on service ne-
gotiation. Initially sites do not work. Similarly cognitive agents have no knowledge on the state of the
system. When a cognitive agent has to place the request R1 that makes call to services s1 and s2, the
former makes a call for proposals beside four sites A; B; C and D. As all sites propose the same qual-
ity of service, the cognitive agent places without preference the request R1 on A and C, it also modifies
correspondingly its knowledge on the quality of service of the two sites. During the arrival of request
R2, the cognitive agent, consulting its knowledge, allocates this request on the site B that is becoming
the site proposing a best quality of service for s1. The execution of the totality of requests necessitates 6
broadcast and 24 point-to-point communications.

Cooperative placement strategies

Cooperative strategies are based on the organizations of reactive agent and cognitive agent in groups.
This organization has as objective reducing:

� the number of messages exchanged between agents.

� the quantity of information to manage at the level of each agent.
7



Table 1: Chronogram of the execution of the sequence R1; R2; R3; R4; R1 and R5

Site/Req. s1=A s1=B s2=C s2=D X0 Y 0 Z0

temp Knowledge Knowledge Knowledge
t1 X=R1 1R1

1R1
s1=A = s1=B = 0

s2=C = r2=D = 0

t2 Y=R2 1R1
1R2

1R1
Valid Inf. s1=A = 1

s1=B = 0

t3 X=R3 2R1;R3
1R2

1R1
1R3

Valid inf. Valid inf.
t4 X=R1✞ 1R3

0 0 1R1
not valid inf. not valid inf.

Y=R2 ✞

t5 Z=R4 1R3
1R4

not valid inf. not valid inf. s1=A = 1

s1=B = 0

t6 X=R1 2R1;R3
2R4;R5

2R1;R5
s1=A = s1=B = 1

X=R5 s2=C = 0; s2=D = 1

� the overhead associated to the placement algorithm.

The idea to organize process in groups has been implemented in different systems such as Amoeba [?],
PVM [?], etc. and has proven to be a powerful mechanism to reduce the complexity in distribution costs.
organizing the agents in groups can be in function of the geographical distribution of the agents, then
we speak of geographical clustering, or in function of agents’ characteristics for instance: their service,
their homogeneity, etc. We speak then of virtual clustering. Each of these ways to organize the agents
communities has its advantages and drawbacks. The actual problem is that for each application choose
the best organization.

Strategy when AR are organized in groups of collaborators

The principle of grouping elements is carry out a global load sharing by means of the load sharing among
the groups. When reactive agents are organized in virtual groups by service type. The outcome we look
for is reducing the number of messages needed to carry out a global load sharing. Some other advantages
of executing load sharing in groups are reduce the information a cognitive agent must manage, reduce
the overhead of the load sharing algorithm, and establishing a boundary helping the satisfaction of the
locality criterion.

Organizing in this way our communities necessitates a management for each group. In this case, our
approach associates an administrator to each group (type) of reactive agents. Cognitive agents can address
it to obtain useful to allocation information. The administrator update its informations about the elements
of the group by sending them periodically ”probe” requests.

The algorithm an cognitive agent execute when it receives a task is depicted in the Procedure 2. In the
first instance it will verify if the information it has is enough to allocate the task, other ways if it knows the
manager necessitated it will request him the missing information. Otherwise it start the biding protocol.
The drawback of this algorithm is that a manager by service is necessitated.

Procedure 2 Cognitive Agent allocation

Case event of f
Task T :

For each subtask t 2 T do
If local information is useful to allocate the subtask

allocate(t);
Else

If the manager of the required service is known
negotiate with the manager the service;
allocate(t);

8



update knowledge;
Else f * start the negotiation to get the service *

RFB(service);
evaluate(offers);
allocate(t);
update knowledge; * about the manager and services *

g

Load : � � �
...

g

Example 2.

We resume the same series of requests R1; R2; R3 and R4 as well as services s1 and s2 used in the ex-
ample 1. There exists 5 sites A; B; C; D, and E. The service s1 is offered by reactive agents on sitesA
and B while service s2 is offered by reactive site agents C; D and E. Reactive agents are regrouped ac-
cording to their type of service, and therefore there exists a manager for service s1 and another for service
s2. We also add another aspect concerning the duration of validity of the information that is supposed of
2 units of time. Request R1; R3 and A5 are launched by cognitive agent on the siteX , the request R2 by
cognitive agent of the site Y and the request R4 by cognitive agent Z.

An execution of the different requests is illustrated in Table ??. To simplify our example, the quality for
each service is represented by a simple value. At time t=1, cognitive agent of site X starts request R1

that calls services s1 and s2. By asking service managers Ms1 and Ms2, it learns that sites A and B
propose the same quality of service for s1 while C and D propose the same for s2. Without preference,
R1 is placed on sites A and C. At time t=4, the duration of the validity of knowledge being fixed at
2, knowledge acquired by cognitive agent of site X is expired. At time t = 5, request R4 that simply
uses service s1 is started by Z. At this time the knowledge of cognitive agent of site Z have allowed to
favorably place the request on site B. The placement of these requests on the different reactive agents
necessitate 4 broadcast, 3 multi-casts and 29 point-to-point communications.

Table 2: Chronogram of the execution of the sequenceR1; R2; R3; R4; R1 and R5

Site/Req. s1=A s1=B s2=C s2=D s2=E X0 Y 0 Z0

temp Knowledge Knowledge Knowledge
t1 X=R1 1R1

1R1
s1=A = s1=B = 0

s2=C = r2=D = 0

t2 Y=R2 1R1
1R2

1R1
Valid Inf. s1=A = 1

s1=B = 0

t3 X=R3 2R1;R3
1R2

1R1
1R3

Valid inf. Valid inf.
t4 X=R1✞ 1R3

0 0 1R1
not valid inf. not valid inf.

Y=R2 ✞

t5 Z=R4 1R3
1R4

not valid inf. not valid inf. s1=A = 1

s1=B = 0

t6 X=R1 2R1;R3
2R4 ;R5

2R1
1R5

s1=A = s1=B = 1

X=R5 s2=C = 0; s2=D = 1

Strategy Organizing Cognitive Agents in Virtual Groups

To allow knowledge sharing between cognitive agents, we organize them in groups. Each cognitive agent knows
the elements of its group. Thus, when a cognitive agent does not know how to place a request due to lack
of knowledge, it address a request to others cognitive agent in the same group to enrich its knowledge. If

9



after such knowledge enrichment, it still does not know how to place the request, it initiates a negotiation
process.

Procedure 3 Cognitive Agent allocation

Case event of f
Task T : *task allocation request*

For each subtask t 2 T do
If local information is useful to place the subtask

allocate(t);
Else f *the agent tries to obtain information from its friend*

enrich-knowledge(t, Friends);
If the enriched information is useful to allocate t

allocate(t);
Else f *start the negotiation to get the service *

RFB(service);
evaluate(offers);
allocate(t);
update knowledge; * about the manager and services *

g
Load : * a reply containing information about a reactive agent*

...
g

Strategy 3: offering complex services by sub-contractor agents

In multi-media information systems, to be able to offer complex added value services, it is necessary to
allow the composition of services, that is,give the possibility to build a service from other less complex
ones offered by agents. An instance of a complex service is the bibliographical research that is composed
from a translator, a localization server, a gatherer and a format translator. We introduce a new type of
agents we name sub-contractor who offers complex services. sub-contractor agents have a behavior of
reactive agent because they offer a service (even if complex, is a service), but also the behaviour of a cog-
nitive agent since they construct their complex services from their knowledge on the other reactive agents
or sub-contractors (Figure ?? shows some of the information an sub-contractor keeps about the system).
Sharing the knowledge among sub-contractors is useful, because not all the reactive agent have the same
validity time of informations. Then sharing information is interesting mainly to compleat them when is
necessary to take a decision about the allocation. The results obtained in this way have as characteristics:

� the time of response of a subcontractor cognitive agent is cheaper because the communication is
at group level and not at system level (a mutlticast replace a broadcast).

� the quality computed can not be the best on the system.

Interactions between the different agents are illustrated by the Figure ??. The algorithm used by sub-
contractor agents to place requests is briefly developed below. The algorithm implemented is shown in
procedure 4.

Procedure 4 Sub-contractor Cognitive Agent

Case event of f
10



DB acces
Bibliographical

Bibliographical

System and Own Knowledge of a Subcontractor

DB acces

Cognitif Agent

Tlaloc

kuklcan

zeus

odin

12

87

23

4

Information about the
state of my own skills

Information about the 

some relationships

Bibliographical 
research

-The name of the service
-The quality of the service
-The load of the service
-etc

System’s Information 

20

100

10

150

service
Name of the Serveur Load of the

 service.
Validity

time

Own  Information

Translation Service

Translation Service

reactive agents with I’d  and have

Figure 5: A sub-contractor cognitive agent keeps information letting him to delivers the service of plan-
ning a complex task. In this illustration the name of the service is bibliographical search, necessitating
the services of bibliographic database and a text processing.

sub-contractor
Agent of SS2

Service r1Service r1

Cognitif
Agent

sub-contractor
Agent of SS1

Service r2 Service r2 Service r3

sub-contractor
Agent of SS3

Service r1 Service r3

sub-contractor
Agent of SS3

Service r1

sharing of knowledge at
sub-contractor level

Manager Manager Manager 
SS1 SS2 SS3

Figure 6: Interactions among the three agents communities.

RFB :
For each subtask t 2 T do

If own information is useful to allocate or subcontract the subtask
compute bid;
return(bid);

Else f
ask for useful information to its collaborators
If received information is enough

compute(bid)
return(bid);

Else
For each missing servicef

start a negotiation
If all services are obtained

compute(bid);
update information
return(bid)

Else
delivers a diagnostic message

11



g
g

Task : allocate(task)
...

g

Example 3

We consider three services s1; s2 and s3, s1 offered by reactive agents of five sitesA; B; C; D andE, s1
byA andB, s2 byC andE, and s3 byF . We consider also three sub-contractor agent typesSS1, SS2 and
SS3, each one proposing an added value service composed from s1, s2 and s3. The sub-contractor type
SS1 using s1 and s2 is available on sites A; B and E; The sub-contractor type SS2 using s2 is available
on sites C and D while the sub-contractor type SS3 using s1 and s3 is available on site C. The validity
duration of the information is a function of the service, and is 1 for services s1 and s2, and 3 for service
s2. Three complex requestsR; S and T are considered,R accessing sub-contractors types SS1 and SS2,
S accessing SS2 and SS3 while T accesses SS2.

An execution of these requests is illustrated by Table ?? that shows the evolution of knowledge obtained
on the different sites. The evolution of the quality of service is illustrated by Figure ??. At time t=1, the
request R making call to sub-contractors typesSS1 and SS2 is launched by a cognitive agent on site X .
The former, having no knowledge, makes a request-for-bids (RFB) beside sub-contractors types SS1 and
SS2 on all sites. Sub-contractors, due to lack of knowledge, also start a call for proposals beside their
reactive agents so as to complete their knowledge. Knowledge thus reverberated and obtained by the
cognitive agent on site X allows it to place the request on sites A and C without preference. Sites A and
C reverberate the work on services s1, s2. At time t=2, request S launched by a cognitive agent on site
Y also execute a RFB beside sub-contractors types SS1 and SS2. These sub-contractors types, having
required knowledge, no longer need to get information beside their service suppliers. Request S is placed
on sites C and D. At time t=3, request R is ended while T is launched by a cognitive agent on site Z.
Not having knowledge, the cognitive agent of siteZ makes a call for proposal beside sub-contractor SS2
whose knowledge have expired. This results in that sub-contractorsSS2 on siteC andD inform mutually
to complete their knowledge. And finally the two sub-contractors have to inform beside reactive service
supplier agents in order to refresh their knowledge, and the request Z is placed on site D.

Table 3: Chronogram of the execution of the sequence R1; R2; R3; R4; R1 and R5

time Request/site SS1=A SS1=B SS1=E SS2=C SS2=D SS3=C Knowledge Knowledge Knowledge
of X of Y of Z

t1 R/X s1=A = 0 s1=A = 0 s1=A = 0 s1=A = 0 s1=A = 0 SS1=A = 0

started/X s1=B = 0 s1=B = 0 s1=B = 0 s1=B = 0 s1=B = 0 SS1=B = 0

s2=C = 0 s2=C = 0 s2=C = 0 R SS1=E = 0

s2=D = 0 s2=D = 0 s2=D = 0 SS2=C = 0

R SS2=C = 0

t2 S/Y idem idem idem idem s1=A = 0 S idem SS2=C = 1

s1=B = 0 SS2=D = 0

S SS3=A = 2

t3 R✞/X s1=A = 0 s1=A = 0 s1=A = 0 ask to D ask to C s1=A = 1 SS2=C = 1

T/Z s1=B = 0 s1=B = 0 s1=B = 0 s1=A = 1 s1=A = 1 s1=B = 1 SS2=D = 1

s2=C = 0 s2=C = 0 s2=C = 0 s1=B = 1 s1=B = 1 s3=B = 0

s2=D = 0 s2=D = 0 s2=D = 0 T
t4 R/X s1=A = 2 s1=A = 2 R inv. inf inv. inf

s1=B = 1 s1=B = 1 after RFB
SS1=A = 2

SS1=B = 2

and from D
SS2=C = 0

SS2=D = 1

12



4 Conclusion

While the problem of dynamic placement and load balancing is rarely addressed in database and infor-
mation systems research [?, ?], the approach based on learning and agents cooperation is a recent one.
Schaerf et Al [?] have studied the interaction of various parameters and their effect on the system effi-
ciency. In Arcadia [?], dynamic placement is mainly based on the cooperation of two agent types, ”system
agents”, and ”application agents”. Both approaches usually assume some control of the system, in that
sense that it is possible to migrate a process on another site to balance the load. They also rely on several
indicators such as the number of messages received on a site. This makes them inapplicable in the context
of Internet. The strategies for dynamic query placement which we have developed in this paper are part
of the U-Doc project, and assume a worldwide distribution of the information system at Internet scale.
The rely on the approach of multiple agents organized in a community of cognitive agents and a commu-
nity of reactive agents. In order to optimize dynamic query placement, we mainly use the knowledge a
reactive agent obtains during its experiences and also allowing their cooperation to share informations.
The response time and the throughput are the only parameters that the cognitive agents use to build their
knowledge through their experiences. In order to enable complex services with large added value, sub-
contractor agents are also proposed. They implement service composition becoming usual, as shows our
own project which can be viewed as a sub-contractor agent composed of bibliographic database servers
and searcher servers. Our approach alleviate the impossibility of actual servers of reply a request for bid,
take advantage of learning of agents to reduce the biding negotiation process. We have developed these
strategies of allocation taking into a count the actual conditions of our project, and simulated them to up-
light their performance. The results of our simulations are positives and will be validated actually in our
U-Doc project.

13


