
Developing an OSGi-like Service Platform for .NET

Clément Escoffier, Didier Donsez, and Richard S. Hall
Laboratoire LSR-IMAG, 220 rue de la Chimie

Domaine Universitaire, BP 53, 38041 Grenoble, Cedex 9 FRANCE
{clement.escoffier, didier.donsez, richard.hall}@imag.fr

Abstract

The OSGi specification defines a Java-based ser-

vice platform for dynamically deploying services into
networked environments. OSGi technology originally
targeted home services gateways, but is now used as a
general Java application extensibility mechanism. The
main abilities contributing to its growing influence are
its support of a dynamic service deployment life cycle
and its amenability to remote management. Microsoft's
.NET platform, in some ways, improves upon the Java
platform, but it still lacks explicit support for building
dynamically extensible systems like those made possi-
ble by the OSGi framework for Java. This paper pre-
sents the results of an effort to create an OSGi-like
service platform for the .NET platform.

1. Introduction

The OSGi specification [8], defined by the OSGi
Alliance [9], defines a service platform for dynami-
cally deploying services into networked environments.
The initial target domain for the OSGi framework was
home services gateways, but its target domain has ex-
panded to automotive and mobile telecommunications
industries and to Java development in general. The
main abilities contributing to its use in these new areas
are its support of a dynamic service deployment life
cycle and its amenability to remote management.
These strengths result from the basic assumptions that
service availability is dynamic in nature and that ser-
vice providers require remote access for management.

The OSGi framework's focus on dynamics is in-
dicative of many current computing trends, such as
autonomic [5], auto-adaptive [1], proactive [17], and
context-aware [2] computing, that are all trying to
manage the complexity of software system execution
in dynamically changing environments. Such systems
must be flexible enough to cope with situations where,
at any moment, required pieces of functionality be-
come unavailable or new pieces of useful functionality
are introduced. Distributed systems have long had to
deal with similar dynamic availability issues, but this

situation is now commonplace within a single com-
puter and even a single process, which is mirrored in
the OSGi framework's non-distributed approach.

The main reasons that dynamic availability is now
an issue across the board is related to the arrival of
platforms, such as Java, that have greatly simplified
the process of dynamically loading and executing code
and to the success of component- and service-oriented
development approaches [14][10]. Since dynamic code
loading is now so simple, it is very common for sys-
tems to be designed as dynamically extensible sys-
tems [13], “which can cope with late addition [and
removal] of extension without requiring a global integ-
rity check.” This meshes nicely with component- and
service-oriented development, which both define de-
velopment building blocks that form perfect units for
deployment and discovery in extensible systems.

The OSGi framework extends the standard Java
platform to provide better support for creating dynami-
cally extensible software systems. Consequently, the
OSGi framework has started to score recent successes,
such as being adopted by the Eclipse platform [3] as a
dynamic plugin engine. While the OSGi framework is
largely a Java phenomenon, the advantages that it pro-
vides are not completely lost on other communities,
such as those interested in Microsoft's .NET plat-
form [7]. While the .NET platform offers some advan-
tages over the Java platform, it still lacks explicit sup-
port for building dynamically extensible systems.

This paper presents the results of several attempts to
implement a non-distributed service platform like
OSGi for the .NET platform. Section 2 discusses the
dynamic code loading mechanisms in the Java and
.NET platforms. Section 3 describes and critiques al-
ternative realizations of an OSGi-like layer for the
.NET platform, followed by the conclusion.

2. Dynamic Code Loading

This section first discusses code loading in Java as
well as how OSGi extends the standard mechanisms,
then standard code loading in .NET is discussed.

2.1 Code Loading in Java

The Java platform is based on a virtual machine that
abstracts the underlying operating system and makes it
possible to safely run programs across heterogeneous
computing platforms. The Java virtual machine [16]
interprets portable byte code delivered in the form of
class files. Class files are dynamically loaded into the
virtual machine following an explicit search order.

The actual run-time mechanism used to load classes
in the virtual machine is an instance of the
ClassLoader class, which is a special class used by
the Java platform to load other classes. [6] All class
loaders have a parent class loader, except for the boot-
strap class loader. By default, child class loaders dele-
gate class load requests to their parent class loader and
only if the parent does not find the class will the child
search for the class itself. When a Java application is
started, the application's main class is loaded with a
default application class loader instance, which ulti-
mately delegates to the boot class loader. It is possible
for applications to provide custom subclasses of
ClassLoader to perform specialized searches for
classes, such as searching remote repositories. It is
through class loaders and class loader customization
that Java popularized or, at the very least, brought dy-
namic code loading to the masses.

2.2 Code Loading in Java with OSGi

The OSGi specification improves upon the basic
features of the Java platform by defining a lightweight
component abstraction, a standard packaging format, a
dynamic deployment life cycle, and a service registry
for component interaction. The OSGi packaging for-
mat, called a bundle, is a standard Java archive (JAR)
file, with a manifest file that contains metadata con-
cerning Java class packages required by the bundle
(imports) and Java class packages provided by the
bundle (exports). Besides the manifest file, a bundle
JAR file may contain class and resource files, other
embedded JAR files, and native code. Import and ex-
port information is expressed in terms of Java class
package names and versions.

The OSGi framework ensures that the only classes
visible to a given bundle are those contained in its own
JAR file and those which it imports. Unlike the stan-
dard Java class loading search order, which is hierar-
chical, the OSGi search order is a graph, which allows
it to support a dynamic deployment life cycle for bun-
dles (e.g., install, activate, update, and uninstall) [4].

The standard Java platform also provides a mecha-
nism, called Optional Packages [12], that enables de-
scribing dependencies among JAR files. Using this

mechanism, it is even possible to download and update
JAR files automatically. The approach is less sophisti-
cated and not as flexible as the OSGi approach and,
more importantly, is largely static.

In addition to dynamic deployment life cycle man-
agement, the OSGi framework also provides a service
registry where bundles can publish independent im-
plementations of Java interfaces, called services, and
other bundles can search for available service imple-
mentations. Services are the only form of direct com-
ponent interaction supported by the OSGi framework.
The use of service interfaces insulates bundles from
service implementation details. A reference to a service
is a direct reference, using normal method invocation.

2.3 Code Loading in .NET

Microsoft's .NET platform is similar to the Java
platform in many respects, but some significant differ-
ences do exist. First, the .NET virtual machine [15]
was designed to supports multiple programming lan-
guages (e.g., C#, J#, VB.NET, and Visual C++ .NET),
whereas the Java virtual machine was only designed to
support Java, although other languages for it do exist
(e.g., SmalltalkJVM, Groovy, Jython, JRuby, and
Nice). In .NET, all languages run on the Common
Language Runtime (CLR). The CLR uses a portable
language format, called the Microsoft Intermediate
Language (MSIL), which is analogous to Java's byte
code. High-level languages are compiled into MSIL,
which is then compiled into the native code of the un-
derlying computing platform at load time, similar to
how Just-In-Time (JIT) compiling works in Java.
Unlike anything in Java, the CLR is able to retain as-
semblies in a Global Assembly Cache (GAC) for later
reuse and version management. The official .NET plat-
form is from Microsoft. Microsoft also provides a
“shared source” implementation, called Rotor [11].

In .NET, applications and their components are
packaged into assemblies. An assembly is .NET's unit
of reuse, versioning, security, and deployment. An
assembly is one or more files representing types and
resources and is described by a manifest. An assembly
manifest is represented in XML and contains informa-
tion such as version number, natural language, and
content hashes. Hashes come into play when calculat-
ing an assembly's signature using public key cryptog-
raphy, which is also referred to as the strong name of
the assembly and it is used for identification and secu-
rity purposes. Assemblies can be dynamically loaded,
but, unlike Java class packages contained in JAR files,
it is not possible to load individual types or classes
from an assembly.

A .NET application runs in an isolated execution
environment, called an application domain. Applica-
tion domains are analogous to virtual processes. Sev-
eral application domains can share the same virtual
machine (and thus the same physical process), but they
are treated as completely separate. Communication
between two application domains must use interproc-
ess communication (IPC), such as .NET Remoting.

Application domains manage the loading of assem-
blies. By default, an application's constituent assem-
blies are loaded into a single application domain. As-
semblies loaded into different application domain are
not directly accessible to each other. An application
can create several domains for loading assemblies.

When an application references a type, if the type
has already been loaded into the domain, then it is re-
used. If not, then the runtime searches for the assembly
containing the type and loads it. Application domains
can also be unloaded, which releases any assemblies
loaded into the domain. This is the only way to unload
code in the .NET platform, since types in .NET are not
regarded as "normal" objects and are not garbage col-
lected like in Java.

The .NET runtime searches for assemblies by first
probing the GAC and then the application's directory.
Assemblies in the GAC are accessible to all applica-
tions, whereas assemblies in an application directory
are private to that application. Through special con-
figuration files, an application can modify the assem-
bly search process by defining version redirection
rules, additional directories to search, and code bases
from where an assembly can be downloaded.

3. An OSGi Service Platform for .NET

The objective of the work described in this paper
was to study the possibility of creating a single-process
dynamic extensibility framework for .NET, similar to
what the OSGi framework provides for Java. In doing
so, several approaches were implemented. Each ap-
proach was evaluated with respect to the following
criteria:

• Ability to dynamically load/unload services and
their supporting code and resources.

• Performance of service invocation.
• Controlled access to dynamically loaded code.
It is important to point out that it is unlikely that the

OSGi framework's capabilities could ever be ported to
the .NET platform in a completely isomorphic way.
The reason for this is that there are certain impedance
mismatches between the two platforms. For example:

• In Java, the unit of code loading is a class; in
.NET, the assembly is the unit of code loading,
which may contain many types.

• In Java, the compiler does not record explicit de-
pendencies among classes, which can be arbitrar-
ily resolved at run time; in .NET, assembly de-
pendencies are explicitly recorded at compile
time, making them difficult to resolve differently
at run time.

• In Java, the class search order is nearly com-
pletely customizable via class loaders; in .NET,
class/assembly searched order controlled by more
sophisticated policies that complicate implement-
ing custom search orders.

• In Java, the deployment unit does not form part
of the class name; in .NET, the assembly name
forms part of the contained type names, ulti-
mately reducing provider substitutability.

With these criteria and considerations in mind, the
following subsections describe and critique various
approaches for implementing an OSGi-like dynamic
service platform for the .NET platform. Besides the
alternative approaches described in the following sub-
sections, some effort was also put into trying to modify
the underlying open source CLR implementation to
achieve better service platform characteristics. How-
ever, this effort was not successful and it appears any
effort to do so would be significant. Further, the value
of a non-standard CLR is questionable.

Of the four remaining approaches discussed in the
next subsections, all use single-file assemblies for sim-
plicity. In each approach, an assembly contains zero or
more service implementations. The general packaging
approach is to place service interfaces in their own
assemblies; thus, assemblies containing service clients
and providers depend on service interface assemblies.
Also for simplicity purposes, the service registry is
simply a list of services where each service entry is a
name, an interface type, and an actual service imple-
mentation instance.

3.1 Single Application Domain Approach

The first alternative used a single application do-
main. The single domain contains a special loader as-
sembly that manages service assembly loading for the
domain; figure 1 illustrates this architecture.

The main benefit of this approach is that service
method invocation is fast, since it is just a local method
call. While it is possible to dynamically load service
assemblies, it is not possible to dynamically unload
them. The .NET platform does not support unloading
an individual assembly from an application domain. To
unload an assembly, it is necessary to unload the entire
application domain, which in this approach is equiva-
lent to restarting the entire system. This issue consid-

erably limits this approach as a way to implement an
extensibility framework.

ASM1:
Service Provider

ASM2:
Service Requester

ASM3:
Service

Interface

Application Domain

Loader

Registry

Search Path
Service Binding

Figure 1. Single application domain approach.

3.2 Multiple Application Domain Approach

The second alternative used multiple application
domains. Each service assembly is loaded into its own
application domain. The loader assembly also runs in
its own domain. Figures 2 illustrate this architecture.

AppDomain 1

AppDomain 0

Provider

.NET Remoting

AppDomain 3

Service
Interface

AppDomain 2

Requester

LoaderRegistry

Service
Interface

Service
Interface

 Search Path

Figure 2. Search path for the multi-domain al-
ternative.

The loader also manages the set of available re-
sources in each domain. When an assembly tries to
load a resource it delegates this request to the loader.
The loader then searches other application domains. If
the resource is available in another domain, the loader
transfers the resource to the requesting domain; in the
case of a service interface, the loader creates a proxy
and copies it into the requesting domain. With this
approach it is possible to provide better insulation
among assemblies by following a pattern of separating
a service into two assemblies: the service interface and
the service implementation. By doing so, client assem-
blies will only load the service interface assembly into
their application domain when accessing the service
and will not have access to other public classes in the
service implementation assembly.

Despite the advantages of this approach, it has an
undeniable disadvantage. Since an application domain
is an isolated execution environment, communication
between application domains requires the use of an
IPC mechanism. Inter-application domain communica-
tion is handled by .NET Remoting, which is quite ex-

pensive in terms of performance. The main overhead
penalty is incurred due to serialization/de-serialization
of exchanged objects during method invocation. The
difference in performance is dramatic when compared
to local method invocations. It is possible that future
IPC mechanism could mitigate this overhead, which
might render this approach usable.

The loader manages loading/unloading service as-
semblies and creating/unloading application domains
for each service implementation.

A final issue in this approach is that application
code must be aware of the modified resource delega-
tion search process and be coded explicitly for it.

3.3 Shared Application Domain Approach

The third alternative used a somewhat hidden fea-
ture of the .NET platform, called the shared domain.
The shared domain is not really an application domain,
since it is not an execution environment; however, it is
possible to load assemblies into the shared domain.
Assemblies loaded into the shared domain are called
neutral domain assemblies and their JIT compiled
code is shared among all application domains within
the physical process. Neutral domain assemblies re-
quire an actual application domain to execute. Figure 3
shows how the service interface is copied from the
shared domain into other domains; the searching and
copying is performed automatically by the CLR. By
default, the core .NET assembly, containing basic
types, is loaded into the shared domain because it is
used by all .NET applications. The shared domain im-
proves performance and resource consumption.

mscorlibShared Domain Service
Interface

AppDomain 0

Registry

Loader

AppDomain 1

Provider

Service
Interface

AppDomain 2

Requester

AppDomain 3

Service
Service
Interface

Interface

 Copy Search

Figure 3. Search path in the Shared Domain
alternative.

This third alternative forces the loading of some as-
semblies into the shared domain, but ultimately this
approach is similar to and potentially worse than the
second approach. It still suffers from invocation per-
formance issues, since domain neutral assemblies are
still conceptually copied into each referencing applica-
tion domain, which again results in the use of IPC for
service method invocation. To make matters worse,
domain neutral assemblies are accessible to all other
assemblies and can never be unloaded.

3.4 Hybrid Approach

Another possible approach, not implemented, is to
combine the first two alternatives. In such a hybrid
approach, highly coupled services could be placed into
one domain to allow local service invocation. Service
calls would then be invoked in one of two ways: by
direct method invocation if the service object is in the
same application domain as the caller or via .NET Re-
moting if the service object is in a different application
domain than the caller.

In such an approach, each application domain has a
local service registry, where all local services can be
found. The local service registry must also coordinate
with a global service registry for inter-domain service
discovery. This architecture also opens up two new
possibilities:

• Not all services must be globally shared among
application domains and

• Multiple versions of the same service may exist
in the service registry at the same time.

These two new possibilities add subtle complexities
to the overall model, since errors will occur if a client
encounters an unexpected version of a type. This gives
the extensibility framework the responsibility of ensur-
ing type-space consistency for clients; this form of
support for multiple service versions and type-space
consistency is also under consideration for the next
version of the OSGi specification.

Updating or uninstalling services in this approach
would still require that the containing application do-
main be unloaded. The impact of such operations on
the overall system is a trade off between communica-
tion performance and dynamic resiliency, which results
from deciding whether service assemblies should be
loaded into separate or the same domain. As a result,
the value of this proposed approach is at the mercy of
the algorithm used to place assemblies.

4. Conclusion

The conceptual dynamic service platform defined
by the OSGi specification is gaining widespread ac-
ceptance. The ability to dynamically deploy and re-
motely administer services is feeding this acceptance.
The OSGi framework has outgrown its original target
domain of home services gateways and is now target-
ing applications in automotive, mobile telecommunica-
tions, and Java development in general. Despite the
fact that the OSGi framework is largely a Java phe-
nomenon, the concepts it embodies are also of interest
to developers on Microsoft's .NET platform.

This article presented and critiqued several ap-
proaches to implementing an OSGi-like framework for
the .NET platform. The results indicate that .NET lacks
certain capabilities to create a similarly flexible and

lightweight service platform as the OSGi framework.
The inability of .NET to unload assemblies from
within an application domain and the poor perform-
ance of inter-application domain communication, re-
sult in an inadequate dynamic service platform.

10. References

[1] L. Andrade and J.L. Fiadeiro. “An Architectural Ap-
proach to Auto-Adaptive Systems,” 22nd Int’l Conference on
Distributed Computing Systems Workshops, July 2002.
[2] A.K. Dey and G.D. Abowd. “Towards a Better Unders-
tanding of Context and Context-Awareness,” Workshop on
the What, Who, Where, When and How of Context Aware-
ness at CHI, April 2000.
[3] O. Gruber, B.J. Hargrave, J. McAffer, P. Rapicault, and
T. Watson. “The Eclipse 3.0 Platform: Adopting OSGi Tech-
nology,” IBM Systems Journal, Volume 44, Number 2, 2005.
[4] R.S. Hall. “A Policy-Driven Class Loader to Support
Deployment in Extensible Frameworks,” Proceedings of the
2nd International Working Conference on Component De-
ployment (CD 2004), May 2004.
[5] J.O. Kephart and D.M. Chess. “The Vision of Autonomic
Computing,” IEEE Computer, January 2003.
[6] S. Liang and G. Bracha. “Dynamic Class Loading in the
Java Virtual Machine,” Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA'98), October 1998.
[7] J. Ntuba. “Design and Implementation of an OSGi Ser-
vice Architecture for the .NET Platform,” Masters Thesis,
Free University Berlin, July 2004.
[8] Open Services Gateway Initiative. “OSGi Service Plat-
form Version 3,” http://www.osgi.org, March 2003.
[9] OSGi Alliance. “Web site,” http://www.osgi.org, 2004.
[10] Z. Stojanovic and A. Dahanayake. “Service-Oriented
Software System Engineering: Challenges and Practices,”
Idea Group Publishing, 2005.
[11] D. Stutz, T. Neward, and G. Shilling. “Shared Source
CLI Essentials,” O'Reilly Media, Inc., March 2003.
[12] Sun Microsystems. “The Java Extension Mechanism
(for Support of Optional Packages),” Sun Microsystems Java
Documentation, 2002.
[13] C. Szyperski. “Independently Extensible Systems - Soft-
ware Engineering Potential and Challenges,” Proceedings of
the 19th Australian Computer Science Conference, 1996.
[14] C. Szyperski. “Component Software: Beyond Object-
Oriented Programming,” ACM Press/Addison-Wesley Pu-
blishing Co., 1998.
[15] T.L. Thai and H. Lam. “.NET Framework Essentials,”
O'Reilly Media, Inc., August 2003.
[16] B. Venners. “Inside the Java Virtual Machine,”
McGraw-Hill Companies, 1997.
[17] R. Want, T. Pering, and D. Tennenhouse. “Comparing
Autonomic and Proactive Computing,” IBM Systems Jour-
nal, Volume 42, Number 1, 2003.

	1. Introduction
	2. Dynamic Code Loading
	
	2.1 Code Loading in Java
	2.2 Code Loading in Java with OSGi
	2.3 Code Loading in .NET
	3. An OSGi Service Platform for .NET
	
	3.1 Single Application Domain Approach
	3.2 Multiple Application Domain Approach
	3.3 Shared Application Domain Approach
	3.4 Hybrid Approach

	4. Conclusion
	10. References

