
> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

1

Abstract—This paper presents two approaches for developing

mobile agent architecture on OSGi gateway: one relying on the

IBM standard (Aglet) and the other using only the standard

OSGi design. Both use OSGi dynamic capabilities for dynamic

code loading and unloading and take advantage of service

oriented architecture for binding mobile agent requirements with

services already running on the hosts. Those approaches show

the interest of services architecture to help and facilitate mobile

agent infrastructure implementation.

Index Terms—service oriented architecture, OSGi, mobile

agent platform.

I. INTRODUCTION

OWADAYS, we assist at the emergence of new

heterogonous distributed systems. For instance,

appearance and development of residential gateways that can

be accessed by the PDA or the mobile phone of the proprietary

is one of those networks. This drives to a growing interest for

the services platforms that can be deployed in such

environment and can be used either on the client side (PDA,

mobile phone), either on the server side (gateway).

OSGi[1][23] is one of those service platforms. It can fit the

memory requirements of those embedded devices because of

its small footprint.

It is still hard to take advantage of such environment

because of the difficulty to develop and implement distributed

systems whereas the demand for added value services is

growing. This demand can be considered as a new opportunity

for mobile agent platforms to democratize. We claim that we

can rely on OSGi service platform (gateway) for pervasive

computing (mobile phone, interactive television, in-

vehicles…) and provide a mobile agent environment.

A mobile agent is a composition of computer software and

data which is able to migrate (move) from one computer to

another autonomously and continue its execution on the

destination computer. By moving computation to data, it can

reduce the network load. This computation paradigm can also

provide dynamic adaptation (actions are dependant from the

host environment), network fault tolerant (can be efficient

without a permanent active connection between the server and

the client) and flexible (only the agent source should evolve,

not the hosts servers).

The idea that technology is moving beyond the personal

Published to : Mikael Desertot, Si-Hoang Do, Didier Donsez, Marc Bui ,

“Mobile Agents Platforms over OSGi”, Proc. of 4th International

Conference on Computer Sciences, Research Innovation and Vision for the

Futur (RIVF'06) February , 12-16, 2006, Ho Chi Minh, Vietnam

computer to everyday devices with embedded technology and

connectivity as computing devices become progressively

smaller and more powerful. Also called ubiquitous computing,

pervasive computing is the result of computer technology

advancing at exponential speeds - a trend toward all man-made

and some natural products having hardware and software.

Pervasive computing goes beyond the realm of personal

computers: it is the idea that almost any device, from clothing

to tools to appliances to cars to homes to the human body to

your coffee mug, can be imbedded with chips to connect the

device to an infinite network of other devices.

…

II. MOBILE AGENTS PLATFORMS OVER OSGI

The Open Services Gateway Initiative (OSGi) specification

is an open framework for the delivery of managed broadband

services to networks in homes, cars, mobile phones, factories

and other non-stop environments. Services are packaged inside

deployment units named "bundles," where a bundle is a

collection of Java classes and associated resources. Abstractly,

the OSGi specification is divided into two logical halves: the

OSGi framework and OSGi services. The framework defines

the lifecycle of the bundles and the registration of services.

The services are either general-purpose services using by main

applications developers such as HTTP, Log, Device Manager,

JINI or domain-oriented services such as WireAdmin for

sensor-based applications.

A. Aglets over OSGi

The OSGi platform has been applied in many domains such

as vehicles, mobile/portable devices, offices and homes. There

are a lot of services have been developed. However, the OSGi

is a non-distributed service platform. Then, our purpose is to

build an over-platform that permits the cooperation between

OSGi gateways and supplies an ability of creating a new type

service that is more flexible and intelligent. A mobile agent

framework is the most suitable for this over-platform.

Building the mobile agent framework relies on OSGi

platform gives mobile agents in different OSGi gateways and

in normal hosts communicating (locally and distantly) and

migrating from one host to another as Fig 2.1.

For the implementation such mobile agent framework, we

have chosen Aglets platform of IBM [10] that is a strong,

multi-applied, Java and open source framework.

All of communication, migration and security mechanisms

of mobile agent framework over OSGi [2] inherit from Aglets

framework. We will talk in details below.

Mobile Agents Platforms over OSGi

Mikael Desertot, Si-Hoàng Do, Didier Donsez, Marc Bui

N

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

2

1) Inter-agent communication

Agents (aglets) communicate by sending and receiving

messages. For sending message agent has to know the

receiver’s ID and can be returned a reply value. There are

three modes of sending messages: One-way, synchronous and

asynchronous mode.

Aglets API supplies three methods for sender agent that are:

• proxy.sendOneWayMessage(msg);

• proxy.sendMessage(msg);

• proxy.sendAsyncMessage(msg).

By receiving and treating incoming messages, every agent

has the handleMessage(msg) method. All messages are first

passed to the MessageManager of the mobile agent

framework. Here, they are queued for later processing in order.

The message’s content is organized in a hash table of

couples of value (name, value).

2) Migration

The aglets’ migration is realized through Agent Transfer

Protocol (ATP). Every mobile agent framework is an ATP

server. There are two main activities for the agent’s migration:

Dispatch and Retract.

Dispatch requests a destination agent framework to

reconstruct an agent from the content of request and to start

executing agent. If the request is successful, the sender must

terminate the agent and release any resources consumed by it.

Retract requests that a destination agent framework send the

specified agent back to the sender. The receiver is responsible

for reconstructing and resuming the agent. If the agent is

successfully transferred, the receiver must terminate and

release any resources consumed by it.

Intuitively we just need the Dispatch activity for agent’s

migration. However, in case of firewall, only one-way

connection is established to the outside. Agent can not be

returned relies on the Dispatch activity. And then the Retract

activity has done.

3) Security

The security model is based on the Java 2 security

specification. It defines security policies to agent owner,

context owner, and network domain owner.

The main objective of agent owner is to protect the agents

from attacks. When agents are visiting a context they may

request the context to enforce the specific policy. The context

owner is above the agent owner in the security hierarchy and

need not wholly agree with the agent owner’s security policy.

A context authority is responsible for keeping the server and

the underlying system safe from malicious agents. The context

owner’s security policy defines the actions an agent can take in

a given context.

A network domain authority is responsible for keeping its

network secure so that the server within the domain can

provide their services safely and all incoming agents can

complete their tasks. The domain authority defines the security

policy for the domain.

B. Mobilet[24] over OSGi

A different approach from the Aglet, by just relying on the

OSGi standard, is to consider that a mobile agent is a bundle

that encapsulates the agent business code. In this manner, due

to the needs of dynamic and distant code loading, we profit of

all mechanism integrated in the OSGi platform to implement

such a mobile agent environment and benefit of the standards

services provided by the specification.

The capabilities we are aiming to reach are describe in the

fig. 2.2. An OSGi gateway is assumed to be installed on each

server that we want our mobile agent to attain. On each one, a

bundle is deployed (a bootstrap) and will help agents to

progress through the whole of the servers potentially being

able to lodge them. Currently, to implement such a bootstrap, a

servlet responds to our needs.

We have defined interfaces that both server and client

(mobile agent) must implement. Those server side classes are

obviously contained in one of the server bundle deployed on

the OSGi platform but another bundle should also contain the

client interfaces needed by the mobile agent. This avoids

embarking the client classes in the moving bundle and this for

two reasons. First, for a performance purpose, as less classes

have to move from one platform to another and second, for a

Fig. 2.1. Mobile agent framework over OSGi.

Fig. 2.2: Deploying mobile agent on OSGi

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

3

security purpose, as class duplication in different bundles is

not suitable and won’t work in OSGi situation. This approach

is less interesting in case the client API evolves frequently as

bundles of alls platforms have to be updated whereas if the

client brings them, this action is simplified. Packaging them

separately is interested for independent updates.

To start a mobile agent, we connect to any of our OSGi

bootstrap, using a web browser. Then we enter the URL of the

mobile agent location. This agent is package as a bundle and

will be started by the server we are connected to. OSGi

loading mechanism takes in charge downloading the bundle

and installing it. As soon as its package dependencies are

resolved (interfaces exported by the bundle server), the mobile

agent is started. The bundle Activator can then fulfils several

functions. At first it must instantiate a tracker on a log service

that should be present on the platform. If this service is not

available the agent won’t be able to log information but will

keep on working. The work done, the agent must connect to

the send agent service proposed by the server. The agent

Activator try to load the files containing his properties and, if

it exists, the file containing the serialized information the agent

brings during his transfer. If this last file doesn’t exist, it’s the

agent first activation. Finally, the agent is initialized. This part

implies in particular during the first installation, the setting of

the properties and the read of the different jumps that must be

carried out including their name resolution.

Through this architecture, we are now able to propose

different scenarios: migration, meeting, waiting, waking up

and a server agent specific scenario of auto identification.

During its execution, the client asks for migration. If the

jumps are explicitly established in the file properties, the agent

will use this definition and will manage a table containing the

jumps and their state (carried out or not). If the jumps are not

specified in the properties file of an agent, the jumps will be

made on all running Agent Server. The home host, if specified,

will be the last to receive the agent. The trace of the jumps is

preserved. This is the classical migration scenario.

In a meeting scenario, agent looks for a named specific

agent locally. If it can’t locate it ask other servers to list agent

installed on their location. Askers will then use their responds

to move to a server where the requested agent is accessible.

For a waiting scenario, an agent requires the presence of

another agent to perform his operations. So it is possible for it

to sleep until such an agent registers it on the same server.

When conditions are met begins a waking up scenario to

defreeze the sleeping agent which is know able to run properly

with the help of the freshly arrived agent.

For agent server purpose is provided an auto identification

scenario permitting to any new server to be registered by

server ever running. We use for this scenario a multicast

diffusion. A new running server diffuses his name and

identification on the network so all other servers take in

consideration this arriving.

We have implemented such a platform using the OSCAR

[24] open source implementation of OSGi. It is available at

www …

1) Code and state Packaging

Two specificities should be pointed there; resolving the

agent code package dependencies and the way the state of a

mobile agent is saved and migrated within the agent bundle.

A mobile agent, depending on the actions it performs, would

require different packages to work properly. We can not

assume what is already deployed on a gateway but we can take

advantage of OBR (Oscar Bundle Repository) [25]. It has two

goals; first, it simplifies the deployment and the use of existing

OSGi bundles. This objective is achieved by the providing of a

service that can automatically install a bundle, with its

deployment dependencies, from a bundle repository. Second it

encourages independent bundle development by raising the

visibility of the available bundles and providing access to both

the executable bundle and its source code. By using this

service we are able to resolve agent package dependencies and

automate their installation.

The state of a mobile agent must be saved and reloaded each

time the agent migrates. For this part we are serializing needed

information and generating a bundle containing them which

become the new mobile agent that will be installed by the next

jump platform.

2) Inter-agent Communication

The OSGi specification since its third release, propose an

architecture called “wire admin” that permits to connect an

information producer with a consumer requiring this kind of

information. Wire Admin (figure X) is a service proposed to

every bundle being installed on OSGi platform. It can be used

to create Wire objects connecting a Producer service and a

Consumer service. Wire objects also have wire properties that

may be specified when a Wire object is created. The Producer

and Consumer services may use the Wire object's properties to

manage or control their interaction.

As our mobile agent travel on OSGi gateways, we can have

benefits to use this standard architecture for inter-agent

communication. Indeed, in the case of the meeting scenario

evoked upper, agents can use the producer/consumer pattern to

communicate and share information. Each agent would be both

a producer and a consumer. The characteristics of the services

they need or proposed would be typed as flavors for the Wire

Admin so that it is able to connect two agents advisedly. With

Fig. 2.3: Connection through Wire Admin

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

4

the use of Wire Admin we use the facilities proposed by the

OSGi platform at its best but one more problem subsist in this

case: as our agent are self dependants, they won’t connect

automatically to the Wire Admin at their arrival on a gateway

because this operation required an administrator command to

be performed, whereas in our case this is not realizable. What

we propose is to automate the connection by introducing a

Wire Admin Binder. This service, on top of Wire Admin, take

the role of an administrator and uses the Wire Admin

capabilities to instantiate a Wire Object between two mobile

agents, getting sure as a preliminary that the flavors associated

with data properly fit.

3) Migration

Agent migration is realized through HTTP. Each agent

server registers a servlet. An agent uses it to ask his destination

server for migration.

This demand is performed after the agent has been

repackaged into a bundle. This bundle is exposed by HTTP.

Concretely it is the URL of this bundle that is sent to the

destination server. It can then rely completely on OSGi

mechanism for code downloading. And again the bundle's

Activator class gets the needed services on the server to deploy

and carry out its operations. This operation is repeated as

much as all the jumps have not been traveled through.

4) Security

Security handling has been one of the major improvements

of the fourth release of the OSGi specifications. It provides a

rich set of capabilities on which we can rely to obtain the

security level we want.

A new standard OSGi service has appeared, the Conditional

Permission Admin. It provides a simple way to manage

networked services securely. It also supports dynamic policies

that can depend on external (custom) conditions. It can be

combined with the new support for digital signatures. This

provides a one stop security solution to agent deployment

using the OSGi Service Platform. The agent can embed his

proper digital signature that can be checked after a migration

and its arrival on a new server to ensure we are not running

malicious code.

C. Comparison

The two approaches we have described above don’t provide

the same capabilities even if they rely on the same services

platform. We have compared both of them using the criteria

presented in the table 2.4.

Each of them (Aglets and Mobilet) relies on the OSGi

framework and is so able to use Standard OSGi services

(described in the specifications) as well as some other services

that are registered on the OSGi framework. But as Aglets

depends on a specific framework for agent execution, they

can’t record a service (defined by a contract) in the OSGi

registry that can then be bind and use by a third party bundle.

This limitation is broken on the Mobilet architecture, as agents

are pure OSGi bundles deploy on the framework in the same

way classical bundles are.

Even so, this need of a particular framework for aglets

brings interesting capabilities like being able to run on the

same context (OSGi gateway) multiple version of the same

Mobile Agent. Indeed, the aglet agent framework authorizes

the registration of multiple instance of agent but in Mobilet

case, as agents are pure bundle, we are not able to deploy two

of them on the same gateways. In fact it could be possible if

the same bundle can be downloaded from two different places

as it is in this way bundles are differentiated in OSGi. In this

case, they must also have two different names because the

name is used as part of an identifier when agents are

repackaged into bundles before a migration. This can lead to

conflicts problems.

Being conform to Aglet also allows a better reusability of

our agent, another Aglet compliant framework. By only relying

on OSGi inside Mobilet, we are fully dependant of this

platform and agent must be adapted to be usable elsewhere.

But using the Aglet framework means that is must be

deployed on each OSGi gateway. This cost resources (less

than 800ko) and this can be avoided in the Mobilet

environment as just the registration of a servlet and the needed

is necessary. The underlying OSGi framework already

provides all other needed mechanisms (download, installation,

activation, services dependency…).

To summarize, relying on two standards (Aglet and OSGi)

rather than one (OSGi) (criteria) brings additional

functionalities and a better reusability whereas, on the other

hand, relying only on OSGi costs less resources and provide a

better integration on the underlying platform. The use of one

or the other solution depends on the domain specific

requirements.

III. DOMAIN EXPERIMENTATIONS

We apply the Aglets framework over OSGi in domain of

comfort services in the SCAM
1
 project [3].

The purpose of SCAM is to increase the capacities of the

services oriented users, in particular for the nomadic users, and

to equip the rooms and buildings with computer functionalities

facilitating the comfort management [8][9].

1 SCAM : Système de Confort utilisant la technologie Agents Mobiles

Criteria Aglets Mobilet

Uses OSGi

 Standard Services

+ +

Can provides

OSGi Services

- +

Collocated

execution of the

same agent version

+ -

(But possible)

Specific politics + +

Reusability + -

Standard

conformance

OSGi

Aglets

OSGi

Resource cost +/- +

Fig. 2.4: Aglets and Mobilet comparison

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

5

SCAM’s architecture (fig. 3.1) contains separate physical,

service, and application layers.

Physical layer consists of various devices and sensors such

as lamps, TV, convectors, motion detectors, heating

thermostats.

The service layer contains the OSGi framework and its

activated services including three bundles with three different

tasks: configuration service, tracking service, and mobile agent

framework.

• The configuration service covers the house’s

configuration to other services. It supplies the

information of house’s zones and sensors for the

tracking service and the information of house’s zones,

persons in this house (preference, priority …), and

equipments for the mobile agent framework.

• The tracking service controls realizing objective

sensors. It offers persons’ movements to the mobile

agent framework.

• The mobile agent framework gets house’s information

and creates contexts (logic spaces) corresponding to

house’s zones, initiates assistant agents for each person.

When the framework receives the person’s movement

event, it will dispatch his assistant agents to the

corresponding context.

Our system models a logic space correspond to the user

house. Each zone in the house equals a context in mobile agent

framework. Mobile agent embodies a service for a person.

When the person enters a room, his assistant agent will be sent

to the corresponding context in the mobile agent framework.

At that context, this assistant agent encounters and interacts

with other agents.

The system provides a mechanism that follows to develop

services where assistant agents can coordinate to reach an

acceptable comfort level.

 The assistant agent can control the equipments through the

existing services in OSGi gateway.

IV. RELATE WORKS

This works deals with using a service oriented[21] platform,

OSGi, and its deployment capabilities to support a mobile

agent environment.

The service oriented architecture is not proper to OSGi and

can be found in other architecture. For instance, one of the

most classical one is Web Services [13] that rely on distant

invocation and a centralized directory. UPnP for its parts

retake the same capabilities but with a distributed directory.

Those two are service architecture but are not service platform

on which we can rely for agent deployment and migration.

JINI[15][16] or OpenWings[17] can be good candidates,

more corresponding to service oriented platform because of

the notification of services arrival or departure.

JINI seeks to simplify the connection and sharing of devices

on a network. It announces itself to the network, providing

some details about its capabilities, and immediately become

accessible to other networked devices. Under this technology it

is possible to create distributed computing, whereby

capabilities are shared among the machines on a common

network. It can also allows users to access the power and

features of any device on the network and would free the

desktop computer from holding all the memory, storage and

processing power it needs for any job. It has already been used

in collaboration with UPnP architecture [14].

Derived from JINI to offer more complex service lookup

semantics model is OpenWings. Its goal is to provide a

service-oriented component framework for highly dynamic

networked systems of software and hardware components. It is

based on only one core technology, Java, and is independent

from all others. In particular because of it's providing of plug-

ins abstractions of these technologies. Component services

encapsulate the details of providing and using services.

But those two service platform does not propose the

deployment properties OSGi provides by the dynamic

deployment of services and their standard packaging into

bundles.

Apart those service oriented platform is a project called

JXTA [18][19]. This technology is a set of open, generalized

peer-to-peer protocols that allows any connected device (from

cell phone to PDA, PC or even server) on the network to

communicate and collaborate.

Java mobile agents have already been applied to the JXTA

P2P platform in this project [12]. It shows that development

requirements are minimal by using the platform API and the

Fig. 3.2: interaction between services

OSGI Framework

Physical layer

Service layer

Application layer

Bundles

sensor sensor sensor devices

Mobile agent
Framework

agents

Fig. 3.1: SCAM architecture

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

6

Core specifications. It helps program, install and launch

mobile agents that are both light-weight and disposable. Such a

platform gives the agent the ability to adapt to the

unpredictable behavior of the peers and to their content and

this content’s potential mobility (if either the peer or the

content move, both can still be found). Agent deployed on this

platform is not encumbered, but rather, adapts its itinerary to

the variable network behavior it might encounter. Finally a

JXTA P2P agent system doesn’t need to be concerned

anymore with the underlying real network impediments to

communication such as Network Address Translation (NAT)

and firewalls.

The JXTA can be compared to the agent framework we

propose but again, deployment in OSGi is eased as tackled in

the specification, and as it is an open service oriented platform

it is possible to use legacy services in our agent to provide

enhanced capabilities.

For high-tech residence, Majitek [20] proposed a

commercial framework based on JINI technology, called Maji

framework. Maji is a platform allowing the development and

the management of distributed applications. It enables any

device, system, software or service to be virtualized as a

common component building block (Meem). Meems are

managed by the Maji framework as nomadic resources which

can transit on the Maji network (called cloud system) and can

be linked together to form complex applications or services

that interoperate with other Meems, representing physical

devices or systems.

There is the very strong similarity in the management of the

Meems’ life cycle with the management of the OSGi bundles.

However, Maji’s graphic resources are mixed with the other

components: no separation in application layer. It costs in

maintenance phase.

V. CONCLUSION AND PERSPECTIVES

This paper has presented two approaches for developing

mobile agent architecture on top of OSGi gateway, one relying

on the IBM standard (Aglet) and another using only the

standard OSGi design. The first approach has been

experimented in a real use case. Both are using OSGi dynamic

capabilities for dynamic code loading and unloading. They

also take advantage of the service oriented architecture for

binding mobile agent requirements with non functional

services already running on the hosts.

Those approaches show the interest of services architecture

to help and facilitate mobile agent infrastructure

implementation. Thanks to their capabilities to fit embedded

environments and the current development of residential

network and domotic, we would bet this approach can become

a major response of consumers needs.

REFERENCES

[1] OSGi service gateway specification, release 4, October 2005,

http://www.osgi.org

[2] Si-Hoàng.Do, Marc Bui, and Paul Kopff, “A based-on agent framework

for Home Networking”, RIVF ’03, pp.165-168, 2003.

[3] Si-Hoàng Do, Thuy-Liên Pham, “The comfort system agent-based

framework and smart lighting controlling application”, RIVF ’04,

pp.165-168 2004

[4] Home Plug and Play: CAL-based interoperability for Home Systems,

CEBus Industry Council, 4405 Massachusetts Avenue, Indianapolis, IN

46218, USA. 1997.

[5] T.A. Horan, “The Paradox of Place”, Communications of the ACM, (44)

3, pp.59-60, 2001.

[6] Borriello, R. Want, “Embedded Computation Meets the WWW”,

Communications of the ACM, (43) 5, pp.59-66, 2000.

[7] G. Bell and J. Gemmel, “A call for the Home Media Network”,

Communications of the ACM, (45) 7, pp.71-75, 2002.

[8] Ichiro Satoh, "Bridging Physical and Virtual Worlds with Mobile

Agents", Journal of Information Processing Society of Japan, vol. 44,

no. 8, pp. 2218-2229, August 2003

[9] Kindberg, T., Barton, J., et al., “People, Places, Things: Web Presence

for the Real World”, Proceedings of 9th International World Wide Web

Conference (Www9). 2000.

[10] B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile

Agents with Aglets”, Addison-Wesley 1998.

[11] D.B. Lange, and M. Oshima, "Seven good reasons for mobile agents",

Communications of ACM, 42(3). pp. 88-89, March 1999.

[12] Rita Yu Chen and Bill Yeager, “Java Mobile Agents on Project JXTA

Peer-to-Peer Platform”, Proceedings of the 36th Hawaii International

Conference on System Sciences (HICSS’03), IEEE, 2002.

[13] Klaus-Peter Eckert, "The Fundamentals of Web Services", The

Industrial Information Technology Handbook, 2005

[14] J. Allard, V. Chinta, S. Gundala and Golden G. Richard, "Jini Meets

UPnP: An Architecture for Jini/UPnP Interoperability", Symposium on

Applications and the Internet (SAINT), 2003

[15] Hugo José P. B. Paulino Pinto, "Distributed Networking Computer

Model: SUNs JINI as an Advance in the Technology-An Overview of

Javas Distributed Platform", ICEIS, 1999

[16] Jim Waldo, "JINI Networking Technology and Ad-Hoc Networks", 15th

Conference on Systems Administration (LISA), December 2001

[17] OpenWings, Web Site, http://www.openwings.org/

[18] Li Gong, "Industry Report: JXTA: A Network Programming

Environment", IEEE Internet Computing, volume 5, 2001

[19] JXTA, Web Site, http://www.jxta.org/

[20] Majitek, web site, http://www.majitek.com

[21] Bieber, G, Carpenter, J., “Introduction to Service-Oriented

Programming (Rev 2.1)”, online document, April 2001.

(http://www.openwings.org/download.html)

[22] Chen, K., Gong, L., “Programming Open Service Gateways with Java

Embedded Server Technology”, Publ. Addison Wesley, August 2001,

ISBN 0201711028.

[23] Mobilet, Web Site,

 http://www-adele.imag.fr/~desertot/dev/osgi/mobilet/mobilet.htm

[24] R.S. Hall and H. Cervantes, "An OSGi Implementation and Experience

Report," IEEE Consumer Communications & Networking Conference

(CCNC), January 2004

[25] OBR, Oscar Bundle Repository, Web Site,

http://oscar-osgi.sourceforge.net/

