
Towards a SLA-based Approach to Handle Service Disruptions

Lionel Touseau 1, Didier Donsez 1, Walter Rudametkin 1,2
1 University of Grenoble, LIG laboratory, ADELE team

2 Bull SAS, Echirolles
{firstname.lastname}@imag.fr

Abstract

Service-orientation enables cooperation between
multiple organizations and has become a solution of
choice to tackle the complexity of ubiquitous
computing. The very nature of ubiquitous applications
implies a need for dynamic solutions. Service oriented
computing provides support for these dynamic
applications. However, current solutions overlook
important aspects, particularly when dynamically
substituting services. Some applications may be
mission-critical and therefore the disruption of a
particular service could be harmful. Other
applications may tolerate the disappearance of a
service if the service returns within a predefined
amount of time. Hence, guarantees regarding
availability of services that compose an application
are required. In this paper we propose to take into
account service disruptions through service level
agreements for dynamic service-oriented applications.
Keywords. Dynamic SOC, service disruption, SLA,
mission critical, OSGi

1. Introduction

The success of Web Services has popularized the
Service-Oriented Approach (SOA). Service-oriented
computing (SOC) paradigms are becoming the basis
for systems integration and are used for constructing
applications in many varying domains. Service-
oriented computing (SOC) has indeed revealed itself to
be an appropriate solution to tackle the complexity of
ubiquitous systems [1,2].

In these systems, where the architecture
continuously evolves, smart devices are modeled as
service consumers or service providers that offer their
functionalities in the form of services. Moreover, most
applications are dynamic and therefore connections
and disconnections of devices must be taken into
consideration [3]. This aspect, which is not directly
related to the functionality of the application itself, is
usually handled by developers and is a real burden.
Devices, represented as services, composing an ad-hoc

network are not known in advance, and the
environment is likely to evolve at anytime. For
instance, a device can be out of order, either
temporarily or definitively, for many different reasons.
It can be defective, run out of energy, undergo a
physical maintenance or a software update. At the
service level, any one of these phenomena will result in
the unavailability of the required service and
consequently in a service disruption.

Dynamic service-oriented computing, where
services are introduced to or removed from the
execution environment at runtime, provides
mechanisms that allow services to be published and
discovered dynamically. Thus, developers can rely on
dynamic SOC to build applications that can adapt to
new situations. In order to spare developers from the
tedious and error-prone work, most current
solutions [4,5,6] propose to mask service disruptions
and to substitute the leaving service automatically
using another service that provides the same contract,
if one is available.

However, this solution is oblivious to cases where
service disruptions are either acceptable or not harmful
to the application. Not all disruptions are unexpected
phenomena that must be considered as errors. A server
can undergo a predictable maintenance or a service can
be down for a few seconds because of a network
disconnection. Moreover, switching providers can be
costly. Not only is there the cost of unbinding and
rebinding the services, but there is also the loss of state
or context information.

Another point that needs to be considered is the
multi-organizational aspect being introduced into
service platforms. Service-oriented applications are
likely to be composed of services managed by different
organizations thanks to the loose coupling offered by
SOA. In these situations, the consumer service,
controlled by one organization, does not necessarily
have control over the life-cycle of a service delivered
by another organization. Furthermore, some
applications may be mission-critical and non-tolerant
to excessive service interruptions. That is why service
consumers require guarantees regarding service
disruptions and service availability. In this paper we

will focus on service oriented platforms used in home
and building automation domains [7,8]. In this context,
services are generally deployed by different providers
on local gateways, which are remotely operated by
ISPs (e.g., embedded gateways in set-top boxes) or
electric companies (e.g., electricity meters).

This paper presents an approach based on Service
Level Agreements (SLAs) to express and to handle
service disruptions in dynamic service-oriented
applications. The remainder of the paper is structured
as follows. Section 2 underlines some issues regarding
service disruptions in dynamic service-oriented
computing. Section 3 introduces service level
agreements and then describes our dynamic SLA-based
approach for handling service disruptions. A D-SLA
Manager, which has been implemented on the OSGi
framework [9] in a building automation application, is
presented in Section 4. Section 5 discusses related
work, and finally, Section 6 concludes this paper with
perspectives and future work.

2. Service disruptions related issues in
dynamic SOC

While static SOC is not flexible enough to build
service-oriented applications in dynamic environments,
dynamic SOC can be too permissive when dealing with
service disruptions.

2.1. Service-oriented computing

The Service-oriented approach, which has been
popularized by the standardization of Web Services,
consists of the use and reuse of a functional entity: the
service. A service is described by a contract that is
independent from its implementations. Beugnard
defined four levels of contract [10] that range from the
syntactical level (e.g., CORBA IDLs or Java
interfaces) to the Quality of Service (QoS) level (e.g.,
extended WSDL descriptor or OSGi service
properties). The remainder of this article focuses on the
fourth one, the QoS level contract. After being
published by its provider, a service can be discovered
and invoked by service consumers. Loose coupling is
thus enabled and allows consumers to use services
without knowing the details of their implementations.
This way, cross-organizational interactions are
facilitated.

2.2. Dynamic service-oriented computing

Dynamic SOC should not be confused with late-

binding. Late-binding is the mechanism inherent in
SOC that enables loose coupling by allowing service

implementations to be chosen at runtime. Actually, at
selection time, the service consumer only knows the
service specification, not the implementation details
which depend on the service instances published by
service providers. The binding between the consumer
and the service instance occurs at the latest possible
moment, that is, when the consumer actually needs the
service for the first time.

In dynamic SOC, services can be registered and
unregistered at anytime, and service consumers can be
notified of these changes. A service provider can
therefore be dynamically substituted by another if the
provider disappears or if another provider offers better
contract conditions [11]. Let's consider a building
automation example. A building decides to renew its
smoke detectors which are getting outdated, as
illustrated on figure 1. A new implementation of the
SmokeDetector service is deployed along with the new
sensors. Then the old ones are physically and logically
uninstalled. At this time the fire detection application
will automatically detect the removal and bind to the
new service providers that represent the new sensors.

However a dynamic SOC approach is not always
the best solution. The first problem when developing
dynamic service-oriented applications is to take into
account the dynamism itself. Service providers may
become available and unavailable at anytime in an
unpredictable way. Following the separation of
concerns principles, it is not suitable to have code
managing dynamism mixed in with the functional
code. That is the reason why the management of
bindings should be made as transparent as possible to
developers. They should not have to deal with service
arrivals and service removals, and should be able to
program as if the service was always there, without
worrying about dynamic availability concerns [4].

Old smoke
sensor

Fire
detection

application

Service
broker

New smoke
 sensor

register

remove

Arriv
als

 &
 re

mov
als

no
tifi

ca
tio

ns

SmokeDetector
Service

12

3
4

6

5

Required service Provided service
Figure 1. Service substitution scenario

Some research have led to solutions that consist in

automating bindings [3,4,5,6]. Generally it means that
a service provider which is removed from the

execution environment will be replaced by another
one, later or immediately, if possible. As a result, when
a service disruption occurs there are three possibilities
depending on the binding policies.

• The choice of the service provider is statically
predefined and the consumer is stopped until
this particular provider returns.

• The identity of the leaving provider does not
matter and the latter can be replaced by another
one as long as a compatible service is provided.

• No other provider is available for the same
service and the consumer is stopped until a
compatible service is published.

Yet, our study underlines a lack in these policies.

2.3 Limitations

Although some service disruptions are

unpredictable (e.g., a device accidentally unplugged),
others may be negligible or predictable enough to be
acceptable (e.g., a scheduled server maintenance
operation). From a software engineering point of view,
switching providers can be an expensive operation.
First, if dynamism is not handled orthogonally,
developing a dynamic service-oriented application
implies extra-functional lines of code that must foresee
the cases when services are not available. Yet, most
developers are used to and prefer programming in a
static way. Second, depending on the service platform,
unbinding and rebinding actions are more or less
costly. Especially when an architecture is “sparkling”
because of services being continuously removed and
redeployed. Third, even if the substitute provided
service is the same, it still may differ from the previous
service from a quality point of view, that is, the QoS of
extra-functional properties may differ from one service
to another. Last but not least, a substitution may
become tricky as soon as service usage consists of a
sequence of service calls. All contextual or session
information kept by the service provider would be lost.
For example, long-term transactions are commonly
made of multiple invocations.

That is the reason why, depending on the situation,
it may be preferable to wait for the service to come
back, especially if the disruption is expected and if the
service provider can return within a reasonable time.
Still, the provider could have left ad vitam aeternam or
for too long a period and should not be waited for in
vain. Consequently in the case of a service consumer
that chooses to wait for its provider, the waiting time
should not exceed a predefined limit.

3. Towards a SLA for the regulation of
service disruptions

From the previous observation we can deduce a
need for guarantees on services regarding service
disruptions. Moreover, mission-critical applications
must ensure high availability while remaining
dynamic, that is, their downtime must not exceed a
certain threshold. This is the case of most healthcare
applications (e.g., heart rate monitoring) or
applications in the energy industry [12,13].
Furthermore, in SOA, services are likely to be
managed by independent organizations. Consequently,
for a component belonging to an organization, it is not
always possible to control the life cycle of components
managed by other organizations, and this unpredictable
nature hinders the adoption of dynamic multi-
organizational service-oriented applications. This
justifies that consumer components in these
applications may require guarantees on the availability
of their service providers. One way to express these
guarantees is at the service contract level, through
service level agreements (SLAs).

After a brief presentation of service level
agreements major principles, these principles will be
applied to address the issues raised in the previous
paragraph.

3.1. Service level agreements overview

A service level agreement (SLA) is an agreement

where the level of a provided service is formally
defined. The agreement describes terms regarding
service usage and service delivery upon which
signatory parties have agreed. Generally a SLA
contains the following:

• The agreement context: signatory parties,
generally the consumer and the provider, and
possible third parties entrusted to enforce the
agreement, an expiration date and any other
relevant information.

• A description of the provided service
including functional and non-functional
aspects such as quality of service.

• Obligations of each party, which are mainly
domain-specific.

• Policies: penalties incurred if a term is not
respected and compensation for the service
usage.

A SLA becomes valid once it has been signed by
the contracting parties after a negotiation process.
Although this article does not develop this aspect, so
far, we have distinguished three levels of negotiation
which range from simple service provider selection to

customizable contracts and complex negotiation
processes. At runtime, the compliance is monitored
through service level management (SLM). This
management, which consists basically in monitoring
and reacting towards agreement violations, is usually
performed by third-parties for reliability reasons, since
there might be no mutual trust in case of multi-
organizational interactions.

3.2. D-SLA: SLA for dynamic SOC

From the limitations expressed about dynamic SOC
and the conclusions drawn upon the requirements for a
proper handling of service disruptions in a multi-
organizational context, it is possible to define our D-
SLA. D-SLA is actually a SLA for dynamic SOC that
focuses on service disruption concerns. In the
following sub-sections we define its content, and the
agreement life-cycle, from its negotiation to its
termination.

3.2.1. Content. First, parties should be uniquely and
persistently identifiable. If one were to leave the
application, it needs a unique identifier in order to be
recognized and then be able to resume its activity when
it comes back. This identifier could be derived from
platform-specific identifiers (e.g., service.pid for
OSGi, UDN for UPnP or the device UUID and the
Bluetooth Device Address (BDA) for Bluetooth
services).

Then, to characterize service interruptions, three
criteria were judged to be necessary:

• Maximum service disruption time: the time
elapsed between the service interruption and
the return of the service provider.

• Maximum accumulated service disruption on a
sliding time-window: total unavailability time
on a certain period.

• Time between two service disruptions: fixing a
minimum uptime avoids “sparkling”
architectures where services continuously
appear and disappear, disturbing the global
application.

In addition to the involved parties, the expiration
date, and the contract terms, a D-SLA also declares the
policies used by the SLM system to define the actions
that will be taken if a contract were to be violated, for
instance.

3.2.2. Agreement negotiation. For the time being,
complex negotiation protocols are not considered. SLA
establishment is restricted to a simple service selection
depending on the criteria listed above. The service is
therefore selected according to the consumer

requirements and the contract proposal published by
the provider. Nevertheless we propose an innovative
approach that considers service providers which are not
present in the system at the selection time, but which
will probably return soon. Thus, a client can choose to
wait for a provider instead of using one already
present. Such a selection can be performed according
to past activities and service contracts of providers
whose histories have been recorded.

The example shown in figure 2 depicts one service
consumer, three service providers and their historical
uptime. Only two properties are considered: the
maximum service disruption time, ∆, and the maximum
accumulated disruption time, ∑∆. The consumer
cannot bear a service disruption ∆ greater than 10
seconds and more than 10 minutes of unavailability per
day. The three providers available in the system
propose different guarantees. Only provider A and
provider C match the consumer's requirements, since
provider B cannot ensure a satisfying uptime as shown
in the availability diagram. At t0, the moment when the
consumer needs the service, only providers A and B
are available. Although it could bind to provider A, the
consumer could also wait for provider C to come back
because it has slightly better uptime guarantees.

3.2.3. Service Level Management. In dynamic SOC it
is possible to be notified of changes in the service
registry and to make components aware of service
arrivals and departures. Therefore by listening to these
events, a service certifier can easily monitor the state
of a particular service provider along with its
compliance to the D-SLA clauses.

At runtime, unlike common practice, the
disconnection of a service provider is not considered
an error. Instead the service usage is suspended until
the provider, uniquely identified, returns. If this does
not happen within the allowed disruption time or if the
accumulated interruption time goes beyond the limits
of the agreement, the corresponding clause is broken.
If a clause is broken, actions must be taken depending
on the policies defined in the agreement. These actions
could be as simple as replacing the missing provider
and terminating the contract, but they could also be
more complex, such as, putting the service provider on
a blacklist and ignoring it for future selections,
charging it with penalty fees, or even decreasing their
reliability rate if providers are marked with trust
indicators. In a context of dynamic renegotiation, it is
also conceivable for a provider to adjust its guarantees
and to renegotiate the agreement.

Consumer

Provider A

Provider B

Provider C

C
1
 : ∆

max
= 10s

C
2
 : ∑∆ < 5mn

Requirements
C

1
 : ∆ < 10 s

C
2
 : ∑∆ < 10 mn / day

C
1
 : ∆

max
= 20s

C
2
 : ∑∆ < 30mn

C
1
 : ∆

max
= 5s

C
2
 : ∑∆ < 2mn

Not available at t
0

C

B

A

Providers availability

time
(seconds)

t
0

KO : ∆ = 22 s

OK : ∆ = 8 s

OK : ∆ = 3s

Figure 2. Service selection according to
service disruption criteria and historical

providers’ availability

3.2.4. SLA termination. The agreement is terminated
when the expiration date is reached, or, once one of the
parties does not comply anymore with the agreement
terms. This means in our case that a service disruption
threshold has been exceeded and that a policy implied
the agreement termination for this violation. When the
contract is terminated, third parties declared in the
contract can stop their monitoring activities.

4. Implementation and validation

To test and experiment our approach, a D-SLA
Manager has been developed on top of the OSGi
service platform [9]. This DSLA Manager is then
examined through a fire alert application example.

4.1. DSLA Manager for the OSGi platform

To implement the DSLA Manager we chose the

OSGi service platform for it appeared to be the best
candidate for home and building automation service
gateways. Although this dynamic service platform is a
centralized execution environment, it still enables
reasoning on local proxies of remote services. Local
representatives can reify remote devices and Web

services thanks to bridges between OSGi and other
technologies like UPnP [14], DPWS [15] and WS
technologies. Dynamism is delegated to the iPOJO
framework [5], an extensible service-oriented
component model for OSGi. This framework relies on
dependency injection [16] to manage dynamic bindings
and injects pieces of code called handlers in POJOs to
deal with extra-functional concerns.

Figure 3 shows the DSLA Manager and its internal
structure. The DSLA Manager keeps track of the
contracted SLAs written in a XML syntax and is in
charge of all SLM activities regarding these
agreements. It includes one utility service and three
handlers. Components just have to declare the handlers
they want to use with the correct meta-data and their
instances will be automatically configured by these
handlers.

The first handler, the DSLAConsumerHandler is
used by service consumers as an extension of the
iPOJO DependencyHandler. In addition to the
provided dynamic binding’s management, this handler
implements our policy, which means that it can freeze
a service call when a service provider is no longer
available. This same handler is then notified by the
SLM handler if the provider returns or if the legal
disruption duration expressed in the agreement is
exceeded. Afterwards it either resumes the service call,
or aborts it and look for another available service
provider.

The DSLAProviderHandler adds some information
at the service registration time, in particular a persistent
identifier, that is, a value for the OSGi service.pid
property, and service disruption duration properties
necessary for the negotiation.

The DisruptionsLogger monitors and records
disruptions of involved components. Thence, its
DisruptionsLogService and the gathered information
can be used to improve negotiations on availability
criteria, and can assist SLM components with their
monitoring activities.

Disruptions
Logger

DisruptionsLogService

DSLA
ProviderHandler

DSLA
ConsumerHandler

DSLA
SLMHandler

SLAs
DSLA Manager

Figure 3. DSLA Manager structure

The SLM handler acts as a compliance monitor. Not
only does it monitor service disruptions using the
DisruptionsLogger but it also reacts by notifying
involved parties and applying penalties. Regarding
security and performances, the monitoring is not
intrusive since it is done using service event listeners.

4.2. Building automation example: fire system

Consider a fire alarm system in a building. Each

floor is equipped with smoke sensors able to detect a
fire. The data is aggregated and sent to a central fire
system. If a fire is detected, the system will perform
several actions like activate the alarm and send an alert
to the fire station. Figure 4 shows a service-oriented
view of the system. Smoke sensors and the central fire
system communicate using the producer/consumer
pattern [17]. For clarity's sake, aggregation services
and others devices such as fire doors or sprinklers do
not appear in this figure. The alarm and the fire station
alert system are respectively represented by an
AlarmService and an AlertService that sends alerts to
the fire station. In this scenario it is understandable that
the unavailability of the AlertService would be harmful
in case of fire. This justifies the need for an agreement
between the provider of the alert service and the central
fire system of the building. Agreements could also be
established between smoke sensors and the central
system since a defective sensor would not be able to
detect a fire and deliver the information to the system.
But, for simplicity we just focus on the agreement
involving the fire station.

Technically, the central fire system, the
AlarmService that controls the alarms and the
AlertService that remotely calls the fire station, are all
deployed on the same OSGi gateway.

Figure 4. Fire alert system

In this example, the alert service must not be

disrupted for more than 1 minute. If the AlertService
provider is interrupted for more than 1 minute it will
have to compensate the consumer and will not be able

to charge it. Figure 5 shows the iPOJO meta-data
describing the central fire application and the
AlertService which respectively declare their DSLA
ConsumerHandler and DSLA ProviderHandler.

5. Related work

Through this paper we demonstrated that there are
features lacking in both static and dynamic SOC. In the
first case service disruptions are simply considered as
errors and stop the application, whereas in the second
case a disruption is made as transparent as possible by
dynamic substitution regardless of the context. Web
Services which have been initially designed for long-

Consumer: Central Fire System

<?xml version="1.0" encoding="UTF-8"?>
<ipojo
xmlns:dsla="fr.liglab.adele.dsla.ipojo.handlers">
 <!-- declaration of component type and instances-->
 <component
 classname="firecentral.FireCentralApp">
 <requires field="m_smokeServices"
 policy="dynamic-priority" />
 <requires field="m_alarmService"/>
 <callback transition="validate" method="start"/>
 <callback transition="invalidate" method="stop"/>
 <!-- declare our handlers -->
 <dsla:requires field="m_alertService"
 PID="fire.system.central"
 maxServiceDisruption="60000"
 maxCumulatedServiceDisruption="300000"
 period="1"/>
 </component>
 <!-- Declare an instance -->
 <instance
 component="firecentral.FireCentralApp"
 name="CentralFireSystem"/>
</ipojo>

Provider: Fire Station Alert Service

<?xml version="1.0" encoding="UTF-8"?>
<ipojo
xmlns:dsla="fr.liglab.adele.dsla.ipojo.handlers">
 <!-- declaration of component type and instances-->
 <component classname=

"firestation.alertservice.impl.AlertServiceImpl">
 <provides interface=

"dsla.fireapp.alertservice.AlertService" />
 <callback transition="validate" method="start"/>
 <callback transition="invalidate" method="stop"/>
 <!-- declare our handlers -->
 <dsla:provides PID="firestation.alertservice.provider"
 maxServiceDisruption="60000"
 maxCumulatedServiceDisruption="300000"
 period="day" />
 <dsla:SLM agreementField="m_agreementID"
 violationPolicy="TerminationWithNoCharge">
 </component>
 <!-- Declare an instance -->
 <instancecomponent=
 "firestation.alertservice.impl.AlertServiceImpl"
 name="FireStationAlertService"/>
</ipojo>

Figure 5. Sample of the fire central and
the alert service component descriptors

term transactions and workflow processes are the best
representatives of static SOC. Despite the late-binding
characteristic, dynamic applications cannot be
designed without any service registry. The same
limitation arises for the Service Component
Architecture (SCA) initiative [18]. It is yet possible to
add dynamism in these models. For instance, the
Device Profile for Web Services [15] enables dynamic
service-oriented computing over ad-hoc network
thanks to WS-Discovery and WS-Eventing protocols.
In a different way, the well-known Eclipse IDE which
is based on the OSGi Equinox platform [19] does not
fully exploit its dynamic potential. When a new plugin
or service is deployed, the whole environment must be
restarted. In the field of dynamic SOA, several
component models have aimed at handling dynamism
concerns in order to facilitate the development of
dynamic service-based applications. On the OSGi
platform, the first was ServiceBinder [4] that later
became Declarative Services in the 4th release of the
specification. Spring-Dynamic Modules [6] is another
component model that uses XML descriptions to
automate bindings in the Spring framework. The
iPOJO [5] DependencyHandler follows the same
principles. Components declare their service
dependencies and according to these declarations,
component bindings are automated dynamically at
runtime, although it is still possible to declare static
mandatory services that cannot be substituted.
Regarding distributed dynamic service platforms,
UPnP [14] and DPWS [15] allow dynamic publication
and discovery of remote services.

However, these models do not prevent “sparkling”
architectures that change continuously without
ensuring a minimum steadiness, nor do they take into
account the fact that a service disruption can be a
normal phenomenon and that in certain cases it is not
worth substituting a service provider that might come
back within an acceptable delay. Our proposition is a
compromise between these two visions. Dynamism is
supported but in some cases, a consumer would be
willing to keep the same service provider even after a
disruption.

Moreover, these component models do not provide
any control on the service selection, except for filters
on service properties. Context ranking selection [11]
proposes a refined service selection by extending the
Declarative Services model with definition of
preferences depending on the context. In a different
way, probabilistic selections [20] in disconnected and
mobile ad-hoc networks take into account the
disruption probability of available services in order to
select the services to bind and to invoke. This approach
could extend our selection model that considers
providers potentially available in the future. The

DisruptionLogger, which keeps a history of service
availabilities, could infer and compute disruption
probabilities that could help in the service selection
process. However, in [20] there are no considerations
for services that surpass the expected duration of
unavailability.

Finally, this paper does not aim at defining new
SLA formalisms or impose a SLM framework.
WSLA [21] and its successor, the WS-Agreement
specification [22], or even other SLA formalisms such
as SLAng [23] already exist and are satisfactory.
Besides, to cope with other SLAs we plan to rely on
the WS-Agreement framework for future
implementations through MDE approaches. For the
same reason, we did not consider semantic matching
issues for contract negotiation since it is already
addressed by other research [24].

6. Conclusion and future work

This article has presented issues raised by dynamic
service-oriented architectures, an efficient way to build
machine-to-machine applications, which are likely to
cross organizational boundaries. As a result, services
come and go in an unpredictable way. Yet, some
healthcare or security applications are mission-critical
and cannot afford permanent or lasting service
disruptions. This paper has described a way to
transparently handle service disruptions through
service-level agreements and service-level
management. An implementation of our approach has
been developed on the OSGi framework since we
focused on the home and building automation contexts,
but for other domains it might be implemented on SCA
or Spring frameworks (e.g., for dynamic application
servers [25]).

Several points that have not been deeply
investigated in this position paper, often for space
reasons, will be the subject of future work. This is the
case of SLM activities other than monitoring. For
instance, we did not go through policies and
mechanisms of penalties and compensations. Neither
did we detail the agreement creation after the
negotiation process.

Besides, several issues that have not been
mentioned remain open. This paper was essentially
about synchronous request/response connections but in
future work we will consider other types of
connections [26], particularly the producer/consumer
pattern. Sensor-based applications have become a
major element in the building automation domain, and
most sensor communications are based on data streams
or events. We are currently investigating D-SLA for
those communication patterns in the context of the

ASPIRE project [27]. This project, funded by
European Community, develops an open-source
middleware for applications involving passive and
active Radio Frequency Identification [28] (RFID)
exchanges.

In addition, it is worth noticing that the service
provider could also require guarantees upon the
consumer's availability because obligations may
concern both parties. For instance, if a consumer leaves
in the middle of a transaction operation, the provider
cannot afford to keep the client session forever. As a
consequence, service providers should be able to
perform admission control on their users, and thus,
only cooperate with D-SLA-aware service consumers.

Finally, in the negotiation process, other quality-of-
service properties should be taken into account along
with service disruption criteria. Therefore, our D-SLA
Manager should be extended and it should conform to
SLA recognized standards like WS-Agreements in
order to support other kinds of agreements.

7. References

 [1] M. Weiser, “The computer for the 21st century”,
Scientific American, 265(3):66-75, September 1991.
[2] International Telecommunication Union, “The Internet of
Things”, Executive Summary, ITU Internet Reports,
November 2005.
[3] L. Touseau, H. Cervantes, D. Donsez, “An Architecture
Description Language for Dynamic Sensor-Based
Applications”, in 5th IEEE Consumer Communications &
Networking Conference (CCNC 2008), Las Vegas, Nevada,
January 2008.
[4] H. Cervantes and R. S. Hal, “Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented Component
Model”, International Conference on Software Engineering
(ICSE), Edinburgh, Scotland, May 2004
[5] C. Escoffier, R. S. Hall, P. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework”, IEEE
International Conference on Services Computing, 2007.
(SCC 2007), 9-13 July. Salt Lake City (Ut)
[6] Spring DM for OSGi Specification (v0.7), 2006,
http://www.springframework.org/osgi/specification.
[7] D. Marples, S. Moyer, “Home Networking and
Appliances”, in Diane Cook, Sajal Das, Smart Environments:
Technologies, Protocols and Applications, Wiley, 2004
[8] D. Snoonian, “Smart Building”, IEEE Spectrum, August
2003.
[9] OSGi TM, “OSGi Service Platform Specification, Release
4”, Available online at http://www.osgi.org
[10] A. Beugnard, J-M. Jézéquel, N. Plouzeau, “Making
Components Contract Aware”, IEEE Computer 32(7): 38-45,
1999
[11] A. Bottaro, R. S. Hall, “Dynamic Contextual Service
Ranking”, 6th International Symposium on Software
Composition (SC 2007), Braga, Portugal, March 2007
[12] C. Marin, P. Lalanda and D. Donsez, “A MDE approach
for power services development”, International Conference

on Service Oriented Computing (ICSOC), Amsterdam,
December 2005.
[13] A. Chazalet, P. Lalanda, “A Meta-Model Approach for
the Deployment of Services-oriented Applications”, Proc. 5th
IEEE International Conference on Services (SCC'07), Salt
Lake City, USA, July 2007.
[14] The UPnP Forum, http://www.upnp.org
[15] F. Jammes, A. Mensch, H. Smit, “Service-oriented
device communications using the devices profile for web
services”, MPAC '05: Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc
computing, 2005
[16] M. Fowler, “Inversion of Control Containers and the
Dependency Injection pattern”
http://martinfowler.com/articles/injection.html,, 2004.
[17] N. Nillson, “Connecting Producers and Consumers”,
position paper at OOPSLA Worshop on References
Architectures and Patterns for Pervasive Computing, 27
October 2003, Anaheim, CA, USA
[18] Service Component Architecture (SCA) specification,
http://www.ibm.com/developerworks/library/specification/w
s-sca/, 2006
[19] Equinox OSGi platform,
http://www.eclipse.org/equinox/
[20] N. Le Sommer, “A Framework for Service Provision in
Intermittently Connected Mobile Ad hoc Networks”, in 8th
IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WOWMOM 2007),
Helsinki, Finland, June 2007.
[21] H. Ludwig, A. Keller, A. Dan, R.P. King and R. Franck,
“WSLA Language Specification, Version 1.0”, 2003
[22] Grid Resource Allocation Agreement Protocol
(GRAAP) WG, “WS-Agreement Specification”, March
2007, http://forge.gridforum.org/sf/projects/graap-wg
[23] D. Lamanna, J. Skene and W. Emmerich, “SLAng: A
Language for Defining Service Level Agreements”, FTDCS,
2003
[24] N. Oldham, K. Verma, A. Sheth., and F. Hakimpour,
“Semantic WS-agreement partner selection”. In Proceedings
of the 15th International Conference on World Wide Web
(WWW '06), Edinburgh, Scotland, May 23 - 26, 2006
[25] M. Desertot, D. Donsez, P. Lalanda, “A Dynamic
Service-Oriented Implementation for Java EE Servers”, IEEE
SCC 2006, Chicago, USA, September 18-22, 2006
[26] N.R. Mehta, N. Medvidovic, S. Phadke, “Towards a
taxonomy of software connectors”, in the Proceedings of the
22nd International Conference on on Software Engineering
(ICSE), June 4-11, 2000, Limerick Ireland. ACM (178-187)
[27] ASPIRE Project (FP7-215417) website, http://www.fp7-
aspire.eu/
[28] Sandip Lahiri: RFID Sourcebook. Pub. IBM Press,
August 2005; Pages: 304, ISBN 0131851373

