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Abstract—Human behavior modeling enables many applica-
tions for smart cities, smart homes, mobile phones and other
domains. We present a hierarchical hidden Markov model for
human activity recognition that uses semi-supervised learning
to automatically learn the model parameters using only labeled
data of the top-layer of the hierarchy. This significantly reduces
the annotation requirements for such a model and simplifies the
design of such a model, since the inherent structure of the activity
is automatically learned from data. The design consideration that
remains is the number of states used for representing the actions
that an activity consists of. Using multiple real world datasets
we show that the same model works both for the recognition
of activities of daily living in a smart home and for recognizing
office activities from audio data. We show how a variable number
of action states per activity can result in a significant increase in
performance over using a fixed number per activity. Finally, we
show how the use of Bayesian and Akaike information criterion
results in models using a sub-optimal set of action states, since
a model using intuitively chosen set states is able to outperform
them.

I. INTRODUCTION

In an increasingly sensor equipped world, human behavior
modeling enables many applications in various domains: Smart
cities can support authorities and citizens in managing a safer
and more secure environment; Smart homes allow independent
living for elderly and provide added comfort to our daily lives
[1]; Mobile phones provide useful utilities that help us in our
daily operations [2].

Human behavior contains rich hierarchical structure and
previous work has shown that modeling this structure can
benefit the recognition of human activities from sensor data
[3]. However, the added complexity that a hierarchy brings
can make the construction of an accurately fitting hierarchical
model challenging, while the additional layers of representa-
tion can require additional annotation efforts for supervised
learning methods. This makes it more difficult to deploy such
models in different configurations and environments, which
limits their applicability.

In this work, we assume that a human activity can be
broken into a set of actions that represent more atomic events
of the behavioral routine. For example, an activity like cooking
might consist of an action ‘cutting vegetables’ and an action
‘frying them in a pan’. Our proposed hierarchical model
learns the model parameters using a semi-supervised learning
method that requires labeled data for the activities, but not for
actions. The actions in the model are only used for recognition

purposes, so we can remain agnostic about the interpretation
of the actions that the learning method allocates. The only
design consideration is the number of states used to represent
the actions that make up each activity.

In our previous work, we have shown that the hierarchical
model with the same number of actions for each activity results
in an increase in recognition performance [4], [5]. In this paper,
we focus on model selection for hierarchical Markov models
and show that a variable number of actions per activity can
further improve the recognition performance. To the best of
our knowledge, the model selection for hierarchical hidden
Markov models for both continuous and discrete data cases in
the context of activity recognition has not been studied before.
We evaluate the model selection performance on multiple real
world datasets and show that the same model works both for
the recognition of activities of daily living in a smart home and
for recognizing office activities from audio data. Our results
demonstrate that the same hierarchical model can be applied on
multiple sensing modalities and can serve as a unified model
for behavior modeling. The use of a unified model can be
very beneficial for the large scale deployment of a solution.
Techniques such as transfer learning can help obtain accurate
parameters with limited annotation efforts, while a single code
base makes maintenance easier and cost-effective.

The rest of the paper is organized as follows. In Section II,
we discuss related work in the area of human behavior model-
ing and hierarchical modeling. In Section III, we describe our
proposed hierarchical model and two methods for selecting
the number of action states. Section IV introduces the smart-
home and audio activity recognition scenarios and Section V
discusses the results on multiple real-world datasets. Finally,
in Section VI, we conclude.

II. RELATED WORK

Human behavior modeling using different modalities of
sensing has been an active research topic recently. The data
were obtained from either ambient sensors deployed in the
environment such as video [6], [7], audio [3], [8], and binary
sensors [9], [10] or wearable sensors deployed on the body
such as accelerometers and gyroscopes [2], [11]. Although
there are different modalities of sensing, in terms of modelling
of human activities, temporal probabilistic models such as
hidden Markov models (HMMs) and conditional random fields
(CRFs) have been shown to give better results with their ability
of modeling the temporal dependencies and sequential nature
of human activities.



Despite the powerful temporal modeling abilities, the flat
versions of these models often fail to accurately model the
complex nature of human activities with a variety of possible
ways of performing the activity and with different interactions
with the environment. Therefore, hierarchical models were
used to obtain a more grained model for complex human
activities.

The Hierarchical HMM (HHMM) is a generalization of
the HMM that can have a hierarchical structure and is intro-
duced by [12] for modeling complex multi-scale structure in
sequential data. The original inference algorithm provided by
Fine et al. has cubic time complexity in terms of the sequence
length which prevented it to be applied to domains where
the sequences are long. Murphy el al. [13] showed that the
HHMM can be represented as a dynamic Bayesian network
(DBN) with a linear time inference complexity with respect
to the sequence length. This much simpler and more efficient
inference algorithm has made the hierarchical models good
candidates for modeling the data in many different domains,
such as natural language processing, handwriting recognition
and human activity modeling.

There are several studies that use hierarchical models in
human activity recognition. van Kasteren et al. [4] proposed a
two layer hierarchy where the top layer represents the human
activities of daily living and the second layer are the several
actions made during the course of the actual activity. The
experiments on three real world smart home datasets reveal
that the use of two or three action clusters per activity gives
the best performance.

Karaman et al. [14] use two level hierarchical model with
multimodal audio and video data in order to classify human
activities. The semantic activities are encoded in the top-level
followed by a bottom level HHM that models an activity with
a number of non-semantic states. They experimented with 3,
5 or 7 sub-states and reported that using 3 non-semantic sub-
states yields better performance.

While the previous studies already showed the improve-
ment over the flat HMM models, they use an equal and
fixed number of states in the second layer of the hierarchy.
Therefore, they assume the same level of complexity for every
activity at the top layer. However, it is very likely that the
complexity of different activities varies. For sleeping activity, 1
or 2 states may be sufficient whereas preparing a meal requires
much more complicated interactions with the environment and
therefore it requires more states to be accurately modelled.
Therefore, the ideal number of states for each top layer activity
should be decided separately.

Celeux and Durand [15] proposed using penalised cross-
validated likelihood criteria to determine the number of hidden
states. They compare the performance of several information
criteria such as AIC (Akaike’s Information Criteria), BIC
(Bayesian Information Criteria), PML (Penalised Marginal
Likelihood) and ICL (Integrated Complete Likelihood) using
simulated data. According to the results, AIC, BIC and ICL
were observed having similar behaviour. They also state that
AIC has a tendency to underpenalise the complexity of a
model, ICL favours models that give rise to partitioning the
data with the greatest evidence from the hidden states, and BIC
performs well only if a HMM gives a representation of the

observed process. PML converges very slowly to the optimal
solution. Moreover, in practical situations, it seems to have
a high tendency to overpenalise the complexity of a HMM
model when the sequence length is not very large.

III. HIERARCHICAL HMM WITH VARIABLE NUMBER OF
STATES

In this section, we first describe the hierarchical model we
use for behavior modelling followed by our proposed method
for selecting the sub-states within an activity.

A. Hierarchical HMM

Our model for activity recognition is a two-layer hierarchi-
cal hidden Markov model (Fig. 1). The top layer state variables
yt represent the activities and the bottom layer variables
zt represent the action clusters. Each activity consists of a
sequence of action clusters and the temporal ordering of these
action clusters can vary between different executions of an
activity. The last action cluster of the sequence signifies the
end of an activity and indicates the start of a new sequence
of action clusters. This information is captured by the finished
state variable ft, which is used as a binary indicator to indicate
that the bottom layer has finished its sequence.
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Fig. 1. The graphical representation of a two-layer HHMM. Shaded nodes
represent observable variables, the white nodes represent hidden states. The
dashed line is an optional dependency relation; we can choose to model the
observation probability as p(x⃗t | yt, zt) or as p(x⃗t | zt).

The joint probability distribution of the model factorizes
as follows:

p(y1:T , z1:T , f1:T ,x1:T ) =
T∏

t=1

p(x⃗t | yt, zt)p(yt | yt−1, ft−1)

p(zt | zt−1, yt, ft−1)p(ft | zt, yt)

where we have defined p(y1 | y0, f0) = p(y1) and p(z1 |
z0, y1, f0) = p(z1 | y1) for the sake of notational simplic-
ity. The entire model consists of a set of parameters θ =
{π0,π1:Q, A0, A1:Q, B,φ}. These parameters are learned in a
semi-supervised way by using the expectation-maximization
(EM) algorithm. The initial state parameters π and transition
parameters A exist for both the top layer and bottom layer
states. To distinguish between these two types of parameters,
we include a 0 in the subscript to indicate that a parameter
is of the top layer and an index of 1 to Q for each of the
bottom layer parameters. The distributions of the bottom layer



states depend on which top layer state the model is in and so
there is a separate set of bottom layer state parameters for each
possible top layer state, with Q being the number of top layer
states. For example, if the model at one point is in the top state
yt = k, then the transition parameter Ak is used for the bottom
layer state transitions. We now provide a detailed explanation
of each of the factors that make up the joint probability and
how they are parameterized.

At the first timeslice, the initial state distribution of the
top layer states is represented by a multinomial distribution
which is parameterized as p(y1 = j) = π0(j). This top layer
state generates a bottom layer state, also represented by a
multinomial distribution and parameterized as p(z1 = j | y1 =
k) = πk(j).

The factor p(zt = j | zt−1 = i, yt = k, ft−1 = f)
represents the transition probabilities of the bottom layer
state variable. These transitions allow us to incorporate the
probability of a particular temporal order of action clusters
with respect to a given activity. A transition into a new state
zt, depends on the previous bottom layer variable zt−1, the
current top layer state variable yt and the finished state variable
ft−1. Two distributions make up this factor, depending on the
value of the finished state variable ft−1. If in the previous
timeslice the bottom layer state sequence ended (ft−1 = 1),
a new sequence of bottom layer states starts at this timeslice
and therefore the top layer state generates a bottom layer state
using the same distribution as we saw at the first timeslice,
parameterized by the set of parameters p(zt = j | zt−1 =
i, yt = k, ft−1 = f) = πk(j). In case the bottom layer state
sequence did not end (ft−1 = 0), a transition to a new bottom
layer state is made using the transition matrix parameterized
as p(zt = j | zt−1 = i, yt = k, ft−1 = f) = Ak(i, j). These
two cases can be compactly formulated as:

p(zt = j | zt−1 = i, yt = k, ft−1 = f) =

{
Ak(i, j) if f = 0
πk(j) if f = 1

Transitions of the top layer state variables are represented
by the factor p(yt = j | yt−1 = i, ft−1 = f). This
factor is similar to the transition distribution of an HMM,
except that it also depends on the finished state variable ft−1.
This dependency is important because it restricts the model
in transitioning to a different top layer state as long as the
bottom layer state sequence has not finished. When a bottom
layer state sequence did not finish, the top layer state variable
continues into the next timeslice with the same state value
(yt = yt−1). Once the bottom layer state sequence has ended, a
transition of the top layer state is made according to a transition
matrix parameterized as p(yt = j | yt−1 = i, ft−1 = f) =
A0(i, j).

These two cases can be compactly formulated as:

p(yt = j | yt−1 = i, ft−1 = f) =

{
δ(i, j) if f = 0
A0(i, j) if f = 1

where δ(i, j) is the Kronecker delta function, giving 1 if
i = j and 0 otherwise.

The probability of a bottom layer state sequence finishing
is represented by the factor p(ft = f | yt = j, zt = l). This

factor depends on both the bottom layer state zt and the top
layer state yt. Even though the variable ft indicates whether
zt is a finishing state, it is important that the distribution is
also conditioned on the top layer state yt. This is because the
probability of a particular action cluster being the last action
cluster for that activity can differ among activities. The factor
is represented using a binomial distribution, parameterized as
p(ft = f | yt = j, zt = l) = φf (j, l).

Different observation models can be plugged into the
model, to allow the model to process different sensing modali-
ties. We present a Gaussian observation model and a Bernoulli
observation model that are used in our audio and smart home
experiments, respectively.

1) Gaussian observation Model: Using a multidimensional
Gaussian distribution, each sub-event cluster is associated with
a single Gaussian distribution p(x⃗t | yt = k, zt = l) =
N (xt | µkl, Σk). Note that the covariance matrix Σk only
has a subscript k, meaning that we have a different covariance
matrix for each sound event, but that the covariance matrix
for different sub-event clusters is shared among the sub-event
clusters for a particular sound event k.

2) Bernoulli observation Model: Using independent
Bernoulli distributions, each sensor corresponding to one
Bernoulli distributions. This factorizes as p(x⃗t | yt, zt) =∏N

n=1 p(xn | yt, zt), with p(xn | yt = j, zt = k) =
µxn
jkn(1 − µjkn)(1−xn). The observation parameters are col-

lectively represented by a variable B = {µjkn}.

B. Model Selection for Sub-States

In order to estimate the number of hidden states in an
HMM, many criteria have been proposed that use a penalty
term together with the data likelihood. Since it is possible
to increase the likelihood by adding more parameters, using
only the model likelihood may result in overfitting. Therefore,
many of the proposed criteria trade off the data likelihood with
model complexity m in order to find the optimum number
of states. We experiment with the two mostly used criteria:
Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC). BIC and AIC resolve the overfitting problem
by introducing a penalty term for the number of parameters in
the model. BIC further uses the sample size in penalty term,
thus the penalty term is larger in BIC than in AIC.

More formally, given a set of models, the model that has
the minimum value of Eqn. 1 is the one to be preferred when
using AIC. Similarly, when using BIC, the model that has the
minimum value of Eqn. 2 is preferred.

AIC = −2logp(x | θ) + 2m (1)

BIC = −2logp(x | θ) +mlog(n) (2)

where logp(x | θ) is the data likelihood, m is the number
of free parameters and n is the length of the sequence.

We find the optimum number of sub-states as follows.
For each activity, we take all occurrences as different data
sequences. We denote the total number of sequences as K.



We then experiment with different models having different
number of states starting from 1 up to 10 using leave one
out cross validation. We first learn the model parameters for
a given model using the K − 1 sequences, then we calculate
the data likelihood on the remaining test sequence and use the
test likelihood while calculating AIC and BIC values. Then
we select the model with the minimum AIC or BIC.

IV. EXPERIMENTS

Our experiments aim to answer two questions 1) Can
hierarchical models be used with data from different modalities
using the same unified model for human behavior modelling?
2) Does allowing different levels of complexity for different
activities increase the recognition performance? We first exper-
iment with a flat HMM and with hierarchical HMMs having
a variety of fixed number of sub-states. Then, we experiment
with three different sub-state selection methods: using two of
the widely used information criteria for model selection, i.e,
AIC and BIC together with a manually selected configuration
based on human intuition about the activities to be recognized.

In the remainder of this section we present the details
of our experimental setup, we describe the datasets used in
the experiments and provide the details of our configuration
selection methods.

A. Experimental Setup

We used two different kinds of publicly available datasets
for the recognition of activities of daily living in a smart
home and for recognizing office activities from audio data. We
developed an experiment framework codebase using Matlab
that allows a varying number of sub-states per activity.

Recognition performance is measured on a timeslice level,
using the F-measure, which is the harmonic mean of precision
and recall values. This metric considers the recognition of
each activity as equally important and provides a reliable
way for evaluating activity recognition methods. We repeat
the experiments 10 times and present the average over those
runs. This is done because the EM algorithm requires a random
initialization of the parameters.

B. Audio Data

We use the event detection dataset (Office Live (OL)
dataset) that was created for the IEEE challenge “Detection
and classification of acoustic scenes and events” [16]. The
dataset consists of every-day audio events in a number of office
environments. The recorded activities include door knock, door
slam, speech, laughter, keyboard clicks, objects hitting table,
keys clinging, phone ringing, turning page, cough, printer,
short alert-beeping, clearing throat, mouse click, drawer, and
switches. The training data consists of around 20 training
examples for each of the 16 different classes that can occur
in an office environment. The official test data set for the
challenge was never released to the public, our experiments
are therefore performed on the development set, which consists
of three recordings that are each roughly two minutes long
(referred to as ‘script01’, ‘script02’ and ‘script03’), recorded
in a various office environments (‘Office Live’) and annotated
by two people.

The audio data is discretized into frames using a window
size of 80 ms with an overlap of 50% and a rectangular
window. Features extracted include MFCCs and zero-crossing
rate (ZCR), short-term energy (STE) and linear prediction co-
efficients. All features combined, we obtain a 35-dimensional
feature vector for each frame. Additional details can be found
in [5].

C. Smart Home Data

We use five real-world datasets collected each in a different
smart home, three of the datasets are part of the ‘van Kasteren’
datasets, the other two are part of the ARAS datasets. All
smart homes are equipped with binary sensors such as reed
switches, pressure mats, mercury contacts, passive infrared
(PIR) sensors, float sensors. The activities include leaving the
house, toilet use, showering, brushing teeth, sleeping, having
breakfast, dinner, snacking, and other. Further details about the
data sets can be found in [9] and [17] respectively.

Data obtained from the sensors is transformed to the
changepoint representation and discretized in timeslices of
length ∆t = 60 seconds. We split the data into a test and
training set using a ‘leave one day out’ approach. In this
approach, one full day of sensor readings are used for testing
and the remaining days are used for training. We cycle over
all the days in the dataset, so that each day is used once for
testing.

D. Model Selection for Activity Complexity Determination

In order to find a suitable number of sub-states for each
activity, we use AIC and BIC measures described in the
previous section. We use all the occurrences of a given
activity as a separate dataset. In order to obtain the optimum
complexity level for the given activity, we start experimenting
with the minimum possible model having a single cluster and
try up to 10 clusters. By using cross validation, we obtain
the data log likelihood on each sequence of a specific activity
separately and apply the penalization criteria on each sequence
separately. Finally, we average over all the folds and use the
model with the minimum AIC or BIC value according to the
metric used. Since the optimum number of sub activities are
learnt independently for each activity, the transitions in the
upper layer are not taken into account.

As an alternative, we also use our intuition about the
activity complexity levels and manually form a combination
for each dataset. For this reason, we chose a few number of
candidate combinations for each dataset and experimented with
them. We reported the combination with the maximum perfor-
mance in the results section. We provide the experimented sets
for the audio data in Table I. We obtained the best performance
with the configuration in Set 5.

For the smart home datasets, each dataset belongs to a dif-
ferent house with different type and number of activities. Due
to space considerations, we provide only the best performing
configurations for the most common activities in Table II. The
remaining activities include shaving, dressing, having a drink,
playing the piano and they were annotated in only few of the
houses. Those activities generally consisted of two sub-states
in our intuitively selected combinations.



TABLE I. MANUALLY SELECTED CONFIGURATIONS ON AUDIO DATA

Number of Sub-States
Activity Set 1 Set 2 Set 3 Set 4 Set 5

Alert 1 5 1 1 1
Clear Throat 1 3 2 2 2
Cough 1 3 1 1 1
Door Slam 1 1 1 1 1
Drawer 2 2 2 2 2
Keyboard 1 5 2 2 2
Keys 1 4 2 2 1
Knock 1 1 1 1 1
Laughter 2 5 2 2 2
Mouse 1 2 1 1 1
Page Turn 1 3 1 1 1
Pen Drop 1 2 2 2 1
Phone 1 3 2 2 1
Printer 3 3 2 2 3
Speech 3 8 3 3 3
Switch 1 2 1 1 1
Other 5 3 3 5 5

TABLE II. MANUALLY SELECTED CONFIGURATIONS ON SMART
HOME DATA

ARAS Kasteren
Activity House A House B House A House B House C

Leave house 3 2 2 3 2
Breakfast 6 3 2 2 4
Lunch 6 7 - - 2
Dinner 4 2 2 2 4
Eating (Snack) 4 - 2 2 5
Toileting 3 - 1 2 2
Showering 3 - 2 2 2
Brushing Teeth 2 - 2 2 3
Sleeping 4 1 2 3 2
Other 10 3 3 4 6

V. RESULTS

In this section, we present the detailed results of experi-
ments on audio data and smart home data in the context of
human behaviour modelling followed by a discussion on the
results.

A. Audio Data

For the audio case, according to the results summarized
in Table III, HHMM outperforms HMM for all scripts in all
configurations. For Script 1, a single sub-state gives the best
performance whereas for Script 2, using two sub-states gives
a higher performance. For Script 3, using either number of
sub-states yields in nearly equal performance. Increasing the
number of sub-states to 5 does not result in an increase in
performance. Yet, using a manually selected configuration of
sub activities based on intuition. Script 3, which is the most
challenging script in terms of performance, benefits most from
the intuitively selected configuration.

TABLE III. RESULTS ON AUDIO DATA

HHMM
HMM All 1 All 2 All 5 Intuitive BIC AIC

Script 1 46.7 66.1 62.0 64.2 69.2 66.1 66.1
Script 2 39.3 54.4 56.8 55.2 60.7 54.4 54.4
Script 3 28.1 34.0 34.3 32.2 43.4 34.0 34.0
Average 38.0 51.5 51.0 50.5 57.8 51.5 51.5

B. Smart Home Data

For the smart home data, which are summarized in Ta-
ble IV, HHMM consistently outperforms HMM for all five

houses. For ARAS datasets, using 5 states for all activities
gives the best performance and for van Kasteren datasets, using
all two sub-states results in the maximum performance. In
smart home datasets, the configurations selected using BIC
and AIC resulted in configurations very similar to all two sub-
states cases, thus yielding in nearly equal performances. With
intuitively selected combinations, the performance on ARAS
datasets is slightly improved, whereas for Kasteren datasets
the improvement diminishes.

TABLE IV. RESULTS ON SMART HOME DATA

HHMM
HMM All 2 All 5 All 10 Intuitive BIC AIC

ARAS A 58.1 56.1 62.6 61.4 63.4 61.0 61.3
ARAS B 62.6 64.0 64.7 60.4 66.5 65.8 65.9
Kasteren A 64.7 69.9 70.2 67.4 69.3 65.8 70.7
Kasteren B 46.3 54.0 48.9 45.3 52.2 53.7 55.2
Kasteren C 42.8 50.3 48.6 47.8 50.5 50.0 49.5

C. Discussion

The results of our experiments demonstrate a significant
increase in recognition performance in terms of F-measure
when a hierarchical model is used. The performance gain is
obtained with both continuous audio data and binary sensor
data in the context of human behaviour modeling with the
exact same model.

We also show that allowing different number of sub-states
for different activities can result in significant increase in the
performance. When we have a fixed number of sub-states,
we assume that all activities have the same complexity level.
While this assumption may hold for some data modality as
in the case of smart homes, we cannot always make that
assumption. With the audio data, we obtain a significant
performance increase with different number of states. For
example, the activities of daily living like having a shower or
shaving can share the same level of complexity depending on
the sensor types and deployment places. In that case, allowing
different number of sub activities do not help. On the other
hand, it is more likely that audio data for a human speech when
compared to knocking on the door requires different level of
complexity. The significant increase in the performance in the
audio case supports this statement.

In terms of model complexity selection strategies, we
obtained the best results with intuitively selected combinations.
Selection using AIC and BIC measures resulted in less com-
plex models. For the audio case, both BIC and AIC measures
selected the least complex model that consists of a single state
for every activity. Similarly, for the smart home cases, both
BIC and AIC tend to select less complex models. For nearly
all of the houses, they selected a configuration with two sub-
states for each activity with some exceptions. For instance, for
ARAS House A dataset, both AIC and BIC resulted in 5 sub-
states for the ‘Other’ activity, which contains several activities
that are not annotated separately. For Kasteren House B, BIC
selection resulted in 3 sub-states for Leaving the house and
sleeping activities, for House A, AIC selected 3 sub-states for
leaving the house activity. Based on the experiment results, we
conclude that AIC and BIC measures generally underestimates
the complexity of the models for several activities both for
continuous audio data and binary smart home data. This



sub-optimal assignment leads to a degradation in recognition
performance. However, it is possible to find a better assignment
methodology in order to fully make use of the power of
hierarchical models.

VI. CONCLUSION

We have presented a hierarchical model for the recognition
of human activities from sensor data. The proposed model uses
a semi-supervised learning approach to automatically cluster
the inherent structure of activities into actions. Our evaluation
on both audio and smart-home data shows how two very
different sensor modalities can rely on the same model for
the recognition of human behavior. Such a unified approach to
modeling can be very beneficial for the large scale deployment
of a solution. Our results on multiple real world datasets show
that the use of a hierarchical model consistently outperforms
its non-hierarchical counterpart in terms of recognition per-
formance, given that an adequate number of states is used
for modeling the actions in the hierarchy. As opposed to
previous work, we employed a model selection mechanism to
determine the optimal number of sub-states for each activity.
In the case of the audio data, we have seen that the use a
hierarchy with a variable number of action states can result in
a significant increase in performance compared to a hierarchy
that uses a fixed number of states. On the smart home data,
the use of a variable number of action states did not result
in a significant increase, demonstrating that the importance
of using a variable number of states depends on the varying
complexity of the activities that are being modeled. For those
problems that require a variable number of action states, we
identified the need for an automatic method for determining
the optimal number of action states to use. Classic methods
for model selection such as the Bayesian information criterion
and the Akaike information criterion proved unsuccessful in
determining the ideal number of action states. An intuitively
chosen set of action states, based on the estimated complexity
of the activities, was able to outperform the models that were
selected by the Bayesian and Akaike information criterion.
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