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Abstract—Modern computers have an increasing num-
ber of cores and, as exemplified by the recent Barrelfish
operating system, the software they execute increasingly
resembles distributed, message-passing systems. To sup-
port this evolution, there is a need for very efficient
inter-core communication mechanisms. Current operat-
ing systems provide various inter-core communication
mechanisms, but it is not clear yet how they behave
on manycore processors. In this report, we study seven
mechanisms, that are considered state-of-the-art. We show
that these mechanisms have two main drawbacks that
limit their efficiency: they perform costly memory copy
operations and they do not provide efficient support
for one-to-many communications. We do thus propose
ZIMP, a new inter-core communication mechanism that
implements zero-copy inter-core message communications
and that efficiently handles one-to-many communications.
We evaluate ZIMP on three manycore machines, hav-
ing respectively 8, 16 and 24 cores, using both micro-
and macro-benchmarks (a consensus and a checkpointing
protocol). Our evaluation shows that ZIMP consistently
improves the performance of existing mechanisms, by up
to one order of magnitude.

I. INTRODUCTION

Modern computers have an increasing number of
cores and as envisioned by the designers of the recent
Barrelfish operating system [1], the software they run
increasingly resemble distributed, message passing sys-
tems. Moreover, it is now admitted that one of the major
challenges of the next decade for system researchers,
will be to enable modern manycore systems to toler-
ate both software [2], [3] and hardware failures [4].
To tolerate failures in such message-passing manycore
systems, agreement [5] and broadcast protocols [6], [7]
can be used for maintaining a consistent state across
cores. Furthermore, checkpointing algorithms [8], [9],
[10], [11], [12], [13], [14], [15], [16] can provide a mean
to resist failures of software distributed across cores. In
this area, Yabandeh and Guerraoui have pioneered fault
tolerance for manycore architectures with PaxosInside,
an adaptation of the Paxos protocol for manycore ma-
chines [17].

In order to support efficient execution of such proto-
cols, there is a need for very efficient inter-core commu-

nication mechanisms enabling both one-to-one and one-
to-many communications. Current operating systems
provide various inter-core communication mechanisms.
However it is not clear yet how these mechanisms be-
have on manycore processors, especially when messages
are intended to many recipient cores.

In this report, we study seven communication mech-
anisms, which are considered state-of-the-art. More
precisely, we study TCP, UDP and Unix domain sock-
ets, pipes, IPC and POSIX message queues. These
mechanisms are supported by traditional operating sys-
tems such as Linux. We also study Barrelfish message
passing, the inter-process communication mechanism of
Barrelfish OS [1]. We show that all these mechanisms
have two main drawbacks that limit their efficiency.
Firstly, they perform costly memory copy operations.
Indeed, to send a message, multiple copies of the latter
have to be created in memory. Secondly, they do not
provide efficient support for one-to-many communica-
tions. Indeed, to send a message to N receivers, N calls
to the send primitive of the communication mechanism
need to be performed.

We propose ZIMP (Zero-copy Inter-core Message
Passing), a new, efficient, inter-core communication
mechanism. More particularly, ZIMP provides a zero-
copy send primitive by allocating messages directly in a
shared area of memory. It also efficiently handles one-
to-many communications by allowing a message to be
sent once and read multiple times.

We evaluate ZIMP on three manycore machines, hav-
ing respectively 8, 16 and 24 cores, using both micro-
and macro-benchmarks. Our macro-benchmarks consist
of two real world applications, namely PaxosInside [17]
and a checkpointing protocol [8]. The performance
evaluation shows that for PaxosInside, ZIMP improves
the throughput of the best state-of-the-art mechanism
by up to 473%. It also shows that for the checkpointing
protocol, ZIMP reduces the latency of the best state-of-
the-art mechanism by up to 58%.

The remaining of the report is organized as follows:
In Section II, we describe the existing communication
mechanisms that can be used for inter-core commu-



nications. In Section III, we present ZIMP, our effi-
cient communication mechanism devised for manycore
machines. We then evaluate the performance of the
state-of-the-art mechanisms and of ZIMP in Section IV.
We finally discuss related work in Section V, before
concluding the report in Section VI.

II. BACKGROUND

In this section, we start by reviewing seven state-
of-the-art inter-core communication mechanisms. We
then analyze the drawbacks of all presented mechanisms
and discuss the need for a new efficient inter-core
communication mechanism.

A. Inter-core communication mechanisms

We review seven inter-core communication mecha-
nisms. Six of them are provided by traditional Lin-
ux/Unix operating systems. Among these mechanisms,
Unix domain sockets, Pipes, IPC message queues and
POSIX message queues have been devised for the
communication between processes residing on the same
host. We also review TCP and UDP sockets that have
been designed for communication over an IP network
but that are often used for communication on the same
host. We finally present Barrelfish message passing, a
communication mechanism that has been specifically
devised for manycore machines.

1) Unix domain sockets: Unix Domain sockets is
a communication mechanism specifically designed for
communications between processes residing on the
same host. In order to use Unix domain sockets, the
sender and the receiver both create a socket, i.e., a data
structure with a pointer to a linked list of datagrams.
To send a message, a sender creates a buffer and uses
the sendto() system call. Then, the kernel copies the
buffer from the user space to the kernel space and adds
it to the list. To receive messages, a receiver uses the
recvfrom() system call. Finally, the kernel copies
the last entry of the list from the kernel space to the
user space.

2) TCP and UDP sockets: TCP and UDP sockets
are two mechanisms that have been designed to allow
processes residing on distinct machines to communicate
over an IP network. Nevertheless, these mechanisms can
also be used by processes residing on the same host
to communicate by using the loopback interface. From
a design point of view, UDP and TCP sockets share
similarities with Unix domain sockets: they use the
same system calls and messages have to be copied from
the user to the kernel space, and vice versa. There are
nevertheless some differences: UDP and TCP sockets

require large messages to be fragmented into smaller
packets (the maximum packet size is 16kB using the
loopback interface). Moreover, to send a set of packets
TCP and UDP sockets first places them on the sender’s
socket list. Packets are then pushed by the kernel on
the loopback interface. Upon an interruption, the kernel
receives the packets and places them on the receiver’s
socket list. Note that TCP and UDP do not offer the
same interface and do not provide the same guarantees.
More precisely, TCP is loss-less and stream-oriented
while UDP can lose messages (if the receiver socket
list is full) and is datagram oriented. Finally, UDP
datagrams have a maximum size of 65kB. Hence, to
send larger messages using UDP, the application needs
to fragment them into chunks of 65kB or less, resulting
in additional system calls.

3) Pipes: A pipe is a data structure stored in kernel
space and containing a circular list of small buffer
entries. Each entry has a size of 4kB, which corresponds
to the size of a memory page. To send a message using
a pipe, a process uses the write() system call. Then,
the kernel splits the message in 4kB chunks and copies
the chunks from the user space to the pipe’s circular
list. To receive messages from a pipe, a receiver uses
the read() system call. This system call copies the
content of the pipe to a user space buffer.

4) IPC and POSIX message queues: IPC and POSIX
message queues (noted IPC MQ and POSIX MQ in
the following, respectively) are queues of messages
residing in kernel space. Although the design of both
mechanisms is similar, they exhibit some differences.
For instance, an IPC MQ can be used between several
senders and several receivers, while a POSIX MQ can
be used between multiple senders but only one receiver.

To send a message, a sender uses the msgsnd()
system call1. Then, the kernel copies the message from
the user space to the kernel space and adds the message
to the queue. To receive a message, a receiver uses the
msgrcv() system call. When a message is present, it
is copied from the kernel space to the user space.

5) Barrelfish message passing: Barrelfish message
passing (noted Barrelfish MP) is a user-level point-to-
point communication mechanism that has been devised
for the Barrelfish operating system2. For each sender-
receiver pair, there are two circular buffers of messages
that act as unidirectional communication channels. The

1We describe the interface used in IPC message queues. The
interface used in POSIX message queues is similar.

2We use the publicly available Barrelfish source code release of
march 2011, available at http://www.barrelfish.org.

2



size of these channels, S, is defined when they are
created. Messages have a fixed size, which is a multiple
of the size of a cache line, and they are aligned on a
cache line. This alignment prevents the structures to use
more cache lines than necessary. As a result the number
of memory accesses is reduced. For instance, accessing
the totality of a misaligned structure of the size of a
cache line requires the processor to fetch two cache
lines from the main memory. If this structure is properly
aligned, it only requires the processor to fetch one cache
line. Each message is composed of a header and of
a content. The header contains the sequence number
of the message and a notification which informs the
receiver that the message can be read. Barrelfish MP
requires the receiver to acknowledge periodically the
last message it has received. More precisely, the sender
can not send more than S messages without having
received one acknowledgement. The acknowledgement
is a message, sent from the receiver to the sender, which
contains the sequence number of the last message read
by the receiver.

When a sender wants to send a message (located
in a private buffer), it first checks if there is enough
room in the channel for a new message. Specifically,
it checks if it has sent less than S messages since the
reception of the last acknowledgement. If it is not the
case, the sender waits for an acknowledgement from
the receiver. Otherwise, it copies the message from its
private buffer to the communication channel. Then, it
writes the sequence number and the notification in the
header of the message.

The receiver knows the location of the next entry
to be read in the communication channel. To receive
a message, it polls the header of the message at that
location, waiting for the notification to be written. As
soon as the notification is written by the sender, the
receiver copies the message from the communication
channel to its own buffer. This copy requires several
memory accesses, i.e., one memory access for each
chunk of the size of a cache line. Finally, the receiver
saves the sequence number and, if necessary, sends an
acknowledgement to the sender.

B. Discussion: Do we need a new communication
mechanism?

Table I summarizes the key points of state-of-the-art
mechanisms presented in this section. The first line of
the table shows that all presented mechanisms require
N message copies to send a message to N receivers.
This is not efficient since the memory is accessible by
all the cores and a single copy could be shared by

the N receivers. The second line of the table shows
that for receiving a message, the latter is copied N
times by the N receivers (once for each receiver). The
third and fourth lines of the table show the number
of system calls required by existing mechanisms to
send/receive a message to/by N receivers (respectively).
We observe that all kernel-level mechanisms require to
perform at least N system calls when sending/receiving
a message to/by N receivers. More precisely, they all
require exactly N system calls apart from UDP, which
may require more system calls if the message to be
sent/received is greater than 65kB. Indeed, the maximal
UDP datagram size is 65kB. Consequently a message
greater than this size must be sent/received in several
chunks of at most 65kB. Note that system calls incur
a considerable overhead due to process context switch.
Indeed, using a micro-benchmark, we found that it costs
14 times more cycles to perform a system call than to
invoke a standard function3. As Barrelfish MP is a user-
level mechanism, it does not require any system call for
sending and receiving messages.

From the above, we observe that existing commu-
nication mechanisms suffer from several drawbacks,
which may impact their performance. Summarizing,
when sending a message to many receivers, all mech-
anisms create unnecessary copies of the same message
in memory. Furthermore, all kernel-level mechanisms
perform a large number of (costly) system calls for
sending the same message to a set of receivers. We
conclude that none of the existing mechanism is suitable
for one-to-many communications. We thus present in
the next section ZIMP, a new inter-core communication
mechanism optimized for one-to-many communications
involving processes residing on the same host.

III. ZIMP

We present in this section ZIMP, our new inter-core
communication mechanism. We start by presenting its
design in Section III-A and discuss a set of performance
optimizations in Section III-B.

A. Design of ZIMP

ZIMP (Zero-copy Inter-core Message Passing) is a
user-level communication mechanism dedicated to com-
munications between processes residing on the same
host. The key feature of this mechanism is that there is
no copy when sending a message. Indeed, the message
is directly allocated in the communication channel.

3This result has been obtained using the same hardware and
software configurations described in Section IV.
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Message copies performed for sending 1 message (N receivers) N N N N N N N 0
Message copies performed for receiving 1 message (N receivers) N N N N N N N N

System calls performed for sending 1 message (N receivers) N N N*d M
65507

e N N N 0 0

System calls performed for receiving 1 message (N receiver) N N N*d M
65507

e N N N 0 0

Table I: Summary of the key points of state-of-the-art mechanisms plus ZIMP, when sending a message of size M
Bytes to N receivers.

Moreover, it provides an efficient one-to-many commu-
nication primitive: there are multiple receive for a single
send.

ZIMP allows creating communication channels. Each
communication channel can be used by several senders
and is associated to a set of receivers. This means that
each message sent using a channel will be received by
all processes belonging to the receivers set associated
to this channel. Consequently, for each distinct group
of receivers, a separate communication channel must
be created.

In ZIMP, each communication channel is imple-
mented using a circular buffer. This buffer stores a
set of messages. The number of messages that can
be stored in the buffer and the maximal size of each
message are specified as a parameter of the communi-
cation channel creation primitive. Each channel uses a
variable, next_send_entry, which indicates to the
senders the next entry in the circular buffer where to
write a message. This variable is protected by a lock,
which allows multiple senders to concurrently access
the channel. Moreover, each buffer entry is associated
with a bitmap. The bit at position i in a bitmap is
set to one when a message is written by a sender and
is reset when the message is read by the ith process.
Bitmaps are atomically updated by both the senders and
the receivers. Finally, each channel uses a next_read
array to store the index of the next message that will
be read by each process in the receivers set. Since the
ith entry in the next_read array is only updated
by the ith process in the receivers set, accesses to the
next_read array do not need to be synchronized.

Figure 1 depicts the steps performed to send and
receive a message using ZIMP. To send a message, a
sender does not need to allocate memory. It first gets
the address of the next available entry in the channel,
i.e., next_send_entry. It then updates this variable
by setting it to the next entry in the buffer in order
to allow other potential senders to simultaneously use
the channel. Then, the sender waits for the entry to
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Figure 1: Zero-copy Inter-core Message Passing.

become empty by polling the corresponding bitmap.
Specifically, it waits until all the readers have read the
previous message at this entry (if any), i.e. it waits for all
the bits of the bitmap to become 0. When it is the case,
the sender writes the content of the message in the entry.
It then “sends” the message, which consists of updating
the bitmap associated with the buffer entry by setting
each bit to 1. To read a message, a receiver r first gets
next_read[r]. If the bitmap associated to this entry
indicates that there is a message to read (i.e., if r’s bit
in the bitmap is set to 1), then the receiver performs
the three following steps. Firstly, it updates the value
of next_read[r]. Secondly, it copies the content of
the entry. Finally, it updates the bitmap. Otherwise, if
there is no message to read, then it waits for a message
at this entry by polling the bitmap.

B. Performance optimizations

In order to increase the efficiency of ZIMP, we have
implemented a number of cache-related optimizations.
Firstly, ZIMP structures are aligned on a cache line,
as in the case of Barrelfish MP, which improves the
cache usage. Secondly, a full cache line is reserved for
each bitmap. This reduces the cost of polling when the
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receiver is waiting for a message. More precisely, the
first time the receiver accesses the bitmap, it is fetched
from the main memory to its cache. Until the cache
line is invalidated, which occurs when the bitmap has
been modified, subsequent accesses do not require an
access to the main memory. Finally, ZIMP structures
are padded, i.e., extra bytes are added at the end of the
structures, so as the size of each structure becomes a
multiple of a cache line size [18]. The advantage of
padding is that it prevents false sharing. False sharing
occurs when several processes access different unrelated
data that fit in the same cache line. Although they do not
access the same data, the cache coherency mechanism
will invalid the entire line each time a single bit is
modified. In ZIMP, structure padding is used to access
the next_read table efficiently. Indeed, this array
contains, for each receiver, the address of the next entry
to read, which has a size of 4B. Without structure
padding, multiple elements of the array would fit in the
same cache line, which would trigger unnecessary cache
misses each time one of the elements is modified.

IV. PERFORMANCE EVALUATION

In this section, we present a performance analysis of
ZIMP. We compare its performance to that achieved by
the state-of-the-art mechanisms presented in Section II.
We start by a description of the hardware and software
settings we used. Then, we present an evaluation based
on a micro-benchmark. Finally, we evaluate the mech-
anisms using two macro-benchmarks: a consensus and
a checkpointing protocols.

A. Hardware and software settings

We ran our experiments on three different manycore
machines, each one running Linux kernel version 2.6.38
and designed with 64B cache lines. Details regarding the
three machines are provided below:

• 8-core machine: This is a Dell Precision WorkSta-
tion T7400 that hosts two quad-core Intel Xeon
E5410 processors clocked at 2.33GHz and 8GB
of RAM. Each core has a private L1 cache of
32kB. Moreover, each pair of cores share a 6MB
L2 cache.

• 16-core machine: This is a Dell PowerEdge R905
machine that hosts four quad-core AMD Opteron
8380 processors and 32GB of RAM. Each core is
clocked at 2.5 GHz, has private L1 and L2 caches
of 64 and 512 kB, respectively, and shares a 6MB
L3 cache with the three other cores hosted on the
same processor.

• 24-core machine: This is a HP Proliant DL165 G7
machine that hosts two AMD Opteron 6164HE

processors clocked at 1.7GHz and 48GB of RAM.
Each processor contains two sets of six cores that
share a L3 cache of 6MB. Moreover, each core
has private L1 and L2 caches of 64kB and 512kB,
respectively.

B. Micro-benchmark

We have developed a simple micro-benchmark that
works as follows: a sender sends messages to a set
of receivers, each one running on a dedicated core.
Each experiment lasts for two minutes. We measure
the throughput at which receivers deliver messages. We
present the results obtained on the 24-core machine:
results on other machines are consistent. Each value in
the presented graph is an average computed over three
runs for which the standard deviation was very low.
We use the micro-benchmark to study (1) the impact
of message size on performance, (2) the impact of
the number of receivers on performance, and (3) the
impact of the hardware on performance.

1) Impact of the message size: we compare in this
experiment the throughput of the various communica-
tion mechanisms obtained with the following message
sizes: 1B, 64B, 128B, 512B, 1kB, 4kB, 10kB, 100kB
and 1MB. We present results obtained with two extreme
configurations: 1 receiver (Figure 2) and 23 receivers
(Figure 3). Results for other numbers of receivers are
consistent and reported in Appendix A.
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Figure 2: Micro-benchmark: throughput of the different
communication mechanisms as a function of the mes-
sage size (1 receiver).

The first observation we can make is that in all
configurations depicted from Figure 2 to Figure 3,
ZIMP and Barrelfish MP outperform other mechanisms
(except with 1MB messages, where Barrelfish MP is
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Figure 3: Micro-benchmark: throughput of the different
communication mechanisms as a function of the mes-
sage size (23 receivers).

outperformed by other mechanisms). Regarding the rel-
ative performance of ZIMP and Barrelfish MP, Figure 2
shows that with one receiver, Barrelfish achieves slightly
better performance than ZIMP (+15% on average) for
message sizes below 1kB. For larger messages, ZIMP
achieves better performance and the performance dif-
ference increases with the message size (+5% with 4kB
messages and +46% with 1MB messages). Figure 3
shows that with 23 receivers, ZIMP consistently and
drastically outperforms Barrelfish MP (+515% with 64B
messages and +236% with 1MB messages).

We study and explain below the performance
achieved by the various mechanisms.

• TCP, UDP and Unix domain sockets: they achieve
lower performance than other mechanisms. Overall,
we observe that Unix domain sockets achieve slightly
better performance than the two other mechanisms.
Additionally, we observe that, regardless the number of
receivers, TCP sockets are between 3% and 22% less
efficient than UDP sockets for messages below 1kB.
We attribute this behavior to the overhead induced by
the various mechanisms used in TCP to ensure reliable,
FIFO delivery of messages (acknowledgements, flow
control, etc). With larger messages (i.e. above 65kB),
we observe that TCP sockets start outperforming UDP
sockets (from 36% to 64%). This is due to UDP which
requires large messages to be fragmented into smaller
messages by the applications (recall that the maximum
datagram size is 65kB). This induces additional system
calls.

• Pipes, IPC and POSIX MQs: they exhibit compa-

rable performance in most configurations. For example,
the performance difference between these three mech-
anisms with more than 2 receivers and messages less
than 1MB ranges between 0.2% and 20%, for a mean
of 6%. Nevertheless we can observe some differences.
For instance, when there is only 1 receiver, IPC MQ
achieves better performance than POSIX MQ (between
2% and 34%). This is due to the fact that POSIX
MQ performs a file lookup to find the POSIX queue
corresponding to a given identifier, which induces some
overhead.

• Barrelfish MP: among state-of-the-art mecha-
nisms, this is the most efficient one. The gap be-
tween Barrelfish MP and other mechanisms is larger
for small messages than for large messages, regardless
the number of receivers. For instance, with 1 receiver,
Barrelfish MP outperforms TCP sockets by 1400% for
1B messages and by 32% for 1MB messages. Specifi-
cally, we noticed that Barrelfish MP reaches its limit
with messages of 4kB. This performance difference
between small and large messages is due to the fact
that Barrelfish MP is limited by the cache size. Indeed,
there are 66 times more L2 cache misses per bytes for
messages of 1MB compared to messages of 64B. This
results in a lower number of instructions per cycles:
Barrelfish MP spends more time waiting for data.

• ZIMP: it outperforms all state-of-the-art
mechanisms in almost all configurations. The only
exception is for message sizes below 1kB when there
is only one receiver. In that case, Barrelfish MP
slightly outperforms ZIMP. ZIMP is less efficient
in this configuration because its design induces a
small overhead that is not necessary for configurations
involving only one sender and one receiver. Specifically,
the sender needs to acquire a lock and the bitmap
is modified atomically. Note that although it is not
clearly visible in Figure 3, the difference between the
throughput of ZIMP and other protocols is very large
even for messages of 1B as further discussed in the
following section.

2) Impact of the number of receivers: the goal of
this experiment is to study the impact of the number of
receivers on the performance of the various communi-
cation mechanisms presented in this report. We measure
the throughput improvement of ZIMP over other mech-
anisms when increasing the number of receivers from 1
to 23. We study two message sizes that correspond to the
extreme sizes used in the previous experiment: 1B and
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1MB. We depict performance results in Figure 4 (1B
messages) and in Figure 5 (1MB messages). Note that
we use a logarithmic scale for the Y axis. Results for
intermediary message sizes are consistent and presented
in Appendix B.
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Figure 4: Micro-benchmark: throughput improvement of
ZIMP over state-of-the-art mechanisms as a function of
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Figure 5: Micro-benchmark: throughput improvement of
ZIMP over state-of-the-art mechanisms as a function of
the number of receivers (1MB messages).

We observe that for both 1B and 1MB messages,
the throughput improvement of ZIMP over other
mechanisms is impacted by the number of receivers:
the higher the number of receivers, the larger the
performance improvement. For instance, with 1B
messages, the improvement of ZIMP over TCP sockets
spans from 1150% (with 1 receiver) to 19000% (with
23 receivers). Similarly, with 1MB messages, the
improvement of ZIMP over TCP sockets spans from

94% (with 1 receiver) to 333% (with 23 receivers).
ZIMP has been devised specifically for efficient
one-to-many communication on a manycore machine.
Specifically, a message is sent once and received
multiple times and the cache is used efficiently. This
is not the case for state-of-the-art mechanisms, which
are heavily impacted by the number of receivers.
Consequently, the improvement of ZIMP increases as
there are more receivers.

3) Impact of the hardware on performance: In this
section we are interested on the impact of the hardware
on performance. Specifically, we present the throughput
improvement of ZIMP over Barrelfish MP when in-
creasing the number of receivers. Results are presented
on the three hardware described in Section IV-A. Fig-
ure 6 shows the case when increasing the number of
receivers from 1 to 23, for messages of 128B. Results
with other message sizes are shown in Appendix C.
Results show that the percentage of improvement of
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Figure 6: ZIMP throughput improvement over Barrelfish
MP on different hardware. Messages of 128B.

ZIMP over Barrelfish MP is consistent on different
machines. In particular, above the configuration with
one receiver, the average standard deviation between
the three curves is less than 9% (with a minimum
standard deviation of 2% observed for 11 receivers
and a maximum of 22% observed for 7 receivers).
For one receiver we observe larger differences in the
performance of ZIMP compared to Barrelfish MP on
different hardware. Indeed, the improvement appears to
be negative (-7.7%) with 1 receiver on the 16 cores,
while it is greater than 4.9% on the two other machines.
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C. Macro-benchmarks

We have seen in the previous section that ZIMP
and Barrelfish MP clearly outperform all other
communication mechanisms. In this section, we
compare the performance of these two mechanisms
using two macro-benchmarks: the PaxosInside
agreement protocol [17] and a checkpointing
protocol [8].

1) Agreement protocol: Guerraoui and Yabandeh
have recently proposed PaxosInside [17], an adapta-
tion of the Paxos protocol [5] for manycore machines.
In short, similarly to Paxos, the PaxosInside protocol
distinguishes three roles for nodes taking part in the
protocol: proposer, acceptor and learner. An important
difference with Paxos is that PaxosInside relies on a
single active acceptor, which is replaced by a backup
acceptor when a failure occurs. For every consensus it
performs, PaxosInside performs several rounds of one-
to-one and one-to-many communications. More pre-
cisely, assuming that there are l learners in the system,
every consensus requires 2 + l one-to-one message
exchanges and 1 one-to-many message exchange.

In the presented experiments, we deploy PaxosInside
with one proposer, one acceptor, and three learners
(which allows tolerating the failure of exactly one
learner). The proposer issues 100,000 requests for con-
sensus. We measure the throughput at which consensus
are performed as a function of the request size. We have
experimented different node placements: the leader and
the acceptor share the same cache, the acceptor and the
learners share the same cache, etc. We did not observe
noticeable differences between these placements. There-
fore, we only report results for one placement.

Figure 7 presents the throughput improvement
brought by ZIMP over Barrelfish MP, on the three
machines presented in Section IV-A. Presented results
are an average over three runs. The observed standard
deviation was very low; we did thus not depict it. We ob-
serve that ZIMP systematically outperforms Barrelfish
MP. We also observe that the improvement is quite
important: on the 24-core machine, it ranges from 13%
with 1B requests to 473% with 10kB requests. Finally,
we observe that the throughput improvement starts to
decrease for requests greater than 10kB to reach 83%
with requests of 1MB.
We attribute this drop to an increase of the memory
accesses, due to the limited size of the cache. Indeed, on
the 3 machines, we observed an important augmentation
of the number of cache misses (L2 for the 8-core ma-
chine, L3 for the 16 and 24-core machines) per byte for
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Figure 7: Agreement protocol: throughput improvement
of ZIMP over Barrelfish MP as a function of the request
size.

both mechanisms. We noticed that the number of cache
misses is principally caused by the copy operation on
messages. The larger the messages, the less the number
of messages that can fit in the cache. Consequently,
there are more accesses to the main memory. As an
access to the main memory is more costly than an
access to the cache, it limits the throughput that can
be achieved by both mechanisms. Moreover, Barrelfish
MP requires several memory copies, compared to ZIMP
which is a zero-copy mechanism. Hence the number
of cache misses is more important for Barrelfish MP
than for ZIMP. Even if the number of cache misses
increases for both mechanisms, ZIMP still offers a
higher throughput than Barrelfish. The difference be-
tween the two mechansisms only becomes less impor-
tant. Consequently, the improvement falls. Finally, note
that the improvement is roughly equivalent accross the
3 machines.

2) Checkpointing protocol: Manivannan and Singhal
have proposed a checkpointing protocol [8] that has
the particularity to not rely on vector timestamps. In
this report, we focus on a sub-protocol of this protocol,
responsible for gathering snapshots. This sub-protocol
works as follows: to gather a snapshot, a node sends
a message to every other nodes in the system. Upon
reception of such a message, nodes send back their latest
checkpoint to the initiator of the snapshot. The snapshot
is finished once the initiator received a checkpoint for
every node in the system. This sub-protocol involves 1
one-to-many and n one-to-one exchanges of messages,
where n is the number of nodes taking part in the
protocol.

In the presented experiments, there is one node that
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issues 100,000 requests for snapshots in a closed-loop,
meaning that it only issues a new snapshot request
when the previous one completed. The size of a snap-
shot request is always 128B. We vary the size of the
checkpoints that are sent to the snapshot initiator (from
128B to 1MB) and the number of nodes participating
in the system (from 2 to 24). We measure the time
required to complete a snapshot. Results are all the
average over three runs. The observed deviation was
very low and is thus not depicted on the graphs. Results
for configurations not presented in this section appear
in Appendix D.
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Figure 8: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (24 nodes).

Figure 8 depicts the snapshot completion time im-
provement brought by ZIMP over Barrelfish MP as a
function of the checkpoint size, in a system with 24
nodes. On the 24-core machine, we observe that the
improvement increases from +11.7% for checkpoints of
128B up to +55.6% for checkpoints of 4kB. Similarly
to PaxosInside, it then decreases down to +40.5% for
messages of 1MB. As for the agreement protocol, this
is due to the limited size of the cache.

Figure 9 depicts the snapshot completion time im-
provement brought by ZIMP over Barrelfish MP as a
function of the number of nodes in the system, for a
checkpoint size of 4kB, on the three machines presented
in Section IV-A. We observe that ZIMP improves the
snapshot completion time over Barrelfish MP between
+48% and +58% whatever the number of nodes in the
system.

V. RELATED WORK

In 2003, Immich et al. have presented a study of
five inter-process communication mechanisms across
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Figure 9: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (4kB checkpoints).

Unix and Linux operating systems [19]. More precisely,
they have evaluated pipes, named pipes, IPC message
queue, shared memory with semaphores and Unix do-
main sockets on four versions of Linux and two of
FreeBSD. They considered a micro-benchmark, with a
producer/consumer scheme, for messages ranging from
64B to 4608B. The main focus of this work was to study
the impact of the operating system on the performance
of existing inter-process communication mechanisms.
K. Wright et al. [20] conducted a performance analysis
of pipes, Unix Domain sockets and TCP sockets on
different manycore platforms. The authors conducted
their experiments on different hardware but focused
on micro-benchmarks with only one sender and one
receiver and large messages (ranging from 1MB to
100MB).

Our performance analysis of existing inter-process
communication mechanisms is complementary to both
the above studies. Indeed, neither we studied the im-
pact of the operating system on performance (as per-
formed in [19]) nor we studied the impact of very
large messages on performance (as performed in [20]).
Instead, none of the above works analyzes how existing
inter-process communication mechanisms behave on
manycore machines when they are used for one-to-
many communications, which has been the focus of our
study. Our results are further assessed on both micro-
and macro-benchmarks. On the other hand, our work
does not only compare existing mechanisms the ones
against the others as performed in [19] and [20]. It
further proposes a new inter-process communication
mechanism that outperforms existing ones by up to an
order of magnitude.
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High Performance Computing (HPC) requires ef-
ficient intra-nodes message passing mechanisms.
KNEM [21] is a Linux kernel module enabling HPC
applications to efficiently send and receive large mes-
sages. Specifically, KNEM provides both one-to-one
(i.e., unicast) and one-to-all (i.e., broadcast) communi-
cation primitives. The one-to-all communication primi-
tive allows one core to send large amounts of data to all
other cores in order to perform parallel processing. The
difference with our mechanism is that ZIMP allows a
process to communicate with a set of other processes
whatever their number and their location. If a developer
wants to use KNEM to send a message to a subset of
processes it should either use the broadcast primitive
and generate unnecessary traffic in the machine or use
the unicast primitive many times, which is inefficient as
shown for other mechanisms in this report.

Another approach to improve performance resides
in the modification of the hardware. Lee et al. have
recently presented HAQu [22], a piece of hardware
that accelerates operations on software queues. Using
a simulator and a micro-benchmark the authors reached
a speed-up of 6.5 compared to a state-of-the-art software
queue. ZIMP consists of an efficient alternative for those
machines that do not provide hardware facilities for
efficient inter-process communication.

VI. CONCLUSION

In this report we have seen that existing communi-
cation mechanisms are not efficient for intra-node com-
munication in a manycore machine. We have presented
ZIMP, a new communication mechanism which benefits
from a minimal number of copies of messages and
from an efficient one-to-many communication primitive.
We have implemented a micro-benchmark and two dis-
tributed algorithms: PaxosInside, a consensus algorithm
for manycore machines, and a checkpointing algorithm.
The evaluation shows that ZIMP is more efficient than
state-of-the-art mechanisms.
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APPENDIX

A. Microbenchmark: impact of the message size

In this section we present the impact of the message
size on the performance of the various mechanisms.
The experiments have been performed on the 24-core
machine. We present results from 2 (Figure 10) to 22
receivers (Figure 30)).
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Figure 10: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (2 receivers).
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Figure 11: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (3 receivers).
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Figure 12: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (4 receivers).
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Figure 13: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (5 receivers).
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Figure 14: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (6 receivers).
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Figure 15: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (7 receivers).
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Figure 16: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (8 receivers).
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Figure 17: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (9 receivers).
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Figure 18: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (10 receivers).
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Figure 19: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (11 receivers).
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Figure 20: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (12 receivers).
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Figure 21: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (13 receivers).
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Figure 22: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (14 receivers).
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Figure 23: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (15 receivers).
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Figure 24: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (16 receivers).
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Figure 25: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (17 receivers).

 0

 50

 100

 150

 200

 250

 300

 350

1B 64B 128B 512B 1kB 4kB 10kB 100kB 1MB

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Message size (log scale)

Unix domain
TCP
UDP

Pipes
IPC MQ

POSIX MQ
Barrelfish MP

ZIMP

Figure 26: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (18 receivers).
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Figure 27: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (19 receivers).
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Figure 28: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (20 receivers).
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Figure 29: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (21 receivers).
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Figure 30: Micro-benchmark: throughput of the differ-
ent communication mechanisms as a function of the
message size (22 receivers).
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B. Microbenchmark: impact of the number of receivers

In this section we present the impact of the number
of receivers on the performance of ZIMP compared
to the state-of-the-art communication mechanisms. The
experiments have been performed on the 24-core ma-
chine. We present results for messages of 64B, 128B,
512B, 1kB, 4kB, 10kB and 100kB, from Figure 31 to
Figure 37.
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Figure 31: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (64B messages).
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Figure 32: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (128B messages).
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Figure 33: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (512B messages).
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Figure 34: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (1kB messages).
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Figure 35: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (4kB messages).
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Figure 36: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (10kB messages).
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Figure 37: Micro-benchmark: throughput improvement
of ZIMP over state-of-the-art mechanisms as a function
of the number of receivers (100kB messages).
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C. Microbenchmark: impact of the hardware

In this section we present the impact of the hard-
ware on ZIMP throughput improvement over Barrelfish
MP, for different message sizes. More specifically, we
present results for messages of 1B, 64B, 512B, 1kB,
4kB, 10kB, 100kB and 1MB, from Figure 38 to Fig-
ure 45.
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Figure 38: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 1B.
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Figure 39: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 64B.
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Figure 40: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 512B.
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Figure 41: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 1kB.
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Figure 42: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 4kB.

19



 1

 10

 100

 1000

 5  10  15  20

T
h
ro

u
g
h
p
u
t 
im

p
ro

v
e
m

e
n
t 
in

 p
e
rc

e
n
ta

g
e
 (

lo
g
 s

c
a
le

)

Number of receivers

8 cores
16 cores
24 cores

Figure 43: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 10kB.
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Figure 44: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 100kB.
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Figure 45: ZIMP throughput improvement over Bar-
relfish MP on different hardware. Messages of 1MB.
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D. Checkpointing protocol: snapshot completion time
improvement

In this section we present the snapshot completion
time improvement of ZIMP over Barrelfish MP for dif-
ferent checkpoint sizes and different number of nodes.

Specifically, we first present the snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes for checkpoint sizes of
128B, 512B, 1kB, 10kB and 100kB, from Figure 46 to
Figure 51.
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Figure 46: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (128B checkpoints).
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Figure 47: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (512B checkpoints).

Second, we present the snapshot completion time
improvement of ZIMP over Barrelfish MP as a function
of the checkpoint sizes, from 2 (Figure 52) to 23
(Figure 74) nodes.
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Figure 48: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (1kB checkpoints).
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Figure 49: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (10kB checkpoints).
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Figure 50: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (100kB checkpoints).
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Figure 51: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the number of nodes (1MB checkpoints).
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Figure 52: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (2 nodes).
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Figure 53: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (3 nodes).
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Figure 54: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (4 nodes).
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Figure 55: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (5 nodes).
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Figure 56: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (6 nodes).
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Figure 57: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (7 nodes).
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Figure 58: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (8 nodes).
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Figure 59: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (9 nodes).
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Figure 60: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (10 nodes).
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Figure 61: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (11 nodes).
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Figure 62: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (12 nodes).
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Figure 63: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (13 nodes).

 0

 10

 20

 30

 40

 50

 60

128B 512B 1kB 4kB 10kB 100kB 1MB

S
n
a
p
s
h
o
t 
c
o
m

p
le

ti
o
n
 t
im

e
 i
m

p
ro

v
e
m

e
n
t 
(%

)

Checkpoint size (log scale)

16 cores
24 cores

Figure 64: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (14 nodes).
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Figure 65: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (15 nodes).
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Figure 66: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (16 nodes).
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Figure 67: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (17 nodes).
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Figure 68: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (18 nodes).
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Figure 69: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (19 nodes).
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Figure 70: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (20 nodes).
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Figure 71: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (20 nodes).
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Figure 72: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (21 nodes).
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Figure 73: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (22 nodes).
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Figure 74: Checkpointing protocol: snapshot completion
time improvement of ZIMP over Barrelfish MP as a
function of the checkpoint size (23 nodes).
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