ProFusion2 — Towards a modular, robust and reliable fusion
architecture for automotive environment perception

T. Tatschke, S.-B. Park, A. Amditis, A. Polychronopoulos, U. Scheunert, O. Aycard

Abstract

This publication focuses on a modular architecforesensor data fusion regarding to research wérk o
common interest related to sensors and sensoffudata. This architecture will be based on an edésh
environment model and representation, consisting sét of common data structures for sensor, object
and situation refinement data and algorithms ad a®lthe corresponding models. The aim of such
research is to contribute to a measurable enhamteafiethe output performance provided by multi-
sensor systems in terms of actual availabilityialslity, accuracy and precision of the perceptiesults.

In this connection, investigations towards fusiamnaepts and paradigms, such as ‘redundant’ and
‘complementary’, as well as ‘early’ and track-bassthsor data fusion approaches, are conducted, in
order to significantly enhance the overall perfonggof the perception system.

1 Introduction

In the European member states there are about.QM@raffic accidents a year with over 40.000 lfags. This
fact points up the growing demand for automotivietsasystems, which aim for a significant contribatto the
overall road safety. For this reason a currentrteltdgy field of the automotive industry focusestba development
of active safety applications and advanced drigsistant systems. These aspire a reduction oasttdm alleviation
of traffic accidents by means of collision mitigatiprocedures, lane departure warning, lateralrobreafe speed
and safe following measures.

The common nominator and key feature of all thiwehosafety systems is the accurate, robust andbieli
perception of the vehicle’s environment. Howevanrent off-the-shelf single sensor approaches daalways
fulfil these challenging demands. Therefore mosthese applications base on perception systemghwirbcess
the data from multi sensorial platforms via datsida methods.

The Preventive and Active Safety Applications pcojéPReVENT), which is part of the Sixth Framework
Programme, contributes to the safety goals ofBitmepean Commission (EC). PReVENT addresses the function
fields of Safe Speed and Safe Following, Lateral Support, Intersection Safety and Protection of Road Users and
Collision Mitigation in order to cover the field of active safety. Thajority of these functions are characterized by
using perception strategies based on multi-sedatfopns and multi-sensor data fusion.

Hence, the strategy dPReVENT was to initiate a cross-functional subproject edhlProFusion in order to
streamline and to develop the subject of multi-eerdata fusion in a greater degree of depth and imore
systematic approach as compared to the primarihction-driven subprojects. The role BfoFusion, inside
PReVENT, is to streamline the sensor data fusion by, gathering requirements, defining certain standart$
developing fusion algorithms.

In this context we propose a multi sensor fusiarhigecture, which facilitates the robust and rdégtrocessing of
multi sensor data by providing different data fusapproaches, a common data structure and a conmmadalling
within one framework. Due to the special desigthef framework and the underlying algorithms it ¢ limited to
a single use-case but can serve as a modular nohaffor environment perception and thus build theibdor
different kinds of safety applications.

An additional rationale is motivated by the obsépra that a variety of national and internatioredearch projects
are devoted to the development and improvementtdfeaand preventive safety systems, and thatfathem are
affected by the limited performance and even hyictmfcies of the currently available sensor platfer As
PReVENT is considered as the core of tb®afety research and development initiative, it has belevionis to
embrace a cross-functional subproject that adoptsiaty of challenges and open issues in the fi¢hhulti-sensor
perception.



2 The Fusion Architecture

As already outlined in the introduction the pergapiof the vehicle’s environment is the crucialtéacof a driver
assistance and active safety system. Thereforendtjer objective of the conducted research is tdhghe sensor
data fusion techniques used for automotive enviemtrperception beyond the current state-of-théedr{6], [7]).
This will be done by setting up a modular and ioperable fusion architecture for multi sensor systewhich
integrates diverse approaches (e.g. low and higbosedata fusion, algorithms for situation refinemestc.). In
doing so the proposed framework is not limitedrig apecial safety function but operational withdifferent kinds
of applications like collision mitigation, laterabntrol, lane departure warning and others.
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Figure 1: The sensor data fusion architecture

Figure 1 outlines roughly the concept and the campts of the sensor data fusion framework:

The system will be based on an extended 4D scamwifonment model (cf. [1]). Objectives are to deli an
extended view of the environment to applicatiomstérms of more detailed representations) and fmelelata
structures for each processing step during theofiuprocess (e.g. for raw sensor data, signal festusbjects
detected in the environment).

For object refinement (cf. [2]), one will developigting and new algorithms for filtering, data asistion and
object classification. Especially, chances for agaly confidence information from complementary aadundant
sensor data for each processing result will beyapdl Additionally, the research work will be foedson new
motion models.

Research topics on situation refinement will ineluchjectory classification and prediction for attgeon the road,
trajectory estimation of the ego-vehicle based oultimsource information (e.g. detected lanes, egbisle
dynamics and map data), as well as on genericidea@smponents for the prediction of the driventention.

The newly developed perception system (cf. [3]),[4Ind especially the different fusion approachet, be
implemented, integrated and evaluated in open-teaftime environments, and ultimately utilisedtle closed-
loop on-board systems of prototype vehicles (owhgdBMW, CRF, DaimlerChrysler and Volvo Tec). These



vehicles are equipped with distinct sensor platifmcluding stereo vision cameras, FIR camerasit stnd long
range RADAR devices and LIDAR sensors) and serverde active safety application (see [5]).

The succeeding paragraphs describe the main comimotthe fusion framework, especially the diffgréusion
approaches, in detail.

2.1 The Early Fusion Approach

The term “early fusion” is derived from a fusionnoept, which is based on only slightly pre-procdsdata. They
are processed together from an early stage of theepsing chain. Such an approach permits therfusiodule
itself to process all data from the different seasas a whole”. Taking use of the redundant semmgormation and
matching these data to one common and consistenesnodel of the environment it should be feadiblslash
inconsistencies and to increase the robustnessetiability of the processing results.

Thereby an early fusion system is working as folo®everal sensors deliver raw sensor data, fangbeaechoes
from RADAR devices, images from vision devices ¢R Eameras, etc. to the sensor pre-processing Duaiing
sensor pre-processing specifics of sensor sigmalexracted (peaks, plateaus, regions with sammepties, etc.)
and grouped. The resulting features can be proviideifferent abstraction levels. Based on thesduies objects
are detected, classified and tracked over timeritihér processing steps.

All processing steps make, more or less, use obupnptions related to the vehicle environment. These
presumptions, stored in models, should be congistenhe whole processing sequence. Thus besideotiee
common environment model of the early fusion modihiere should not be used any other model in other
processing steps. Therefore the input data to dasipn are required to be based on the same maodgl§ not
possible because pre-processing is contained ddein sensor components, to be based on minseahgtions.

As already indicated before, early fusion doesingtlicate to handle only some first processing stéqut takes
data from early processing stages from all senfosgs and processes them together to one commsat, rine
environment description of the vehicle.

Thereby the early fusion module is internally cosgub of several functional units, which are necegstaput the
fusion process into practice. Figure 2 illustraties different components of the fusion module ahdws their
interaction. It mainly shows the circle of procegssteps that have to be executed:
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Figure 2: Early fusion functional architecture

The following paragraphs develop the functionatityhe fusion module’s components in more detail:

The process odensor data association or matching is a key atgdl®f the early fusion architecture. Like in other
fusion systems feature vectors are extracted flwrsénsor output data. In the matching step thesgeare vectors
have to be assigned to the respective correspomdijegts in the modelled track history causingrtreasurement
data of the feature vectors. In track fusion systéine data association is done based on the pigetaata from
the sensor processing units and the object data frack history. In the early fusion module theadassociation
poses the challenge, as this matching step has tiobe for data on different level of abstractiom, for edge to
edge association up to edge to object / track msmgt. Similarity measures are used to find thetpasbable and
reasonable assignment of the acquired sensor ddteetdata of the object’s history. Therefore tlsgess the
association of the features based not only on tft&iclidian) distance, but in consideration of thedvariance
information and the origin of the sensor data.

As the early fusion approach is model driven, ahier task of the matching module is the attributemd
classification, respectively, of sensor data otuess to different object models, which provide basis for the
characterisation of the environment. In the ing@iion phase the matching module generates obgsttmptions
for new features based on a set of given (shapeareasurement) models (e.g. for the road, otheramistrucks,
pedestrians, etc.) and allots the sensor datetegpective model that proves to be the most pltebralative to the
other ones. With the help of additional sensor dhtarespective object assumptions are either woaél or
discarded and newly reassigned over time. Wheneser features from the perception devices are alaildhe
system checks if they can be associated to alreaidying objects in the environment descriptionifathey are
enough significant to create a new object assumptio

The handling and management of features, objectdranks takes place in the environmental datatre. In this
structure all information on the own car, the ma#thsor system and the surrounding environmembisdjust like
the relations between these objects. Main task®fobject management module is the addition, upgafusing,
splitting and deletion of features, objects anaksato/from the environment data structure on thsiof new
measurement data, data association operationshgect bypotheses.

For the step of state estimation and predictiosadigation of the Extended Kalman filter is to beehded due to his
simplicity, optimality and tractability in trackingnd estimation of (non-linear) systems

The goal of the fusion module is to provide an amited as possible description of the own vehscfgriphery.
This description, which contains all detected otsigctracks together with their attributes as veslitheir spatial
interrelation in the surrounding area of the vehidan be easily generated at any time from th&@@ment data
structure. The format of the fusion module’s outisgugeneric and can be adapted to fit the respeedplication.

2.2 The Multi Level Fusion Approach

The holistic representation of the environmentlentiasis of the extended 4D environment model e@ddmmon
data structures allows sensor data processing tvithhelp of a multi-level fusion algorithm. Mulgyel fusion
means that not only one level of fusion exists date. components belonging to one physical objectsaattered
over different levels and evidently fused on selMéifferent levels too e.g. signal level, featuegdl and track level.



In general the chosen level of fusion is object amdlel dependent. Therefore for every object aaetierarchical

fusion strategy can be defined. This way the olfjeatking has inputs from tracked features, unedcleatures as
well as from signal level.

A typical property of multi-level fusion is the usé back loops between the levels. Therefore featnodels are
used to describe which data from which level shdaddused to maintain an object track. This is omghby the
multi-level fusion management. A special case oftishevel fusion is a processing on adaptive cholesels. This
allows the fusion strategy and selection of a derfiasion level to be dependent on the actual sedata and the
observation situation of an object. That's why #dyeprocessing strategy can be achieved in mesisca

The multi-level fusion approach means that seMeradls of fusion exist. Information and data whare generated
by a specific object in the real world scene argeflon several different levels of abstraction.réhare data
components on the signal level, the feature lewdl the track level. At signal level all raw or gyecessed data
coming from single sensors can be found. The datdyged by different sensors are forwarded topifoeessing
chain where they are processed and fused withfdatathe same, higher or lower level (see Figur#gtti-level
fusion functional architecture).
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Figure 3: Multi-level fusion functional architeceur

Multi-level fusion can be performed in two oppasital ways — a bottom-up or a top-down strategyhBtitategies
can be used at the same time parallel and seguientiee processing chain. By performing the bottopnstrategy
specific model knowledge about a real world scamits objects is used to fuse more or less prmnitibjects to
primitive objects at the same or at a higher level.

In the case of a top-down strategy the model obhject contains all relevant information about ptsysical
properties called features (e.g. its shape oratapmsition by components / structural informatio@¥. particular
interest is the information about which componeart be detected by which sensor. Using this knovdeatiput a



possible object the data of a lower level can loeainghly analysed to increase or decrease thedemde in the
assumption made before.

There are three options to design the generalrustimcture. This is sequential fusion, parallsida and a looped
fusion structure. These are three basic structnemhanisms that are in real systems combined \aith ether: In a
sequential processirgpproach the chain of data processing can be fetolottom up level by level performing
fusion operations between data elements that coone the same sensor. Due to this strategy the degjréision
as well as the degree of confidence is increasetinumusly. The second option — parallel processihgins —
occurs, if several sensors are available and Hlfghralternative processing is performed for taene sensor. Then
the degree of composition increases, because canfoudelivered from different sensors are combised the
sensor specific confidences are accumulated. Lo@dn can be implemented if detected featuresmssgyned to
a feature model and a back loop according to tigeetieof composition is initiated. Doing that it sldbbe possible
to assign additional features defined by the featnodel to the object hypotheses. The use of featadels and
the mentioned methodology allows increasing cefaamd confidence of object estimations by the @gtion
process itself. If the quality of the interim resuis not satisfactory the data can be passed ghrem adopted
processing chain again to improve the results. Jdek loops are located between several levels.r@petition of
certain processing steps can result in more aczarat stable results.

The state of the whole system represents a cestaimario in the real world how it is seen by migtipensors. This
overall information is the content of the enviromia model. The environment description is a spedcfitput of
the environment model. This description can be usedn application to process certain informatiérthe 4D
environment model.

2.3 The Grid-based Fusion Approach

The main idea of grid-based fusion is to do sedsda fusion in an occupancy grid. This occupan@y igra regular

discretisation (sampling) of the environment ingelvhere each cell contains the probability that ¢orresponding
part of the environment is occupied. Sensor dat@ifuis done in a generic way in occupancy grichwork. This

approach allows an important sensor flexibility essghsor independence. Sensor data fusion couldobe &t

different levels: at a feature level, in this casgrecise model of each sensor is needed to theldrid, and at a
track level, in this case, a geometric descriptibthe processed data is needed.

The resulting occupancy grid is actually a snapstidhe current environment, i.e. an instantanegew of the
surrounding environment of the vehicle at a fixeghfiency. In an occupancy grid, each cell contidiagprobability
that there lies an obstacle. Advantages of themaoey grid framework:

> the framework is sensor independent
| 4 the framework could deal with raw data (low leva$ibn) and with pre-processed data (high level
fusion)

fusion of sensor data in each cell of the grid

priors (i.e. the initial probability for each celficcording to the occupancy of the whole space
could be integrated; For instance, if we are imavded environment, the prior of occupancy is
very high and the rate of false alarm and missedatien is very high, and the fault tolerance of
the system is increased
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Figure 4: Detail of the grid-based fusion architeeton the track/high level

In the case of high level fusion, the sensors netoir instance velocity, of which a map of velaegiis built as in an
optical flow framework according to the discretisat of the occupancy grid. Thus in each cell, abphility
distribution over a set of possible discretisedogties is built. If the sensors can return a dfasdion of the

obstacles, a map of category (such as car, truiccle, pedestrian, none) is established and irh ezl a
probability distribution over all the possible agdeies is set up.
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Figure 5: Detail of the grid-based fusion architeeton the feature level

Based on the occupancy grid, we extract the objadise grid: Moving obstacles are extracted bgtfidentifying
the moving area. We proceed by differencing twoseesntive occupancy grids in time. Then extractibfeatures
such as surface and velocity could be performedassify the type of obstacle. In case of the foilitsi of using

velocity or a category map the previous procedsdsd with these two maps to obtain the gravitytreeof each
object and a probability distribution over its pibss category.



Data association algorithms are used to updatdiffexent tracks with extracted tracks. To dealwihobservable
tracks, we use a particular process for handlirdustons. To deal with the particular topology loé tenvironment:
entry and exit areas, we use a particular procassdupon the roadmap.

Thanks to the occupancy grid, we extract unobséevateas due to occlusions (Occlusion managem€ot)each
object, three cases arise:

> The object is seen by the sensors and then isiasd with sensor measurement.

| 4 The object is not seen due to occlusion, the ssnseasurements define occluded areas and in
each occluded area there is a uniform probabiigy the object lies.

> The object is not seen due to miss detection. N\Association is made, a probability over the
velocity and the category is updated thanks toiptieth models for each category of road users.

Thanks to the interpretation of the map, we are ablknow areas where the objects could appeaisappear
(entry and exit areas). This helps the robustredasive to false alarm and missed detection.

Object list are managed as a list of tracks. Eeatktis tagged with a specific ID and a set of aharistics. A track
is created when consistent sensor information miéi@gxistence of an object certain. One deletieack only if

this track disappears of the sensor view in a gisapance area. We also manage merge and splijegfteland all
other relevant problems that might appear. To perfthe tracks update, tracking methods are usedaaset of
hypotheses of predicted position, velocity and gaitg for each object is obtained.

In the situation refinement, we propose to perfaraectory prediction for the objects present ia #nvironment.
This trajectory prediction is performed using tHassical “learn & predict” paradigm. In a first gtethe past
trajectories of the objects are collected and arstered to define some classes of typical trajeetoIn a second
step, these classes are used to predict the fuiijieetory of an object present in the environment.

2.4 The Track-Level Fusion Approach

The track-based fusion within the object refinemiayer is a distributed approach. It assumes ttaatking is

carried out inside each individual sensor or syst@nd the tracks feed the track level fusion atars. It can be
applied to automotive sensor networks with compietary or/and redundant field of view. The advantag¢he

approach is that it ensures system modularity diesve& benchmarking, as it does not allow feedbaakd loops
inside the processing.

Research and development for track level fusiofocsised on developing innovative algorithms in #iea of
multidimensional (N-D) track-to-track associatidrack management and track fusion. Expected reBults these
efforts are more consistency and the avoidancewiaus or invalid perception information. The auttpf the track
level fusion is aggregated tracks in the uniorhefg¢ensor field of views.

The research and development process for situatiafysis consists of two main components: The §itsp is to
develop the appropriate level of domain specifiowledge for the road elements (e.g. road bordensed,

obstacles) and the second to develop a decisiommakocess that is able to codify and manipulaéeknowledge
mentioned above. In situation refinement the systeaware not only of the states of the road eléseut has also
knowledge of their relationships. The outcome tdiaion refinement enriches the environment modeluding

additional attributes of the ego-vehicle and thetatles (predicted paths, object to lane assignnesidence for
vehicle manoeuvres, etc.)

The track level fusion architectural modules arpicted in the figure 6. It is implied that a settcdck arrays are
entering the fusion system while the output of objefinement process is consisted of the fusigeathist. The
internal functionalities in this architecture areetassociation (spatial track assignment and 2-B WD
association), the track to track update (fusion)l éime fused object management. All these sub-medate
described in detail in this section.
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The Fusion Area Track Assignment is the first fioctthat is imposed to the tracks when they arererg the
fusion system. The main objective of this is tordase the computational load of the overall procedind also to
ensure the configurability and the interoperabitifythe procedure. A set of sensor configuratiorapeters are
necessary for this module to work properly. At taass required to have the sensors’ maximum ramgeld Of
View (FOV), direction, location, accuracy resolutiand a performance index - estimation error cavae matrix
or overall confidence level. The main process @ thodule is to separate the sensor coverage apeadcego
vehicle and consequently to separate the avaitabtks. These areas could be blind areas not alxbdry any
sensors, areas with one sensor and areas obseyveg lor more sensors. The main result of this esscis to
divide the fusion problem to a number of smalleida sub-problems.

The tracks that belong to areas without or singleser surveillance are passing to the output withay additional
processing. On the other hand, the tracks thatwattin the common sensors areas (2 sensors or nave)
association measure will be defined. This metripisggenerating the hypotheses for association éetmracks, and
then the relative association matrix or other rogtasses to the next level where the track to taasignment takes
place (Track to Track Association). In the cas@ skensors tracks the 2-D association problem isedolThe input
to this module is the output of track to track @sstion and its output is the pairs of tracks thet suitable for
fusion and the not assigned tracks that simply fm#se next module. In the case of tracks comingifmore than
2 sensors then the solution to this problem the W#b N to be 3 more takes place in this moduleudlly this
problem concerns the sequential generation of ap2elblem out of the N-D and after that the solufi@similar to
this acquired in 2-D assignment.

The assignment tracks (2 or more) that come froenditput of the assignment modules are fused byréuok
fusion module. They are updated and generate a folsect state and covariance that replaces trsdimgisensor
level tracks.

Within the object management module the fused aednbn-fused tracked objects are formatting thal fabject

list output for the object refinement process.tA# objects have an ID and in this module thealdation, updates,
deletion of objects based on ID information takacpl Moreover, this module will handle, in a fis&p, object
management issues such as duplications of objaatd, areas objects, transition of objects betwdifierent areas
and all other relevant problems that might appear.

The model collection, containing also motion modéssa horizontal activity and not only internal abject
refinement. It is a function that generates and tise available dynamics models, static modelsaemodels and
the relative to the environment description modélkis module is also necessary to the situatiomeefent
process.

The internal situation refinement modules are degiin the figure 7. The output of the object refirent process is
the main input in this module. The internal funobties that take place in this architecture e dssignment to
objects in a specific lane and the prediction eflath of the ego and the other vehicles (movirjgatd). The final
output is the ego-vehicle and moving objects mawmeealassification together with a confidence indee output
of this module passes to the application.
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The object path module and the ego path moduleetanihe prediction of the expected future path ofvimg
vehicles and the own car respectively for a sheriogl of time (e.g. 4s).

The lane assignment module uses object positimrrirdtion and the available lane geometry and assiglane
index to each of the vehicles accompanied with afidence index. This information is very useful ftire
manoeuvre classification modules.

The objects and ego manoeuvre classification maedatalyse the behaviour of objects and the egacheehind
classifies them according to a predefined discseteof classes (e.g. overtaking, exceeding spemdllg@ to the
lane, lane change, etc.). These modules assunaxigtence of an environment model — i.e. descmigtiof the road
attributes and the lane properties and the outputh® objects’ path and the lane assignment; theglyae
relationships between “objects” and produce a neeuctire. Their output will be part of the enviroant model
and will be defined in the relevant tasks. The sleaiis accompanied with a level of confidence.

2.5 The Fusion Feedback Approach

To overcome a limitation of track-based fusion, sapproaches insist on injecting information confiogn other
sensors at an early stage of processing by a giesor. This can be achieved by feeding unprocessedlightly
processed data — from different sensors into desimgdule in charge of all processing across difiesensors.

An original alternative way put forward here rel@s fusion feedback. In track-based fusion archires, taken as
reference architectures, the output of fusion otflenformation coming from different sensors. Beding this

processed multi-sensorial information into earlggassing of a given sensor (here sensor 1), we ihpkssible to

sensor 1 processing to confirm some detection fdynoaly suspected by sensor 2.

As an example, a RADAR device and a FIR cameraraily produce tracks. Track-based fusion will mespme

of them, and logically leave some RADAR and FIRcks unmatched, because of possible complex and/or
misleading environment. With Fusion Feedback, tARR information available on output from Track-ledv
Fusion will allow FIR processing to further rest¢ha area corresponding to the RADAR-only tracks.

Fusion Feedback builds upon a track-based fusiohitacture, providing a solution to overcome itmitations
through little structural changes. To do so, we twha processing of some given sensor — sensaiolbe able to
use some additional information including data freemsor 2. The output is an excellent candidatét, @liseady
exists in a traditional track-based fusion architee It contains information provided by both sass

Therefore, we feed the output of track-based fusidm sensor 1 processing, as illustrated by tharé 8. Here,
information coming from sensor 2 goes to track-dassion, where some sensor 2 tracks might beutaftatched
for various reasons. However, sensor 1 processithgise this information to better focus its searthis concept
provides improved performance, without major refiimg of the track-based fusion architecture, asnirely
requires one additional link from fusion to the semprocessing, and customisation of the sensa@epsing.
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According to the addition of the link illustrated the Figure 8, the sensor 1 processing must be tabtake
advantage of information coming from track-basesidn. Considering a FIR camera as sensor 1 thealigensor
1 processing can be described as acquisition, qmeepsing, detection, tracking and output formgttiNow, to
accommodate the use of extraneous information, ave ko enhance this architecture with additionatswdules,
and some enhanced existing sub-modules (cf. figure
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The information coming from the fusion module hasé converted into the natural representatiortfersensor,
here the FIR camera. Then detection must take aotmunt the hint provided, possibly by releasintect&on
thresholds around given areas. Beside its usualtiimality, tracking will now additionally have toheck the
compatibility between external track continuity goaksible new FIR tracks detected using this hint.



3 Conclusion

In this paper we presented a modular frameworknalti sensor data fusion, which addresses the airti@sk of
automotive environment perception. Thereby thigrimperable architecture is not dependant on a apsafety
application but is designed on top of a multi seqdatform to serve diverse safety functions ateorteurthermore it
will offer a robust and reliable perception perfame due to the integration of diverse fusion apghes and
algorithms for situation refinement beyond currstate-of-the-art. Additionally this architecturethvits extended
environmental modelling provides an excellent b&migurther enhancement in the field of automo#ironment
perception and thus contributes to the design awdldpment of road safety systems.
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