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Abstract— In this paper, we present a real-time algorithm
for online simultaneous localization and mapping (SLAM)
with detection and tracking of moving objects (DATMO) in
dynamic outdoor environments from a moving vehicle equipped
with laser sensor and odometry. To correct vehicle location
from odometry we introduce a new fast implementation of
incremental scan matching method that can work reliably in
dynamic outdoor environments. After a good vehicle location
is estimated, the surrounding map is updated incrementally
and moving objects are detected without a priori knowledge of
the targets. Detected moving objects are finally tracked using
Global Nearest Neighborhood (GNN) method. The experimental
results on datasets collected from different scenarios such as:
urban streets, country roads and highways demonstrate the
efficiency of the proposed algorithm.

I. INTRODUCTION

Perceiving or understanding the environment surrounding
of a vehicle is a very important step in driving assistant
systems or autonomous vehicles. The task involves both
simultaneous localization and mapping (SLAM) and de-
tection and tracking of moving objects (DATMO). While
SLAM provides the vehicle with a map of static parts of
the environment as well as its location in the map, DATMO
allows the vehicle being aware of dynamic entities around,
tracking them and predicting their future behaviors. It is
believed that if we are able to accomplish both SLAM and
DATMO in real time, we can detect every critical situations
to warn the driver in advance and this will certainly improve
driving safety and can prevent traffic accidents.

In this context, the paper proposes to solve SLAM and
DATMO in dynamic outdoor environments with a vehicle
moving at high speed using laser sensor and odometry.
Recently, there are considerable research efforts focusing on
these problems [12], [7], [16], [17]. However, for highly
dynamic outdoor environments like crowded urban streets,
there still remains many open questions. These include, how
to represent the vehicle environment, how to obtain a precise
location of the vehicle in presence of dynamic entities, and
how to differentiate moving objects and stationary objects.

To model the environment surrounding the vehicle, we
use the Occupancy Grid framework developed by Elfes [5].
Compared with feature-based approaches [8], grid maps
can represent any environment and are specially suitable
for noisy sensors in outdoor environments where features
are hard to define and extract. Grid-based approaches also
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Fig. 1. The DaimlerChrysler demonstrator car.

provide an interesting mechanism to integrate different kinds
of sensors in the same framework taking the inherent uncer-
tainty of each sensor reading into account.

In general, in order to perform SLAM and DATMO from
a moving vehicle, a precise vehicle localization is essential.
Direct scan matching techniques like ICP [2] and its variants
[13] are popular ways to correct vehicle location from odom-
etry. The most evident flaw of these ICP-style scan matching
methods is that the measurement uncertainty is not taken
into account. Especially, sparse data and dynamic entities
in outdoor environment cause problems of correspondence
finding in ICP-style methods which affect the accuracy of
matching results.

To overcome these problems, we introduce a new fast
incremental scan matching method based on a local grid map
and it does not need to find corresponding features and can
work reliably in dynamic environments. When good vehicle
locations are estimated, by integrating sensor measurements
we are able to build a consistent grid map surrounding
of the vehicle. And by comparing new measurements with
the constructed local vehicle map, dynamic objects can be
detected and tracked.

The proposed algorithm for solving SLAM and DATMO
is tested on data collected from the DaimlerChrysler demon-
strator car equipped with a camera, two short range radar
sensors and a laser scanner (Fig. 1). In addition, vehicle
odometry information such as velocity and yaw rate are
provided by the vehicle sensors. In this paper we use only
data from laser scanner and odometry. Images from camera
are for visualization purpose. Experimental results show that
our algorithm can perform both SLAM and DATMO in real



time for different types of dynamic outdoor environments.
The rest of the paper is organized as follows. In the

next section, we describe our approach to mapping and
localization in dynamic outdoor environments. Algorithm for
detecting and tracking moving objects is presented in Section
III. Experimental results are given in Section IV and finally
in Section V conclusions and future works are discussed.

II. LOCALIZATION AND MAPPING

For safety navigation applications, basically a good global
map is not necessary, so that the problem of revisiting or
loop closing in SLAM is not considered in this work. For
this reason, we propose an incremental mapping approach
based on a fast scan matching algorithm which involves in
building a consistent local vehicle map. The map is updated
incrementally when new data measurements arrive along
with good estimates of vehicle locations obtained from the
scan matching algorithm. The advantages of our incremental
approach are that the computation can be carried out very
quickly and the whole process is able to run online.

A. Notation

We denote the discrete time index by the variable t, the
laser observation from vehicle at time t by the variable
zt = {z1

t , ..., zK
t } including K individual measurements

corresponding to K laser beams, the vector describing an
odometry measurement from time t − 1 to time t by the
variable ut, the state vector describing the true location of
the vehicle at time t by the variable xt.

B. Occupancy Grid Map

In the occupancy grid representation, the vehicle envi-
ronment is divided into a two-dimensional lattice M of
rectangular cells and each cell is associated with a measure
taking a real value in [0, 1] indicating the probability that
the cell is occupied by an obstacle or not. A high value
of occupancy grid indicates the cell is occupied and a low
value means the cell is free. Suppose that occupancy states
of individual grid cells are independent, the objective of a
mapping algorithm is to estimate the posterior probability of
occupancy P (Mi |x1:t, z1:t) for each cell of grid Mi, given
observations z1:t = {z1, ..., zt} at corresponding known
poses x1:t = {x1, ..., xt}.

In the literature, many methods are used for occupancy
grid mapping, such as Bayesian [5], Dempster-Shafer [11]
and Fuzzy Logic [10]. Here we apply Bayesian Update
scheme [15] that provides an elegant recursive formula to
update the posterior under log-odds form:

log O(Mi |x1:t, z1:t) = log O(Mi |x1:t−1, z1:t−1) +
+ log O(Mi | zt, xt)− log O(Mi) (1)

where O(a | b) = odds(a | b) = P (a | b) / (1− P (a | b))

In (1), P (Mi) is the prior occupancy probability of the
map which is set to 0.5 representing an unknown state, this
makes this component disappear. The remaining probability
P (Mi |xt, zt), is called the inverse sensor model. It specifies
the probability that a grid cell Mi is occupied based on a

Fig. 2. Hit maps build directly from raw laser data collected from a vehicle
moving along a straight street: with vehicle localization using odometry
(left); and using results of scan matching (right). Note that the scan matching
results are not affected by moving objects in the street. See Fig. 6 for the
resulting occupancy grid map.

single sensor measurement zt at location xt. In our imple-
mentation, it is decided by the measurement of the nearest
beam to the center mass of the cell. Note that the desired
probability of occupancy, P (Mi |x1:t, z1:t), can be easily
recovered from the log-odds representation. Moreover, since
the updating algorithm is recursive, it allows for incremental
map updating when new sensor data arrives.

Fig. 3b shows an example of an occupancy grid map,
incrementally constructed from laser measurements during
the vehicle’s movement. The color of each grid map cell
indicates the probability that corresponding space being
occupied: gray=unknown, white=free, black=occupied.

C. Scan Matching against Occupancy Grid Map

In order to build a consistent map of the environment,
good vehicle localization is required. Because of the inherent
error, using only odometry often results in unsatisfied maps
(see Fig. 2 left). When features can not be defined and
extracted, direct scan matching techniques like ICP [9] can
help to correct the odometry error. The problem is that
sparse data in outdoor environments and dynamic entities
make correspondence finding difficult. One more important
disadvantage of the direct scan matching methods is that they
do not consider dynamics of the vehicle. Indeed we have
implemented several ICP variants [13] and found out that
scan matching results are unsatisfactory and often lead to
unexpected trajectories of vehicle. This is because matching
only two consecutive scans may be very hard, ambiguous or
weakly constrained, especially in dynamic outdoor environ-
ment and when the vehicle moves at high speeds.

An alternative approach that can overcome these limi-
tations consists in setting up the matching problem as a
maximum likelihood problem [14], [7]. In this approach,
given an underlying vehicle dynamics constraint, the current
scan’s position is corrected by comparing with the local grid
map constructed from all observations in the past instead of
only with one previous scan. Mathematically, we calculate a



Fig. 3. An example of scan matching. From left to right: reference image; local map created so far Mt−1 and previous vehicle pose xt−1; laser
measurement at time t; and matching result is obtained by trading off the consistency of the measurement with the map and the previous vehicle pose.

sequence of poses x̂1, x̂2, ... and sequentially updated maps
M1,M2, ... by maximizing the marginal likelihood of the
t-th pose and map relative to the (t− 1)-th pose and map:

x̂t = argmax
xt

{P (zt |xt,M
t−1) . P (xt | x̂t−1, ut)} (2)

In the equation (2), the term P (zt |xt,M
t−1) is the

measurement model which is the probability of the most
recent measurement zt given the pose xt and the map M t−1

constructed so far from observations z1:t−1 at corresponding
poses x̂1:t−1 that were already estimated in the past. The
term P (xt | x̂t−1, ut) represents motion model which is the
probability that the vehicle is at location xt given that the
vehicle was previously at position x̂t−1 and executed an
action ut. The resulting pose x̂t is then used to generate
a new map M t according to (1):

M t = M t−1 ∪ {x̂t, zt} (3)

Now the question is how to solve the equation (2), but
let us first describe the motion model and the measurement
model used.

For the motion model, we adopt the probabilistic velocity
motion model similar to that of [15]. The vehicle motion ut

is comprised of two components, the translational velocity vt

and the yaw rate ωt. Fig. 4 depicts the probability of being
at location xt given previous location xt−1 and control ut.
This distribution is obtained from the kinematic equations,
assuming that vehicle motion is noisy along its rotational and
translational components.

Fig. 4. The probabilistic velocity motion model P (xt | xt−1, ut) of the
vehicle (left) and its sampling version (right).

For the measurement model P (zt |xt,M
t−1), mixture

beam-based model is widely used in the literature [6], [7].
However, the model come at the expense of high computation
since it requires ray casting operation for each beam. This
can be a limitation for real time application if we want to
estimate a large amount of measurements at the same time.
To avoid ray casting, we propose an alternative model that
only considers end-points of the beams. Because it is likely
that a beam hits an obstacle at its end-point, we focus only
on occupied cells in the grid map. A voting scheme is used to
compute the probability of a scan measurement zt given the
vehicle pose xt and the map M t−1 constructed so far. First,
from the vehicle location xt, individual measurement zk

t is
projected into the coordinate space of the map. Call hitkt
the grid cells corresponding to the projected end-points. If
this cell is occupied, a sum proportional to the occupancy
value of the cell will be voted. Then the final voted score
represents the likelihood of the measurement. Let P (M t

i )
denote the posterior probability of occupancy of the grid
cell Mi estimated at time t (following (1)), we can write the
measurement model under the sum following:

P (zt |xt,M
t−1) ∝

K∑
k=1

{P (M t−1
hitk

t
) such

that M t−1
hitk

t
is occupied }

(4)
The proposed method is just an approximation to the mea-
surement model because it does not take into account vis-
ibility constraints, but experimental evidences show that it
works well in practice. Furthermore, with a complexity of
O(K), the computation can be done rapidly.

It remains to describe how we maximize (2) to find the
correct pose x̂t. Hill climbing strategy in [14], [7] can be
used but may suffer from a local maximum. Exploiting the
fact that the measurement model can be computed very
quickly, we perform an extensive search over vehicle pose
space. A sampling version of the motion model (Fig. 4 right)
is used to generate all possible poses xt given the previous
pose xt−1 and the control ut. The resulting pose will be
the pose at which the measurement probability achieves a
maximum value. Because of the inherent discretization of
the grid, the sampling approach turns out to work very
well. In practice, with a grid map resolution of 20 cm, it



Fig. 5. Moving object detection example. See text for more details.

is enough to generate about four or five hundreds of pose
samples to obtain a good estimate of the vehicle pose with
the measurement likelihood that is nearly unimproved even
with more samples. The total computational time needed for
such a single scan matching is about 10 ms on a conventional
PC. An example of scan matching result is shown in Fig. 3.
The most likely vehicle pose is obtained when the laser scan
is aligned with the occupied parts of the map and at the same
time the vehicle dynamics constraint is satisfied.

Besides the computational effectiveness, one attraction of
our algorithm is that it is not affected by dynamic entities in
the environment (see Fig. 2 right). Since we only consider
occupied cells, spurious regions in the occupancy grid map
that might belong to dynamic objects do not contribute to
the sum (4). The voting scheme ensures that measurement
likelihood reach a maximum only when the measurement
is aligned with the static parts of the environment. To
some meaning, measurements from dynamic entities can
be considered as outliers. This property is very useful for
moving object detection process that will be described in
the next section.

D. Local mapping

Because we do not need to build a global map nor
deal with loop closing problem, only one online map is
maintained at each point in time representing the local
environment surrounding of the vehicle. The size of the local
map is chosen so that it should not contain loops and the
resolution is maintained at a reasonable level. Every time
the vehicle arrives near the map boundary, a new grid map is
initialized. The pose of the new map is computed according
to the vehicle global pose and cells inside the intersection
area are copied from the old map.

III. OBJECT DETECTION AND TRACKING

After a consistent local map of the vehicle is constructed
from SLAM, moving objects can be detected when new
measurements arrive. The principal idea is based on the
inconsistencies between observed free space and occupied
space in the local grid map. If an object is detected on a
location previously seen as free space, then it is a moving
object. If an object is observed on a location previously

occupied then it probably is static. If an object appears in a
previously not observed location, then we can say nothing
about that object.

Another important clue which can help to decide a object
is dynamic or not is evidence about moving objects detected
in the past. For example, if there are many moving objects
passing through an area then any object that appears in that
area should be recognized as a potential moving object. For
this reason, apart from the local static map M as constructed
by SLAM described in the previous section, a local dynamic
grid map D is created to store information about previously
detected moving objects. The pose, size and resolution of
the dynamic map is the same as those of the static map.
Each dynamic grid cell store a value indicating the number
of observations that a moving object has been observed at
that cell location.

From these remarks, our moving object detection process
is carried out in two steps as follows. The first step is to
detect measurements that might belong to dynamic objects.
Here for simplicity, we will temporarily omit the time index.
Given a new laser scan z, the corrected vehicle location
and the local static map M computed by SLAM and the
dynamic map D containing information about previously
detected moving objects, state of a single measurement zk

is classified into one of three types following:

state(zk) =

 static : Mhitk = occupied
dynamic : Mhitk = free or Dhitk > α
undecided : Mhitk = unknown

where hitk is the coordinate of the grid cell corresponding to
the end-point of the beam zk and α is a predefined threshold.

The second step is after dynamic measurements are de-
termined, moving objects are then identified by clustering
end-points of these beams into separate groups, each group
represents a single object. Two points are considered as
belonging to the same object if the distance between them
is less than 0.3 m.

Fig. 5 illustrates the described steps in detecting moving
objects. The leftmost image depicts the situation where the
vehicle is moving along a street seeing a car moving ahead
and a motorbike moving in the opposite direction. The
middle image shows the local static map and the vehicle



Fig. 6. Occupancy grid maps built with and without filtering out detected
moving objects.

location computed by SLAM and the current laser scan is
drawn in red. Measurements which fall into free region in the
static map are detected as dynamic and are displayed in the
rightmost image. After the clustering step, two moving ob-
jects in green boxes are identified and correctly corresponds
to the car and the motorbike.

Note that our map updating procedure makes use of results
from moving object detection step. Measurements detected
as dynamic are not used to update the map in SLAM.
For unknown measurements, a priori we will suppose that
they are static until latter evidences come. This will help to
eliminate spurious objects and result in a better map. Fig. 6
shows two occupancy grid maps constructed from the same
laser data in Fig. 2 with and without filtering out dynamic
measurements. We can see that the left one built without the
filtering step results in many fuzzy regions.

Once we are able to detect moving objects we need to
track them in order to estimate their states and predict their
behaviors in the future. Tracking multiple moving objects is
a classical problem. In the general case this problem is very
hard, however it has been shown experimentally that simple
methods are good enough to cope with urban scenarios [16].
In our current work, a simple object tracking scheme as
described in [1] using Global Nearest Neighborhood (GNN)
and Kalman filter is employed to track detected objects.
A replacement using MHT [4] and Adaptive IMM [3] is
ongoing.

IV. EXPERIMENTAL RESULTS

Our proposed approach for SLAM and DATMO is tested
on datasets collected with the DaimlerChrysler demonstrator
car using only laser sensor and odometry. The maximum
measurement range of laser sensor is 70 m with a horizontal
field of view of 160◦ and a resolution of 1◦. The vehicle
was driven through different kinds of scenarios such as city
streets, country roads and highways with a maximum speed
of 120 kph and the data is collected every 40 ms.

In our implementation, the width and height of local grid
map are set to 160 m and 200 m respectively, and the grid
resolution is set to 20 cm. Every time the vehicle arrives at
40 m from the grid border, a new grid map is created. The
local SLAM and DATMO is run for every new laser scan.

The results of local SLAM and DATMO are shown in Fig.
7. The images in the first row represent online maps and
objects moving in the vicinity of the vehicle are all detected
and tracked. The current vehicle location is represented by
blue box along with its trajectories after corrected from the
odometry. The red points are current laser measurements that
are identified as belonging to dynamic objects. The green
boxes indicate detected moving objects with corresponding
tracks shown in dark-yellow. The second row are images for
visual references to corresponding situations.

In Fig. 7, the leftmost column depicts a highway scenario
where the demonstrator car is moving at a very high speed of
about 120 kph while two cars moving in the same direction
in front of it are detected and tracked. In the middle is the
situation where the demonstrator is moving at 80 kph on
a country road. A car moving ahead and two other cars in
the opposite direction are all recognized. Note that the two
cars on the left lane are only observed during a very short
period of time but both are detected and tracked successfully.
In the third situation, the demonstrator moving quite slowly
at 25 kph in a crowded city street. Our system detects and
tracks both the pedestrian moving in front of the vehicle and
the car moving far ahead. Temporary stationary objects like
another standing pedestrian and several other cars parked
nearby are considered as static objects. In all three cases,
precise trajectories of the demonstrator are achieved and
local maps around the vehicle are constructed consistently.
In our implementation, the computational time required to
perform both SLAM and DATMO for each scan is about
20−30 ms on a 1.86GHz, 1Gb RAM laptop running Linux.
This confirms that our algorithm is absolutely able to run
synchronously with data cycle in real time.

V. CONCLUSIONS AND FUTURE WORKS

We have presented an approach to accomplish online
mapping and moving object tracking simultaneously. Exper-
imental results have shown that our system can successfully
perform a real time mapping with moving object detection
and tracking from a vehicle moving at high speeds in
different dynamic outdoor scenarios. This is done based on a
fast scan matching algorithm that allows estimating precise
vehicle locations and building a consistent map surrounding
of the vehicle. After a consistent local vehicle map is build,
moving objects are detected and tracked reliably.

Future works include integrating information from radar
and exploring how radar can help to improve the moving
object detection and tracking process. We also intend to
incorporate object models and road models that give a more
meaningful representation of detected objects with specific
shapes and sizes instead of only sets of contour points as in
our current work.



Fig. 7. Experimental results show that our algorithm can successfully perform both SLAM and DATMO in real time for different environments.
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