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Abstract—We describe a general architecture of vehicle per-
ception system developed in the framework of the European
project PReVENT-ProFusion 1. Our system consists of two main
parts: the first part where the vehicle environment is mapped
and moving objects are detected; and the second part where
previously detected moving objects are verified and tracked. In
this paper, we focus on the first part, using occupancy grid to
model the vehicle environment, perform sensor data fusion and
detect moving objects. Experimental results on a Volvo Truck
equipped with laser scanner and radars show the effectiveness of
our approach.

Index Terms—vehicle perception, sensor data fusion, sensor
model, laser scanner, radar, occupancy grid.

I. INTRODUCTION
Perceiving or understanding the environment surrounding a

vehicle is a very important step in driving assistance systems
or autonomous vehicles [18][17]. In the previous work [2],
we designed and developed a generic architecture of vehicle
perception. The architecture (Fig. 1) is divided into two main
parts: the first part where the vehicle environment is mapped
and moving objects are detected; and the second part where
previously detected moving objects are verified and tracked.

In the first part of the architecture, to model the environment
surrounding the vehicle, we use the Occupancy Grid frame-
work developed by Elfes [7]. Compared with feature-based
approaches [10], grid maps can represent any environment and
are specially suitable for noisy sensors in outdoor environments
where features are hard to define and extract. Grid-based
approaches also provide an interesting mechanism to integrate
different kinds of sensors in the same framework taking the
inherent uncertainty of each sensor reading into account. On
the contrary of a feature based environment model, the only
requirement for an OG building is a bayesian sensor model
for each cell of the grid and each sensor. This sensor model
is the description of the probabilistic relation that links sensor
measurement to space state, that OG necessitates to make the
sensor integration. Fortunately it is possible for a wide class of
sensors to factorise this amount of data by taking advantage of
the characteristics of the sensor. Regarding telemetric sensors,
sensor model for sonar [19] and laser range finders [15] have
been defined and used to map the environment. 3D occupancy
grids have been built using stereo vision[12] and a set of
camera [8].

1www.prevent-ip.org/profusion

Fig. 1. Architecture of the perception system

In the second part, detected moving objects in the vehicle
environment are tracked. Since some objects may be occluded
or some are false alarms, multi object tracking helps to identify
occluded objects, recognize false alarms and reduce miss-
detections. In general, the multi objects tracking problem
is complex: it includes the definition of filtering methods,
but also association methods and maintenance of the list of
objects currently present in the environment [3][16]. Regarding
tracking techniques, Kalman filters [9] or particle filters [1]
are generally used. These filters require the definition of a
specific dynamic model of tracked objects. However, defining
a suitable motion model is a real difficulty. To deal with
this problem, Interacting Multiple Models [11][14] have been
successfully applied in several applications. In the previous
work [6], we have developed a fast method to adapt on-
line IMM according to trajectories of detected objects and
so we obtain a suitable and robust tracker. To deal with the
association and maintenance problem, we extend our approach
to multiple objects tracking using the Multiple Hypothesis
Tracker [4][5].



This architecture has been used in past projects [2], and
is currently used in the framework of the European project
PReVENT-ProFusion. The goal of this project is to design
and develop a general architecture to perform perception tasks
(ie, mapping of the environment, localization of the vehicle
in the map, and detection and tracking of moving objects). In
this context, our architecture has been integrated and tested on
two demonstrators: a Daimler-Mercedes demonstrator and a
Volvo Truck demonstrator. The main difference between these
2 demonstrators is the level of abstraction of data provided by
the different sensors on each demonstrator: raw data for the
Daimler-Mercedes demonstrator (ie, low level of abstraction)
and preprocessed data for the Volvo Truck demonstrator (ie,
high level of abstraction). To deal with the difference, we
design and implement specific procedure of the first part
of the architecture: specific sensor models and also specific
techniques to detect moving objects using the occupancy grid.
Moving object tracking in the second part of the architecture
remains the same for both demonstrators.

In [17], a detail description of the first part for the Daimler-
Mercedes demonstrator is reported: building specific sensor
models and designing specific techniques for detecting moving
objects. Moreover, results and comparison with other percep-
tion system for Pre-Crash applications is described in [13]. In
this paper, we describe the specificities of our architecture for
the Volvo Truck demonstrator: designing and implementing
sensor models for preprocessed data and specific techniques
for detection of moving objects.

The rest of the paper is organized as follows. In the
next section, we present the Volvo Truck demonstrator. A
brief overview of Environment Mapping with Occupancy Grid
(including Sensor Data Fusion) is given in section III. Specific
sensor models for the Volvo Truck are described in Section IV.
Detection of moving objects using occupancy grid previously
built is detailed in section V. Experimental results are given in
Section VI and finally in Section VII conclusions and future
works are discussed.

II. THE VOLVO TRUCK DEMONSTRATOR

The test vehicle platform is based on a Volvo FH12 420
Globetrotter truck. The main components of the perception
system are:

• An IBEO laser scanner, mounted in the front left corner
of the truck. This sensor has a field of view of 210 ˚ and
a range of 80 meters;

• A lane camera and vision system;
• A long range radar (LRR) system. This sensor has a field

of view of 12 ˚ and a range of 200 meters;
• A short-range radar (SRR) system;
• An automotive PC hosting the data fusion platform.

In this paper, we only use the laser scanner and the LRR as
inputs of the perception system. Moreover, data of each sensor
are processed, and each sensor delivers a list of moving objects
present in the environment. The perception system provides the
decision system with the objects detected ahead of the own

Fig. 2. The Volvo Truck demonstrator.

vehicle. With help of the lane camera an improved object-to-
lane assignment is investigated. Based on the fusion system
a decision is made if the collision is likely or unavoidable.
If a collision is detected to be likely, the driver is warned,
if an impact has become unavoidable, the vehicle is braked
automatically to mitigate the consequences of the collision.

III. OCCUPANCY GRID

Since the two kind of sensors (laser scanner and LRR)
provide pre-filtered data at object level as lists of target points,
so to perform mapping and sensor data fusion, we have to
design and implement a sensor model for these two kind of
sensors.

Before describing our approach in detail, we introduce some
notations used in the paper. We denote the observation from
vehicle at time t by the variable z = {z1, ...,zK} including
K individual measurements corresponding to K observations
from one or several sensors.

In this representation, the vehicle environment is divided
into a two-dimensional lattice M of rectangular cells and
each cell is associated with a measure taking a real value in
[0,1] indicating the probability that the cell is occupied by an
obstacle. A high value of occupancy grid indicates the cell is
occupied and a low value means the cell is free. Assuming that
occupancy states of individual grid cells are independent, the
objective of a mapping algorithm is to estimate the posterior
probability of occupancy P(m |z1:K) for each cell m of the grid,
given observations z1:K = {z1, ...,zK}.

Using Bayes theorem, this probability is determined by:

P(m |z1:K) =
P(z1:K |m) · P(m)

P(z1:K)
(1)

If we assume that each measurement zi is independent from
the other given we know m, P(z1:K |m) = ∏

K
k=1 P(zk |m). Then

equation (1) becomes:

P(m |z1:K) =
P(m)

P(z1:K) ·
K

∏
k=1

P(zk |m) (2)

Applying again Bayes theorem to P(zk |m), we obtain:



P(m |z1:K) =
P(m)

P(z1:K)
·

K

∏
k=1

P(m |zk) · P(zk)
P(m)

(3)

Equation (3) gives the probability for an occupied cell. By
analogy, equation (4) gives the probability for a free cell:

P(m |z1:K) =
P(m)

P(z1:K)
·

K

∏
k=1

P(m |zk) · P(zk)
P(m)

(4)

By dividing equation (3) by (4), we obtain:

P(m |z1:K)
P(m |z1:K)

=
P(m)
P(m)

· P(m)K

P(m)K ·
K

∏
k=1

P(m |zk)
P(m |zk)

(5)

If we define Odds(x) = P(x)
P(x) = P(x)

1−P(x) , equation (5) turns into:

Odds(m |z1:K) = Odds(m) ·Odds(m)−K ·
K

∏
k=1

Odds(m |zk) (6)

The corresponding log Odds representation of equation (6) is:

logOdds(m |z1:K)

= logOdds(m) − K · logOdds(m)+
K

∑
k=1

logOdds(m |zk) (7)

In (7), what we need to know are two probability densities,
P(m |zk) and P(m). P(m) is the prior occupancy probability of
the map cell which is set to 0.5 representing an unknown state,
that makes this component disappear. So, the final equation is:

logOdds(m |z1:K) =
K

∑
k=1

logOdds(m |zk) (8)

From the log Odds representation, the desired probability of
occupancy P(m |z1:K) can be easily recovered.

The remaining probability P(m |zk), is called the inverse
sensor model. It specifies the probability that a grid cell m
is occupied based on a sensor measurement zk. So, for each
sensor, we have to define this model.

Regarding (8), to perform fusion between observations
given by different sensors:

1) We firstly design an inverse sensor model for each
sensor;

2) We use this model to build an occupancy grid for each
sensor;

3) Finally, since probabilities in occupancy grids are repre-
sented with log Odds representation and since cells in a
given occupancy grid are mutually independent, fusion
of different occupancy grids is made by adding log Odds
representation for a given cell in each occupancy grid (8).
The resulting grid of this sum represents the sensors’
fusion.

IV. BUILDING THE TWO INVERSE SENSOR
MODELS

The inputs of the environment modeling procedure are
outputs of laser scanner and LRR. Both sensors provide infor-
mation in polar coordinates, with the following characteristics:
the laser scanner sends a list of impacts points for each detected
moving object while the LRR provides for each moving object
its position in polar coordinates. Assuming that occupancy
states of individual grid cells are independent, the objective
is to estimate the posterior probability of occupancy P(m|zk)
for each cell of the grid, given the observation zk. To compute
this probability, we need to design an inverse sensor model for
each sensor. In the two next subsections, we describe how we
design these models.

A. Laser scanner inverse sensor model

Fig. 3. Laser Scanner Data

The laser scanner provides a list of detected moving objects,
this list contains for each object a list of hit points; with these
hit points, we build a bounding box representing occupied
space by each object. Figure 3 shows two moving objects by
means of the bounding boxes, and also the field of view of the
laser scanner.

Fig. 4. Profile of an inverse sensor model illustrates the occupancy probability
along a laser beam measuring a distance of d.

For each hit of the laser zi, we firstly consider a 1D model
(figure 4) to estimate the posterior probability of occupancy
P(m|zi) for each cell m. Figure 4 shows the profile of this
1D inverse sensor model. This model corresponds to our
knowledge about a point of impact at distance d along a laser
beam:

1) before the point of impact there is high probability that
there is any object. So cells before the point of impact
have low probability to be occupied;



2) close to the point of impact there is high probability that
there is an object. So cells located close to the point of
impact have high probability to be occupied;

3) after the point of impact, we have any information about
the presence of an object. So cells located after the point
of impact have the same probability to be occupied than
to be empty.

To build this 1D model of a laser beam, we have to find the
3 numerical values corresponding to our knowledge of a laser
beam and a point of impact at distance d. This can be done by
several ways like: by means of learning from examples or from
characteristics provided by the manufacturer or by means of
values given by hand from the experience with the use of that
sensor. On the basis of collected data, we saw that the laser
scanner is precise in relation to the position of the moving
object reason for which, the following probabilities for the
inverse model are considered: {0.2;0.8;0.5} where:

0.2 represents the probability that a cell before the point of
impact is occupied, we can say that the cell has a high
probability of being empty,

0.8 represents the probability that cells to the impact are
occupied;

0.5 represents our ignorance on the present state of the cell,
that is the case for the cells behind the point of impact,

To go from 1D model to 2D occupancy grid, the cells of
the 2D occupancy grid are initialized with a value of 0.5
(no information about the presence of an object) while the
cells within the field of view of the laser are initialized with
0.2. Since the laser sensor provides pre-treated data where,
by each moving object it provides a list of impacts from
which a bounding box is constructed, to bind those data to the
occupancy grid, all the cells corresponding to the bounding
box are considered cells of impact, meaning that those cells
have occupied probability of 0.8, while the cells behind the
bounding box have a 0.5 probability which represents our
ignorance on its state of occupation.

B. LRR inverse sensor model

The LRR sensor provides a list of moving objects, where
for each object, it provides its position in polar coordinates as
well as its Doppler speed; the figure 5 shows an example of
this data where there are three moving objects and the field of
view of the radar.

In the case of the LRR, we consider a 2D model where
data consist of an angle θ and a distance r for each hit
point in the sensor’s field of view. Moreover, we consider that
angle θ and distance r are mutually independent according to
the knowledge of the cell m. The equation (1) to obtain the
probability of cell m to be occupied becomes:

P(m|θ k,rk) =

P(m) ·P(θ k|m) ·P(rk|m)
P(m)P(θ k|m)P(rk|m)+P(m )P(θ k|m )P(rk|m )

(9)

Fig. 5. Long Range Radar Data

The four conditional distributions P(θ k|m), P(rk|m),
P(θ k|m ) and P(rk|m ) must be specified and they represent the
definition of the LRR sensor model which can be defined of
similar form to the laser scanner sensor model, nevertheless the
LRR has less precision than the laser scanner reason for which
we considered it like a gaussian sensor in 2D. Additionally, we
considered that θ and r are mutually independent on the basis
of that cell m is known. With these considerations; the LRR
sensor model can be represented by:

P(θ k|m) =
1√

2πσθ

e−
1
2 ( θt−µθ

σθ
)2

P(rk|m) =
1√

2πσr
e−

1
2 ( rt−µr

σr )2
(10)

Fig. 6. Profile of an inverse sensor model 2D.

The two-dimensional occupancy grid profile shown in the
figure 6 corresponds to a single long range radar measurement
with the radar sensor being modelled as having gaussian
uncertainty in both range and angle.



To build the 2D occupancy grid of the LRR:
1) cells are initialized with a 0.5 probability, which indi-

cates the ignorance on their state of occupation;
2) in order to calculate the occupied probability of the

cells around the impact, the inverse model of the sensor
(Eq (9), (10) ), is used with σθ = 0.013 and σr = 1.5. We
take into accounts the cells around the point of impact.
If they are within θ ±2σθ and r±2σr.

3) the cells behind the zone of impact have occupied prob-
ability of 0.5 because their occupancy state is unknown.

V. DETECTION OF MOVING OBJECTS

Once an occupancy grid is obtained, we want to extract
the moving objects which are likely located in regions with
high occupation probability. Object-regions may have arbi-
trary shapes and are generally discriminant from background.
From these characteristics, we apply a threshold segmentation
method.

Fig. 7. detection of objects approximated with ellipses

First, an adaptive threshold is computed based on a dis-
crete histogram of cell occupation probability values and the
threshold is chosen as the mean value of the histogram.
We use this threshold to transform the grid into a binary
image where positive pixels represent occupied areas. In the
next step a two pass segmentation algorithm is applied to
extract all 4-connected groups of cells. Each connected group
corresponding to a possible object is finally approximated by
an ellipse represented by mean value and covariance matrix of
the corresponding region (see Figure 7).

VI. EXPERIMENTAL RESULTS

The algorithm proposed for the sensors’ fusion is tested
on database collected with the Volvo truck demonstrator, the
vehicle was driven through different kinds of scenarios such
country roads and highways. In this implementation, the width
and height of occupancy grid are set to 80 m and 270 m respec-
tively, and the cell size is set to 50 cm. White color corresponds
to low probability of occupancy and black color corresponds
to high probability of occupancy. Intermediate level of gray
color corresponds to intermediate probability of occupancy.
The figure 8 shows some results of the fusion process. Outside
of the field of view, the cells have a probability of occupation
of 0.5 corresponding to apriori of the occupancy state of the

cell, within the field of view, if an object exists, the cells
contain a high probability of occupation, then the color is more
dark to these cells, the cells behind a occupied cell have a 0.5
probability indicating the incapacity of the sensor to detect
objects in that zone because they are hidden. In the empty
zone of the field of view, the cells have a low probability
of occupation, indicating this with a gray clearly color. The
figure 8 shows four images; from left to right we show:

1) data provided by the two sensors and the field of view of
each one of them. The red points represent the LRR data
while the blue rectangles correspond to the bounding box
created from the data provided by the laser scanner.

2) the second image represents the occupancy grid corre-
sponding to the laser scanner, The two black rectan-
gles represent detected objects, the cells behind these
rectangles have a gray color indicating that its state of
occupation is unknown. Outside the field of view, the
cells are also gray and remaining cells within the vision
field are almost white indicating their high probability
of being empty;

3) the third image is similar to the second one, representing
the occupancy grid for the LRR, the set of cells corre-
sponding to an occupied area have different probabilities,
this depends to the inverse sensor model, this fact is
shown with diverse levels of gray for the set of cells that
represent an object. In this image there are three objects
the central part of the zone of occupation is black, since
these cells have major occupation probability.

4) the last image corresponds to the fusion between the
laser scanner and the LRR, the white zone corresponds to
the fusion between the free zones of both fields of view
of the sensors. The only object detected by both sensors
has a high probability of occupancy and the area behind
this object corresponds to occluded area. Other objects
(only detected by one sensor) have lower probabilities
of occupancy than the object detected by both sensors.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we detail the first part of sensor fusion and
moving object detection in our generic architecture for vehicle
perception and its implementation on a Volvo Truck Demon-
strator. We used occupancy grid framework for environment
mapping and perform sensor data fusion. We described sensor
models delivering preprocessed data and demonstrated our
approach on real-life data. In the second part, the detected
objects (outputs of the first part) are tracked using Interacting
Multiple Models and Multiple Hypothesis Tracker.
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