Hybrid Tracking using Dempster-Shafer Data Fusion in Real-Time Augmented Reality Applications for Man-Made Environments

Betül AYDIN
Advisor: Prof. Bruno TELLEZ

LIRIS (Laboratoire d’InfoRmatique en Image et Systèmes d’information)
UMR 5205 CNRS/Université Claude Bernard Lyon 1
43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex - France
betul.aydin@insa-lyon.fr, bruno.tellez@liris.cnrs.fr

Abstract. In this report, we present a real-time hybrid tracking system for augmented reality applications in urban environments. In our framework, the augmented model aligns itself on the building planar surfaces by using several vision based tracking information, such as corner points, vanishing points and homography between images. In addition to the vision based alignment, the method uses the inner sensor data of the mobile phone as a feedback. We estimate the search space of the feature locations for the next frames using the history of previous states with the help of gyroscope and accelerometer data and as well as the vision tracking information. We combine these data by using a probabilistic approach defined by Dempster-Shafer. The different stages of the approach are demonstrated on various examples of building images.

Keywords: augmented reality, architectural environment, man-made structures, vanishing point detection, homography between images, dempster-shafer data fusion

Résumé. Dans ce rapport, nous proposons un système de suivi hybride en temps réel pour des applications de réalité augmentée dans les environnements urbains. Dans ce cadre, le modèle de réalité augmenté s'aligne sur les surfaces planaires de bâtiment en s'appuyant sur le suivi d'information basées sur la vision, tels que les coins d’angle, les points de fuite et l’homographie entre les images. En plus de l'alignement basé sur la vision, la méthode utilise les données des capteurs internes du téléphone mobile pour améliorer la qualité de l'alignement. Nous estimons l'espace de point d'intérêts dans les images suivantes en établissant l'historique des états précédents grâce aux données du gyroscope et de l’accéléromètre ainsi que les informations issu du suivi visuel de ce point dans la théorie de Dempster-Shafer. Les différentes étapes de notre approche seront détaillées sur divers exemples d’images urbains.

Mots clé: réalité augmentée, l'environnement architectural, structures artificielles les points de fuite, homographie entre les images, Dempster-Shafer fusion de données
1 Introduction .. 2
2 State of Art .. 3
 2.1 Knowledge of position and orientation of the camera ... 3
 2.2 Tracking features/objects/surfaces in the image ... 5
 2.3 Defining 3D camera motion based on the tracked features 7
 2.4 Vanishing Point Detection ... 9
 2.5 Data Fusion by Using Dempster-Shafer Theory .. 10
3 Description of the work ... 12
 3.1 Vanishing Point Detection .. 13
 3.2 Corner Detection and Tracking ... 20
 3.3 Homography between images ... 21
 3.3.1 Computation of H^{t+1} .. 23
 3.4 Inner sensors contribution .. 24
 3.5 Overall Scenario .. 26
 3.5.1 Algorithm Summary ... 26
 3.5.2 Contributions to the scenario: ... 27
 3.6 Data fusion with Dempster-Shafer Theory .. 27
4 Conclusion .. 29
References ... 30

1 Introduction

The aim of this report is to review the state of art of the augmented reality applications related with images/videos taken by mobile phones in urban areas by referring to their current capabilities and limitations. The report is based on review of the current literature, the description of the project that built on this review and the detailed explanation of the proposed solution. The project itself consists of the contributions of different methods frequently used in augmented reality applications such as finding homographies between images or tracking feature points in videos.

With the increasing demand and supply of mobile phones, several mobile application scenarios have arisen. Today, high resolution built-in cameras, inner sensors and Global Positioning System (GPS) are indispensable within mobile phones.
Our work focuses on the real-time analysis of architectural environments in mobile applications. Urban areas can be characterized by many parallel lines and orthogonal edges. For building recognition and detection, this information has been the key-point for researchers while they were treating urban data.

2 State of Art

The advances in computer vision and mobile computing have let the augmented reality systems to emerge from indoor applications to outdoor applications [1]. The purpose of an outdoor augmented reality application is to allow the user to freely interact with the surrounding environment in real-time with digital cameras or mobile phones which could possibly have accelerometers, GPS, gyroscopes or wireless sensors. The application areas of augmented reality may vary from tourism, entertainment, leisure, architecture, construction industry, navigation, education etc… However, the position and orientation of the camera are challenging and essential information to gather for the augmented reality applications. As well as being not so accurate, current GPS technology is the prior knowledge to estimate the position of the user. The second challenge is to track the camera position with the help of the reference points from the scene (vision-based tracking), as well as maybe with the help of GPS, digital compass and accelerometers. There are many geometric approaches to define 3D camera motion based on mathematical constraints, which calculate the fundamental matrix by using multiple images, in order to define the motion between two frames of the same static scene [2]. There are also several ways to define the reference points in the scene. Here, we will go over those aspects and explain why every approach cannot be suitable for real-time mobile applications.

Tracking methods have broad application areas and it is one of the prior knowledge in augmented reality to be able to locate the models in the images or videos. We will examine the current state of art in five titles. First, we will explain how the camera location and orientation can be estimated without using the vision-based data. Secondly, we will give some examples to object tracking algorithms that are broadly used for the alignment of the virtual model into the scene. Next, we will look at the vision-based tracking methods that are used to model the camera motion in the scene, as well as the methods that integrate the sensor data with the vision-based tracking. Then, we will introduce a characteristic of urban environments that helps to understand the geometry of the scene. Finally, we will explain a probabilistic method to sum up those approaches in a way that the method will employ the most trustable data (vision-based or sensor-based) according to the current state of the application.

2.1 Knowledge of position and orientation of the camera

Visualizing virtual models in real world locations in real-time has enabled mobile augmented reality applications to broaden and become a promising area for research. By using user’s viewpoint, the virtual 3D objects (text, models, or images) appear as if they are in the real environment and take place at the intended world positions [4],
Defining exact viewpoint position and orientation cannot be thought separately from tracking technologies, since it highly depends on the qualities of the mobile device (GPS, different sensors, wireless infrastructure) [4]. With the user’s position and orientation in space-time, it is possible to place the models in geo coordinates. At this point, tracking feature points in the images have let more interaction with the physical environment, such as locating the model on the correct geo coordinates as well as with the correct altitude and orientation; we will return to these points later.

Visual tracking by sensors like gyroscopes, accelerometers and GPS modules is not very accurate. However they have been used widely for first estimation of the camera pose. B. Reitinger et al. propose combination of sensors for modeling urban sites [6]. They use on-line generation of 3D models with handheld ultra-mobile PCs. With GPS information, the resulting models can be available in geographic coordinate systems. The user then takes pictures of the buildings while exploring the environment and those images are enriched by current positioning data (taken from a GPS receiver) and then sent to the database for further processing. However, it is known that current GPS information has a precision of up to 20-50 meters depending on the area and weather conditions.

Another application, photo explorer, allows virtual tourism of the world’s interesting and important sites [7]. By using geo-location information, the photos can be registered on the map correctly. Unordered set of photos are registered by the user and the application is presented in an interactive 3D browser. This kind of photo tourism applications are in demand and it enables users to make tours in scenic or historic locations by viewing their locations on the map. In these kinds of applications, the location of the camera is generally obtained from GPS or manually specified by the user. Also, in some cases, like in their application there is no request for the GPS since after the user uploads the photo to the server, the photo is compared to an image database and location information is received from database. These kinds of applications are mainly available for the touristic, well-known sites which photos already exist in the database with the navigation information; so that newly taken photos can be compared and located on the map. However, if it is not applicable for the unknown scenes where GPS information is needed to locate the user, these estimated camera locations are related to the absolute locations through a global translation, rotation and uniform scale. To determine the correct transformation, the user asked to rotate, translate and scale the image until it is aligned. This kind of interaction is not applicable for the real-time video augmented reality applications. Also, another disadvantage is that, if there is a need of tracking in the video, the matching algorithms may slow down the application.

In a recent work [8], a multi-sensor fusion is proposed for the user’s 3D position estimation. As it is highlighted in the article, the precision and update rate of the current GPS technologies are not sufficient for high quality of tracking. Therefore, they develop a multi-sensor fusion to track the user’s position in outdoor environments. They employ Kalman filtering for fusion of Differential GPS and inertial measurement units with gyroscopes, magnetometers and accelerometers for improvements. In order to avoid distortion, they apply a visual orientation tracker which increases the robustness and accuracy of the pose estimates. Dense building
blocks in urban environments degrade GPS accuracy and the roof structures may lead to drop outs in position updates from GPS. In their work, they build a handheld outdoor AR platform and include a magnetic compass which provides a convenient absolute orientation with respect to earth’s magnetic field. Also, they employ gyroscopes to estimate the rotational velocity and linear accelerometers for the estimation of gravity or vision-based tracking. However, for mobile applications, since already implemented sensors are used, the applicability of the proposed methods is limited and depends on the features of the sensors of the mobile. Smartphones are rather delicate, miniature computers that have diverse functionalities; however they cannot be as efficient and fast as handheld outdoor AR platforms that are made up of the combinations of highly accurate sensors. Also, the visual tracking methods may greatly influence the performance of the application which is not explained in detail even if it is one of the methods used in their application.

As a mini-PC equipment implementation, [9] user puts an virtual 3D model in video of a scene. They use Google Earth KML files as well as GPS. Keyhole Markup Language (KML) is a file format to display geographic data in 2D maps or 3D Earth browsers. According to that, while the person uses the camera, the position of the user is detected by using GPS and then the object (ex: a 3D building) is located with a knowledge of its global position on the map. The building, since its 3D position is determined by the user before, stays on its position and while the user changes its position, the distance and the compass direction are calculated. The direction of the building is known since it is placed on the 3D global map. Then the relative position of the building to the user is calculated, and the virtual building is placed on the right distance and orientation. As it is pointed in this work, in video-based augmented reality applications, the alignment of 3D (or 2D) model with the video of the real scene is challenging. We have to know the camera position and orientation relative to the scene. In their proposition, the user places the 3D model to the scene and it is assumed that the user does not change his viewing location but just turns the camera. So that, the tracking is simplified and they analyze the horizontal and vertical pixel movements caused by the rotation of the camera. In this project, since they are placing huge objects to the far points in the scene, the accuracy of the altitude of the camera is not so important (they use 1.7m as default). However, in applications, where small models are placed into the scene, (a sticker on a building) the precise altitude information is important. Therefore, this method is not applicable for our project, since accuracy has priority. The key requirement for our project is a tracking system where the position and orientation are calculated in a way that it is enough to make the illusion for the placement of the virtual model in the scene. Also, for the purpose of our object, we are interested in making this illusion of locating the camera viewpoint in architectural environments.

2.2 Tracking features/objects/surfaces in the image

In augmented reality applications, the tracking of interested regions is the fundamental information to place the virtual model in the scene correctly since the region imposes a reference for the placement and the alignment of the virtual object.
Also, tracking might be useful in some applications to detect the camera position, orientation and motion that we will mention in the next section.

There are various augmented reality scenarios in which the camera is static and the tracked object/region is moving in the scene; or the scene is static and the observer is moving; or both are moving. Tracking feature points enables to estimate the pose of the scene so that the model will be integrated correctly into the scene. In some applications [10], [11], [12], where the scene is static and the camera is moving, they place the model by tracking the fiducials (artiﬁcial markers) in the scene, also they beneﬁt from these features to estimate the camera motion in the scene. With the fact that placing artiﬁcial markers is not available in unprepared outdoor environments, it is still possible to extract the camera motion from feature-based (markerless) tracking that we will mention in the following sections.

In object tracking, an object can be deﬁned as anything that is of interest for further analysis; such as points, primitive geometric shapes, object silhouettes and contours [22]. The choice of object representation depends on the application domain. In our project, we are working in outdoor environments where mostly geometric shapes (buildings) take place in the images. Therefore, the motion will be in the form of translation, rotation, affine or projective (homography) transformation.

One of the earliest markerless tracking in real-time tracking systems is RAPID (Real-time Attitude and Position Determination) described by Harris [18]. He proposed to track the easily observed object features such as corners and high-contrast edges of a known 3D object which is moving through the video. He describes the camera pose by six parameters: three for translation and three for rotation. These parameters are updated by observing a few selected control points along the edge. The difference of position between the observed features and the projection of its estimated pose enables to correct the pose estimation. However, even if this application needed pre-processing of the models, it initiated many tracking systems which based on this idea.

The most popular markerless tracking algorithms are SIFT (Scale-Invariant Feature Transform) [27] and SURF (Speeded Up Robust Features) [28]. First, they select the interest points such as corners, blobs or T-junctions, and then they represent the neighborhood of those points by a feature vector. Since these feature vectors are invariant to different transformations, they are matched between different images by using Euclidean distance. SURF descriptor is based on SIFT descriptor, but it proposes to reduce the computation time by using a fast Hessian matrix. Both of these descriptors are commonly used in object detection, 3D reconstruction and indoor tracking applications, due to their robust matching capabilities. However, as Bres and Telliez mentioned in their study [29], SIFT features extraction is computationally heavy and demands frame rate restrictions in video applications. Since, for touristic applications, the global position of the user is needed, and obtained by GPS for each frame individually; it causes a jitter in the alignment of the model, since GPS information and SIFT features extraction are not synchronized. Also, another disadvantage of SIFT/SURF descriptors is that they are heavy algorithms for mobile applications.
In a recent work, researchers are particularly focused on real-time apartment building detecting and tracking [14]. They use Haar-like features (boxes of different sizes and locations that used as the input to the basic classifier) to detect patterns representing apartments. They get rid of the false feature points like trees, traffic lights by thinking that these false points move relatively faster than true ones. These kinds of applications are for guidance information for the users that travel in the city with their cars. The camera is mounted on the car assuming that its position is upright. The vertical position of camera serves to use less Haar-like features. Also, here, Haar-like features is relevant because the user is far away from the building and the windows of the buildings occupy few numbers of pixels in the image. Real-time video is shot while the car is moving in the city. However, for the scenarios where the user is in the city and shooting a video with his mobile while walking, using Haar-like features might be computationally heavy because the building parts occupy large amount of pixels that won’t be the same during the video and Haar-like pattern detection might take too much time. Also, since the angle of the mobile camera cannot be predicted, all the Haar-like features should be used to detect all kinds of edge and line features which leads again to long computation times. Therefore, as a result, for real-time video augmented reality, we need reliable and faster solutions with a lighter algorithm.

2.3 Defining 3D camera motion based on the tracked features

The camera tracking technologies open up further application scenarios for augmented reality applications. With full awareness of the user’s movement in time and space, it will be possible to interact with the real world in augmented reality applications [3]. Accurate camera pose estimation is a prerequisite for a variety of applications including dynamic scene analysis and interpretation such as 3D scene construction and image stabilization [5].

Several tracking methods of estimating camera motion exist in the literature. However, most of them are designed for the known environments where, user has control over the scene by locating some markers (fiducials). For example, in indoor environments, a very well known method is to put a 2D image (generally square or circular [10], [11], [13]) to the 3D world frame and find the correspondences between 2D image and their 3D coordinates in the scene.

In a recent work [10], they propose circular fiducial (artificial marker) detection to compute 3D camera pose parameters. Also in [11], they use a tracking system that fuses a marker-based and feature point-based cues. Feature based tracking is a visual based tracking method when the environment is not controlled. For example, color, texture, corner, motion properties of the objects can be selected as features for tracking. In their work [11], the need of combination of two trackers is explained as, while marker-based trackers provide recovering of camera position and orientation; feature point tracking provides estimates when the visible features points are limited. As feature points, corners of the markers are used in general case.

In those two researches, 3D position and 3D orientation (6 Degrees of Freedom-DoF) estimates are obtained from low-level 2D features (with known size) and from
their 3D geometric relations. However, it is not possible to apply marker-based feature tracking (fiducials) in outdoor applications because there will not be always known size markers in the scene and it makes these methods almost impossible to apply it in the urban environments. Also, the feature point tracking has some deficiencies such as the feature points may be difficult to recognize after perspective distortions. However, there are also other approaches combining camera inner sensors (GPS, accelerometer, digital compass) and feature based tracking.

Outdoor tracking systems require powerful devices to detect the object locations and orientations in the scene. Therefore, it stands as a biggest obstacle in outdoor mobile augmented reality applications. Also, another challenge is the impossibility of the marker-based tracking in outdoor. In order to overcome these problems, researches are focused themselves on hybrid tracking methods. One of the earlier works of hybrid tracking contains combination of gyroscope (for the rotation measurements) and vision feature tracking [12]. They propose comparing the gyro and/or accelerometer motion estimation with the observed feature motions in the image. They integrate this approach in a closed-loop of 0D or 2D feature selection, tracking and verification. However, in these kinds of applications, it should not be forgotten that compass signals might be very noisy sometimes and are affected from man-made environments such as from high buildings. Using feature motions for verification might be computationally expensive since the results are refined until the estimation error converges.

Another recent work [6] that we have mentioned before uses GPS data for the prior estimation of the user and sends the images with this information to the data base and receives the 3D reconstructed model from the server. In this application, they use Harris corner points as feature points for comparison. They use five point correspondences [15], in which they take many random samples containing five point correspondences. Each sample has a number of hypotheses for their relative orientation according to other images. They score these hypotheses by using robust statistical measure (RANSAC). RANSAC (RANdom Sample And Consensus) is a method to estimate the parameters of a model from a set of data which contains outliers (distant observations from the rest of the data). As a result of RANSAC method, a robust initial estimation of the relative pose between two views has been done. With this knowledge, the orientations of all views are upgraded to a common coordinate system. Then, in order to generate the depth map, they sweep the 3D space with a plane, and when that plane is at a certain depth, the corresponding image points are mapped onto this plane with their color values for 3D reconstruction. However, in consequent video frames, the viewpoint does not change significantly; therefore, this application will be computationally heavy for video application to score all the five point correspondences. However it will be robust for the applications where the 3D reconstruction takes place.

In another interesting application [16], they use aerial photographs to align the 3D camera position. They use corners, edges and regions as features. By combining the aerial photograph and the viewpoint of the person, they try to specify the 3D position of the person. However, the user interaction takes up an important place in this application, such that the user specifies the corner, edge and region in the images.
This may not be possible to apply in real-time videos since in each frame the user might have changed his position.

A similar application is getting closer to our purpose [17], in which, they first find the matching line segments between aerial images. Since, the lines belong to images of scenes containing planar surfaces (roofs); there should be a geometric relation between corresponding lines. This geometry is called epipolar geometry. According to epipolar constraint, there should be a point to point correspondence between matching line segments with a fundamental matrix (Fig. 1).

Fig. 1. Image lines l and l’ determine a line L in 3D space which is contained in family of planes. This family of planes induces a family of homographies between the images.

They find the corresponding line in the second image by using that constraint since epipolar geometry reduces the search space of the line segment. Then, for each segment in the first image, they apply a correlation based algorithm for all the segments in the second image. The algorithm is based on taking the average of the individual correlation scores for all the pixels of the line and retain the highest score pairs as correct matching pairs. The epipolar geometry and matched lines restrict the possible homographies (projective transformations) between images. That means that the correspondence of lines determines the homographies which map the line from first image to the second one.

2.4 Vanishing Point Detection

Architectural environments consist of many parallel lines, however those lines do not project parallel to image plane but they appear to converge to a point. Vanishing point is a point that does not exist in real world but exist in image plane where those lines meet.

Vanishing point concept was first used in the paintings of Renaissance Italian painters. They tried to develop an artificial perspective in their architectural paintings by using vanishing points. In computer vision, vanishing points are used to get the camera geometry for calibration, depth of the scene, object dimensions, orientation of the geometric shapes in the scene or reconstruction of the scene.

The majority of the vanishing point extraction methods use the line segments in the image [23]. In order to detect the line segments, most of the algorithms use Hough transform and a Gauss sphere to find the intersections whose center either located on
the image space or to the optical center of the camera. These methods are generally achieved by two steps. First, they cluster the lines that possibly share the same vanishing point which is called *accumulator step*. Second, they try to identify the dominant cluster to determine vanishing points which is called *search step*. After finding a vanishing point, the line segments corresponding to that vanishing point are removed from the cluster. When there is no left dominant line cluster that exceeds a certain threshold, the algorithm stops its search.

In order to reduce the computational time, van den Heuvel [24] used the orthogonality information of the perpendicularity between three corresponding orientations in the object space. In this approach, after finding the first vanishing point, the search space for the second one is reduced. They achieve this by checking the orthogonality of the contributed lines for each vanishing points such that the directions of the vanishing points are orthogonal. However, as van den Heuvel mentioned in his paper [24] the real-time applications demand fast algorithms unlike applications for scene reconstruction. Orthogonality check is one of the steps for the exact estimation of the vanishing point, but also slowing down.

Rother [23] used that criteria of orthogonality and increased the computational power by taking the midpoint of the line segments and voting the longer line segments by giving them more weights. According to that, in the accumulator step, the vanishing points are voted by using the relative distance between line segments that contribute to that vanishing point, and by their lengths. Then, by using these votes, in the search step, they check the orthogonality of the direction of vanishing points by triangulating these three points and checking if each angle of this triangle is less than 90°; or in two finite vanishing points case, by checking if the third vanishing point direction is orthogonal to other two; or in one vanishing point case, if the direction of two infinite vanishing points are orthogonal. However, even this algorithm is faster than the previous one; it is not possible to apply it to real-time video applications because of its computation time.

Cantoni et al. [25] compared the two Gauss-sphere approaches which differ in parameter space and vote through the Hough transform (one operates in polar space (ρ,θ) and the other in image space (x,y)). Here, it has been concluded that image space approach is computationally lighter since it does not require solving a linear system and gives higher precision results.

Besides their different extraction methods, vanishing points give significant information about the orientation of a plane in the image [26]. For example, in the case of a vanishing point at a far distance from the image itself, it means that the lines are almost parallel and the viewpoint is at a perpendicular distance to that plane of interest. This information may help to align or verify the alignment of the virtual models correctly.

2.5 Data Fusion by Using Dempster-Shafer Theory

Data Fusion means combining the data coming from one or more sensors in a manner that it gives the best estimation [19]. In computer vision, it is used to merge the data coming from several sources in such a way that the knowledge of the
observed scene is improved. From the aspect of augmented reality applications, Data Fusion methods are used for the combination of inertial and vision tracking systems to satisfy the requirements of accuracy, robustness, low-jitter and ease of use [43].

Current data fusion ideas are focused on two approaches: Bayesian Theory and Dempster-Shafer Theory. These theories are currently applied in the applications of locating and tracking objects. In order to find the current location of the object, new pose estimation is done by using the old state of the object. Both the Bayesian and Dempster-Shafer approaches are based on assigning weights to the data which is used to estimate the current state. Different than classical Bayesian Theory, Dempster-Shafer Theory offers an alternative to traditional probabilistic theory using the uncertainty of the state, which allows finer modelization of belief over a set of hypothesis. As a matter of fact, a presentation of the differences of these two theories and detailed mathematical explanation of Dempster-Shafer Theory is far beyond the scope of this report. We will hereby explain Dempster-Shafer Theory and give examples for its application areas.

There are three important functions in Dempster-Shafer Theory: the probability mass function, the Belief function, and the Plausibility function [20]. Probability mass function represents the proposition of all relevant and available evidence that supports the claim by assigning a belief mass to that claim. Each mass is bounded by two values called belief and plausibility. Belief is the amount that supports a given hypothesis whereas plausibility is the amount that the hypothesis could possibly happen up to a value. The combination of two masses is calculated by using Dempster’s rule of combination.

According to Dempster-Shafer Theory, each sensor, S, for example, will contribute to the probability mass function by assigning its beliefs. Therefore, according to one of the sensor’s observation denoted by m_i, the probability of “A” to happen is $[\text{Belief}_i(A), \text{Plausibility}_i(A)]$.

Lower bound of the function is the sum of the evidences (E_k) that supports event “A”: $\text{Belief}_i(A) = \frac{\sum_{E_k \cap E_k' = A} m_i(E_k)}{1 - \sum_{E_k \cap E_k' = \emptyset} m_i(E_k)m_i(E_k')}$ and the upper bound is all the observations that does not rule out the given event “A” to happen: $\text{Plausibility}_i(A) = 1 - \sum_{E_k \cap E_k' = \emptyset} m_i(E_k)m_i(E_k')$

Then, each sensor S_i’s observation, which contributes to event “A” to happen, is combined by using Dempster-Shafer rule of combination:

$$\left(m_i \oplus m_j \right)(A) = \frac{\sum_{E_k \cap E_k' = A} m_i(E_k)m_j(E_k')}{1 - \sum_{E_k \cap E_k' = \emptyset} m_i(E_k)m_i(E_k')}$$ (1)

The contribution of Dempster-Shafer combination algorithm to classical Bayesian Theory is that it includes uncertainty which gives closer results to human perception.

Another contribution to Dempster-Shafer Theory is done by differentiating the contributions of sensors in the combination algorithm [21]. The “equal trusting” approach in the original algorithm is changed into a sensor fusion architecture in which sensors have different accuracies which allows taking into account ignorance estimation. The basic approach is that they use the historical performance of the sensor to estimate the correctness rate of the sensor (whether it can make accurate
estimations) to decide how much the sensor’s current estimation is trustable. Therefore, the original changes into following, where \(w_j \) is estimation correctness rate in the history:

\[
(m_t \oplus m_j)(A) = \frac{\sum_{E_k \cap E_j = A} [w_i m_i(E_k) \ast w_j m_j(E_k)]}{1 - \sum_{E_k \cap E_j = \emptyset} [w_i m_i(E_k) \ast w_j m_j(E_k)]}
\] (2)

This model seems much more reasonable in mobile augmented reality applications since it also takes into account the historical estimation of the sensor (and the relative ignorance estimation) to make the current estimation. This approach might be useful in tracking applications when there is unreliable sensor data, so that the current estimation might be made according to previous position estimation of the object.

In outdoor-urban-environments, accurate augmented reality applications may be used by using GPS, accelerometer, feature points and homography changes between video frames. By defining their data as sensor information (masses) in belief function, tracking might be more accurate by using the historical estimations when some of the sensor data is not available or trustable.

3 Description of the work

At the beginning of the work, our main purpose was to be able to treat real-time videos in a way that we can extract the plane information of the environment and also the relative position of the viewer to that plane for augmented reality applications. Plane information had a great importance since the application was due to be used in urban environments. The scenario was that, while the user takes a video with his smartphone, he puts some information on the buildings aligned with the planar surface of the building. The information is supposed to be located on an intended position like a specific window or a balcony and should keep its position on the planar surface during the real-time video. Then, accordingly, we described the topics that we should go through in depth.

Even if we were intending to work in unprepared outdoor environments, where it is not possible to put markers in the scene for tracking purposes, the characteristic of man-made environments can provide information about the scene. It is not a new idea to use GPS and the inertial sensors of the mobile for position and orientation measurements in an augmented reality system; however, it is also known that vision tracking improves the robustness of the system. The initial position and orientation information can be taken from the sensors of the mobile; however they are not accurate to rely on totally in an augmented reality application. Nevertheless, GPS is used to get the world coordinates, digital compass is for rotational velocity and accelerometer is for linear acceleration of the user.

Architectural environments have parallel and orthogonal lines that can be exploited to understand the orientation of the plane surfaces and relative position of the camera and plane. However, it is not guarantee that the tracking of those surfaces and lines can be accomplished in real-time. The GPS and inertial sensors of the mobile
provides information for each frame, separately then the tracking algorithm. However, extraction of vision based information for each frame of the video is computationally expensive. Therefore, we intended to use a probabilistic method for the frames that we do not treat or cannot extract some of the information such as line/corner/vanishing point detection or tracking.

The reason of our choice of Dempster-Shafer Data Fusion Theory is that it has uncertainty management and the results are close to human perception. Weighted sum of probabilities [21], as described previously, allows us to give more weight to the more trusted sensors depending on the case. Such as, in the cases where the extraction of the corner points are blocked by an object, the initial sensors could be given more weight to estimate the relative position of the camera and the building; or if the vanishing points and tracking and extraction of feature points are well established, the inertial sensors can be given less trust since visual tracking gives more robust results. Also, as we mentioned above, we are interested in real-time video, so the extraction and tracking process should be fast enough. In order to achieve that, the extraction is not done in all of the frames whereas the GPS and inertial sensors provide data individually for each frame. Another reason of our choice of Dempster-Shafer is that there is already a substantial amount of work that has been done on Dempster-Shafer Theory (theory of evidence) in content based image retrieval with the contribution of my advisor [29], [30] and that provided a valuable environment with discussions and suggestions.

3.1 Vanishing Point Detection

Man-made environments heavily consist of regular parallel structures such as repeating windows. When 3D edges in world coordinates transformed to 2D plane, they carry the geometric information of the scene. Vanishing point (VP) is one of the data that can be extracted from 2D images and can contribute to understand the geometry of 3D world. Also, the camera intrinsic parameters can be extracted from VPs but for the sake of simplicity, we assumed that we know the camera intrinsic parameters of the mobile (the focal length of the lens, the size of the pixels and the principal point coordinates in pixel coordinate system).

There are several methods for detecting vanishing points; we adopted the method of Kalantari et al. [33], where we detect the segments, and then by using Gauss sphere, we vote the VPs. The segments are detected by using classical method: first, we apply Canny edge detector which convolves the image with a Gaussian filter [41]. The result is a blurred version of the image and the noise is reduced with that way. Then, a hysteresis threshold is applied with two thresholds (upper and lower) such that if the intensity gradient of a pixel is greater than the higher threshold, it is kept as an edge pixel. If the intensity gradient is lower than the lower threshold, it is rejected. For the values in between two thresholds, they are kept if there is a pixel above the higher threshold around that pixel; otherwise they are rejected.

The distinctive characteristic of Canny edge detector is that, it tries to assemble those candidate pixels into contours so that we can detect the line segments by using
Hough Transform as a next step (Fig. 2). In Canny edge detection method, the choice of thresholds is important. If they are set too high, some of the edges cannot be detected; on the other hand, with too low values, there will be noise remaining in the resultant image. Although there is no generally accepted values for every image (since intensity values may vary) Canny suggests a high to low ratio between 2:1 and 3:1 [41]. Therefore, we used TH1=15 for lower one, TH2=40 for the higher one.

For the next step, we applied Hough transform to detect the line segments from the resultant contours (Fig. 2). There are two ways of Hough transform in general: standard Hough Transform [32] and probabilistic Hough Transform [42].

Fig. 2. On the left, Canny edge detection gives the contours of the building; on the right, Hough transform detects the line segments that passes the canny edge

In Hough Line Transform, the lines in the image are identified by using a voting procedure. All the lines are parameterized by the formula: $xcos\theta + ysin\theta = \rho$. The parameters specify a straight line by the angle θ of its normal and its distance ρ from the origin of the image plane (Fig. 3).

Fig. 3. Parameters of a line ($xcos\theta + ysin\theta = \rho$)

The difference between two methods is that in the standard Hough Transform, the algorithm performs for every point of the edges by voting them on the (ρ,θ) table (it accumulates all the points in the (ρ,θ) plane) and then it searches through the table to find the highest votes [32]. However, in the probabilistic method, it discards this computational load by accumulating only a fraction of edge pixels. This approach is known to accelerate the algorithm and reduces the computation time [42].
The execution time of our algorithm has as much importance as its accuracy since we are dealing with real-time videos. Therefore, we used probabilistic Hough Line Transform for our implementation.

One of the reasons of our choice of the method of Kalantari et al. [33] is that they treat the image by using (x,y) image coordinates, instead of using (ρ,θ) polar coordinates for the lines. As we declared in the State of Art, it has been proven by Cantoni et al. [25] that image space approach is computationally lighter since it does not require solving a linear system and gives higher precision results. The second reason of our choice is that Kalantari et al. [33] proposed an efficient vanishing point extraction method without any prior information of the scene. However, for the real-time extraction purpose of our model, we made some changes on the approach.

In their method, they define a unit sphere which has an origin with a perpendicular distance to the image plane. Then, by using the extremities of the line segments in the image, they define a family of planes each of them carrying the vanishing point, the segment converging to that vanishing point and the origin of the sphere. For each of those planes, the normal vectors which pass through the origin of the sphere are coplanar if the edges that they carry converge to the same vanishing point (Fig. 4).

![Fig. 4. The geometry introduced by Kalantari et al. [33]. The normal vector of the plane that formed at the center of the unit sphere intersects with the vanishing point.](image)

In order to validate our approach, we used OpenCV library which allowed us to implement the method of Kalantari et al. [33] and see the results of our simplifications in their algorithm for real-time video applications.

In accordance with the method, we first extracted the line segments by canny edge detector and Hough transform. Then, we save the line segments by their endpoint pixel values in a memory storage [31].

Moreover, we chose a point O at a distance from the image plane with a distance of 200 pixel length from the image plane. The distance does not affect the result significantly, if it is chosen to be at a significant distance from the image plane as defined in the approach of Kalantari et al. Therefore, our point O coordinates is {200, 200, 200} where the image plane is X-Y plane.
We are interested in the family of segments that converge to a vanishing point that is either in the image region or outside the image region (Fig. 5). We know the geometric property that those segments are coplanar with the unit sphere as shown in Fig. 4. We vote the normals of those planes that are formed by vanishing point, line segment and point_O. The highest voted plane indicates the exact location of the vanishing point on the image plane.

Fig. 5. Vanishing points can be on the image plane as well as outside of the image

The algorithm: We first calculated and clustered the unit vectors of the segments (û1) and the unit vectors from the segment to point_O (û2) in the memory. The edge vector, û1, directs from one endpoint to the other endpoint of the segment while edge-to-point_O vector, û2, directs from one endpoint of the segment to point_O. Then, the cross product between all the edge vectors and edge-to-point_O vectors (û1 and û2) are calculated (Fig. 6).

Fig. 6. The edge vectors û1 directs from one endpoint of the segment to the other, and the edge-to-point_O vector û2 directs from one endpoint of the segment to point_O.

While calculating the cross products, we at the same time vote them by storing them in a map container with their (ûx, ûy, ûz) values. As we declared above, the highest vote gives us the plane whose normal intersects the image plane at the vanishing point (Fig. 4).
Simplifications in the algorithm:

1. Use of (x,y) image coordinates in the calculations instead of polar coordinates
2. Higher canny edge thresholds to minimize the number of segments in the calculations
3. Setting a threshold to the minimum lengths of the segments to keep the next computations lighter
4. Setting the decimal precision of the clustered normals smaller to allocate less memory

The (x,y) image coordinates (pixel values) are used in the calculations which saved the time that would be spent for the conversion of polar coordinate to image coordinate since we need image coordinates to locate the vanishing points on the image plane and for further processes.

As well as robustness of the algorithm, fast calculation was also important. Therefore, instead of taking all the segments in the image, sufficient amount of segments were enough to detect the vanishing points. We achieved this by taking the threshold of canny edge detector higher to ignore the edges that cannot pass the high threshold (TH1=25 and TH2=55 for example). Then Hough transform detects the lines can pass the canny edge detector. At the end, we have line segments that have higher pixel contrast around them.

We limited the length of the segments that are detected by Hough Transform such that we do not cluster the very short segments in the image and keep the calculations faster.

Also, during clustering process of the normals, the unit vector coordinate precisions are rounded 3 decimals in order not to allocate too much memory while storing the values into the map container.

As well as keeping the calculations simple by the above definitions, we changed the approach for our implementation purpose.

Simplifications in the approach:

1. Eliminating the vertical line segments by assuming that the mobile is held vertically in order to find only the horizontal vanishing points (Fig. 7)
2. Finding only the vanishing points of the interest region by defining the plane manually

As you will read the details from the Overall Scenario of the project in the following, we were not interested in finding all the vanishing points in the scene at one hand. Here, we made the assumption that the mobile phone is held vertically. Therefore, we ignored the vertical lines which have angles between 70-90 degrees on the image, since we do not want to find the vertical vanishing points (Fig. 8). Instead, we detected the non-vertical vanishing points for the alignment of the virtual model,
or to use the horizontal vanishing point for the estimation of the horizontal lines that was blocked by an object (tree, car, people etc…).

Fig. 7. We called the vanishing points V_1 and V_2 the horizontal vanishing points; and V_3 the vertical vanishing points.

Fig. 8. We restricted Hough Transform to find only the non-vertical line segments in the image.

We replaced the idea of finding all the vanishing points in the image, to finding the vanishing points of the interested plane. As you will find the details in the Overall Scenario, we intend to use human interaction with the application such that the person first chooses the surface that he is interested in; and then he chooses the region where he wants to place the virtual model (window, balcony etc…). When he defines the surface, the vanishing point algorithm performs on that interested plane. Thus, this allows a lighter process since there will be other buildings appearing during the video, and there is no need to include them for the vanishing point extraction since we are not interested in them for augmented reality purposes. (The difference can be seen between Fig. 9 and Fig. 10).

After voting the normals at point O, we take the highest voted normals to determine the vanishing points in the image (in the interested region). The first highest vote represents the vanishing point which is dominant in the image. It means
that most of the segments in the image contribute to that vanishing point. After finding that normal, we intersect it with the image plane and find the vanishing point coordinates.

Fig. 9. All the horizontal vanishing points are found in the image in one iteration

Fig. 10. The region of interest is defined manually

Fig. 11. Two example images where we define the interest plane by choosing the plane manually (by mouse)

Experimental Results: We are able to find more than one vanishing point in the image by single iteration (Fig. 9). For our implementation purpose, we are not extracting the vertical vanishing points. Therefore, we used the non-vertical lines to extract the vanishing points. However, we are not interested to extract them through
the entire image. Therefore, we restricted our algorithm to finding the vanishing points on the interested surfaces where we want to track some of its elements (balcony, window etc…). You will see our resulting images on Fig. 10 and Fig. 11 where we define the interested surface plane manually. Vertical line elimination from the calculations has increased the iteration time 10.7%. Moreover, by setting the minimum length of a line segment that will be returned, the computation time improves 8%.

3.2 Corner Detection and Tracking

In our implementation, a reliable tracking system is one of the most important components for the accuracy. As we discussed in the state of art of this report, the performance of the tracking algorithm is important since we intend to use it in real-time application. In order to keep the calculations less, we used the property of video frames in which the feature locations doesn’t move significantly in the sequential frames. Therefore, we restricted the search region of the feature points in the next frame, instead of tracking all the features in the image. We called that window “search window”, whose dimensions are calculated by the interested window on the building. First, the building window is chosen by the user on which he wants to locate the virtual model, and then features are calculated. For the next frames, we predict the expected location of the search window and track the features in that region. In the cases of obstacle in the scene, where we cannot detect some of the features or miss all of them, we intend to keep the virtual model and the search region in the correct location by using Dempster-Shafer model. Then, we try to detect the building window and features in the next frames, where there is no obstacle anymore, by using Dempster-Shafer Theory.

A similar idea for real-time application is proposed by Park et al. [34]. In this approach, once the feature positions are detected in the next frame, by using search window, the current feature states are kept in a history buffer. We use that approach in search window prediction by using inertial sensors and Dempster-Shafer Theory.

We should choose the features such that they are scale, translation and rotation invariant. Features can be classified as region-based, edge-based and point-based features. As Tissainayagam and Suter compared them for video tracking applications in their research [35], since there are not many differences between consecutive frames, tracking regions (blobs) is not easy in videos. Also, as it is referred in this study, edge tracking lead to inaccuracies since during motion, the edge segments tend to split and merge and also because only the perpendicular flow of the edge can be tracked. However, point features are distinctive elements that can be located accurately in successive images.

Corners refer to the points that have two dimensional intensity change and they give more reliable results than edge tracking since flow changes are fully recoverable. Since our application is based on tracking features on building structures where there are many parallel lines that intersect, we chose corner points to track instead of edges since tracking process is more reliable [35] and corner points are invariant to scale [37]. As well as deciding the tracking method, choosing the convenient corner
tracking method is important. We did not focus ourselves on the point feature tracking methods SIFT or SURF since they are heavy for real time applications as we declared in the State of Art. For this reason, we consulted to framework of Tissainayagam and Suter [35] where they assess four different corner tracking methods (Kitchen-Rosenfield, Harris, KLT and Smith) for real-time video applications. After performance measure analysis, the results show that the Harris and KLT corner detection methods provide best quality corners and tracking performance. Harris corner detector based on a smoothing function as a part of its formulation (intensity gradients are calculated on a Gaussian smoothed region by 3x3 image pixel patch) which makes it more robust to noise. It has been proven that it is highly reliable in finding L-junctions [36] which suits to our project since many corner points on buildings images are L-junctions. Therefore, we chose Harris corner detection method for our implementation.

The performance of finding and matching corners in a video stream depends on if the points are temporarily stable and can be detected in every frame and if their position is close enough to the previous frame. As we declared in the description of the work, we intend to skip a reasonable number of frames for the tracking since extraction of vision based information for each frame might be computationally expensive. However, the number of skipped frames should be chosen such that the tracking will not fail. For the frames that we skipped and did not track the points we use a probabilistic method with inertial sensors to determine the virtual model position that is explained in the following.

We used Harris detection and tracking method that is employed in OpenCV library which relies on the second order derivatives of the image intensities such that corners are associated with maxima of local autocorrelation function [31], [35].

\[
M(x, y) = \left[\begin{array}{c} \sum_{-K_{x},j \in K} w_{ij} I_{i}^2(x + i, y + j) \\ \sum_{-K_{y},j \in K} w_{ij} I_{i} I_{j}(x + i, y + j) \\ \sum_{-K_{x},j \in K} w_{ij} I_{i}^2(x + i, y + j) \end{array} \right]
\]

(3)

First, it calculates the minimal eigenvalue for every pixel and stores the values. Then, it performs non-maxima suppression which suppresses all the values along the line of the gradient that are not local maximum. Afterwards, it rejects the corners with eigenvalue less than threshold. Finally, when the candidate pixels are selected, it removes the ones that are closer to each other than a minimum distance value that we set.

3.3 Homography between images

As we referred in State of Art, it is almost impossible to introduce fiducials (markers) into the scene in outdoor environments. The fact that we are attempting to get the camera motion in man-made architectural areas have let us to use that the feature matching can be related by projective transformation, which is also called homography. The basic idea behind our framework comes from the studies [2], [38],
[39] and [40] where they described the geometry understandably. We used this concept in understanding the camera movement in the scene and estimating the next movement by using Dempster-Shafer model. The feature displacement between two images depends both on the camera motion and the camera distance from the planar surface. Homography helps us to understand this movement in the scene.

We used ‘points’ for feature matching to extract the homography, (instead of segments or pixel intensities etc…) since we already extract them for tracking. Homography (plane projective transformation) is a mapping of points from one image to another and describes the rotational and translational movement. Under perspective transformation, the points are related by: \(x = HX \) where \(X \) is the world coordinates and \(x \) is the image coordinates and \(H \) is the plane projective matrix (homography) between world points and image points described by \(K[R|t] \) where \(K \) is intrinsic camera matrix, \(R \) is the rotation matrix and \(t \) is the translation vector [40]. Intrinsic camera matrix \(K \) contains the intrinsic parameters of camera:

\[
K = \begin{bmatrix}
\alpha_x f & 0 & u_0 \\
0 & \alpha_y f & v_0 \\
0 & 0 & 1
\end{bmatrix}
\]

(4)

where \(f \) is focal length, \(\alpha_x \) and \(\alpha_y \) are the horizontal and vertical pixel sizes on the image plane and \((u_0, v_0) \) is the projection of the camera center (principal point) on the image plane. The intrinsic parameters of the mobile camera are assumed to be known for our framework in order to focus ourselves on homography extraction and camera motion estimation. The \([R|t] \) describes the motion of the camera:

\[
[R|t] = \begin{bmatrix}
R & t \\
0^T & 1
\end{bmatrix}
\]

(5)

where \(R \) is a 3x3 rotation matrix and \(t \) is a 3x1 translation vector. Therefore \(H \) is a 3x3 matrix that maps coordinate \(x \) in one image to \(x' \) in another.

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
h_{11} & h_{12} & h_{13} & x_i \\
h_{21} & h_{22} & h_{23} & y_i \\
h_{31} & h_{32} & h_{33} & z_i
\end{bmatrix}
\]

(6)

Although it contains nine elements, there are only eight independent elements. Therefore, a homography can be described by using four point correspondences between two images (Fig. 12) since each correspondence generates two linear equations [2], [38]. However more points will define more accurate results. As we described above in Corner Detection and Tracking part, we used a search window in order to extract and track the feature points (corners). For homography calculations, we are using the same search window by estimating its position for the following frames and extracting the matching points. Four corner points of the interested window on the building surface can be used for tracking and the calculation of the homography. However, since our search window is small with respect to the image, it will not change the computation time if we define higher points than ‘4’. Therefore, we defined the maximum tracking points as ‘10’. Also, in order to get a good spread
of points in the *search window*, we kept the points which are closer to each other less than five pixels. The best selection of corner points will be the corners of the interested window of the building surface, however there will be cases when some of the corners could not be tracked in some frames.

![Homography Diagram](image)

Fig. 12. Homography H^i defines a map between a point in the first image and its correspondence in image i

Overview of the homography calculation:
- Detect the corner points in the first *search window* of the first frame.
- Detect the corner points for the second frame assuming that the *search window* remains the same.
- Track the corners by choosing the candidate point in the next frame which maximizes the cross-correlation.
- If there are at least 4 corresponding points in the *search window* of two images, then calculate the homography between these images.

3.3.1 Computation of H^{i+1}_i

If $x^i = (x, y, 1)$ and $x^{i+1} = (x', y', 1)$ are two image coordinates in the consecutive frames belonging to the same 3D point in world coordinates, their coordinates can be related by:

$$
\begin{pmatrix}
 x' \\
 y \\
 1
\end{pmatrix} = \lambda H^{i+1}_i
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
$$

(7)

where λ is the homogeneous scale factor [40]. By cross multiplication, we obtain the linear system of two equations:

$$
\begin{align*}
x'(h_{31}x + h_{32}y + h_{33}) &= h_{11}x + h_{12}y + h_{13} \\
y'(h_{31}x + h_{32}y + h_{33}) &= h_{21}x + h_{22}y + h_{23}
\end{align*}
$$

(8) (9)
such that given four correspondences, we can solve the equations [38], [40].

3.4 Inner sensors contribution

For the initial frames of the video, we are not using the inner sensors of the mobile to estimate the search window position since we do not know the relative distance between the camera and the plane. For example, if the camera is far away from the building surface, the same angular movement will correspond to a big change in search window position, and a small change if the camera is closer to the plane. Therefore, the estimation will not be accurate by only using inner sensors; since we do not know how many pixels we should slide the search window. However, after a sufficient amount of homography calculation between frames, we can associate the sensor data with search window.

The inner sensor data is obtained for each frame as a characteristic of mobile phones. We can save the search window movements in a history buffer and by comparing them with the sensor data; we can define the correspondent movement of the search window with respect to the sensor data.

For example, assume that a user shoots a video of a building. It chooses a window that he wants to put a virtual model which is aligned with the window during the video (Fig. 13).

![Image](image.png)

Fig. 13. User manually chooses a window on the building and canny edge detector detects the contours in that region

We define a search window whose shape is similar and dimension is proportional to the interested window. Its dimensions are determined when user chooses the interested window by drawing a rectangle around it. Then, the segments that define the window are detected by using Canny edge detection and Hough Transform. Then, the alignments of the non-vertical segments with the vanishing point in the horizontal direction are checked (Fig. 14).

For the frames following the first frame, search window is extracted from the homographies between images (it has the same homography with the window on the
building plane within two images, since the search window and the interested window are assumed to be planar). And also at the same time, it can be related with the inertial sensor data of the mobile.

Fig. 14. Two video frames showing the alignment of the search window (black) according to the window (blue) – the second frame is calculated by using homographies between window corners \((x_1, x_2, x_3, x_4)\) and \((x_1, x_2, x_3, x_4)\).

The purpose of this learning based modeling is to be able to describe how many pixel movements correspond to how many degrees of angular movement of the digital compass or linear movement for the accelerometer. It is not a perfect definition of relative proportion of inner sensor data and the building plane, however since we are talking about sequential frames, where the movement is slow; we can define a correspondence within consecutive frames. In the cases of missing the feature points or obstacles occurring in the image [Fig. 15], this correspondence is going to be used in Dempster-Shafer Data Fusion in order not to miss the interested window or not to follow another window by mistakenly. We need a feedback mechanism for the learning of camera inner sensor data correspondence on the image. Since we need this correspondence for the cases of failure in tracking feature points, we can use error minimization by learning from the correct tracking of points.

Fig. 15. There will be obstacles like tree or people in the scene that avoid to track the window
3.5 Overall Scenario

3.5.1 Algorithm Summary

Here we summarized our algorithm in two possible scenarios, one is when the tracking achieved successfully, second is when there is failure in tracking. The second scenario is where we use a probabilistic approach to get back the tracked window, or not to lose it in the cases of obstacle.

For successful tracking:

1. Manually indicate the planar surface of the building
2. Find the non-vertical segments on that region and the vanishing point from that segments
3. Choose the window where we want to hold the virtual model by manually indicating a rectangular region on that surface of the building
4. Find the segments in that region
5. Find the largest quadrilateral region to define the window by checking the alignment of non-vertical segments with the vanishing points
6. Align the rectangular region to a quadrilateral region proportional to the window (Fig. 14)
7. Find maximum 10 corner points in the quadrilateral region in frame 0
8. Find maximum 10 corner points in the next frame (frame 1)
9. Match those points with the ones in the first frame
10. Check if 4 corner points of the interested window are matched
 o If they are matched use these 4 points to define homography
 o Otherwise use the matched ones from those corners and sum up to 4 by choosing the other matching points randomly
11. Define the homography between frame i to i+1 by using 4 corresponding points
12. Define the new position of the vanishing point by multiplying it with the homography matrix
13. Define the positions of the corner points in frame 1 by using matched corners and homography for the not-matched ones
14. Check the alignments of the segments with the window in frame 1 and the defined vanishing point by checking the corner points (if not, failure in tracking)
15. Define the new quadrilateral “search region” for image i+1 by multiplying with the homography
16. Save the direction of movement of quadrilateral “search region” pixel wise in the history buffer with the acceleration and digital compass data
17. Use this quadrilateral “search region” for tracking the corners in i+2 frame
18. Repeat the algorithm from 7 to 17 by using the consecutive frames.
3.5.2 Contributions to the scenario:

One contribution to this scenario is that the extraction of corner points, homography calculations and vanishing point detection are not calculated for all of the frames in the video. Since vanishing point calculation takes relatively longer time than homography, it is calculated for each two seconds of the corresponding video frame or when there is failure in the window tracking. Since the application is assumed to be used in smartphones, we took the camera feature of iPhone which is capable to capture the 640x480 resolution video at 30 frames per second. Therefore, in our case, we calculate the vanishing points each 60 frames.

In order to calculate the vanishing points in the following frames, we need to extract the lines from the planar surface of the building. Here, we make the assumption that this planar surface has mapped with the product of homographies of the frames in between. Then, we calculate the vanishing points by extracting the segments on that surface. For the other frames, vanishing points are calculated by using homographies between tracked windows (since they are coplanar with those windows). Vanishing points are then used for the verification of window segments. If they are aligned with the segments, the tracking is correct and can be continued; otherwise, the scenario for failure is used until the window is found correctly again.

Another point in simplifying the calculations is that the camera is assumed to be held vertically which facilitates to classify the segments according to their angles for the vanishing point extraction.

Also, for the cases where the user is looking to the planar surface vertically, the horizontal vanishing points are at the infinity. In order to define that, after extracting the VP, we check its x value (pixel value on the image plane) and if it is five times greater than the width of the image, we assume that the user is heading perpendicular to the plane. This assumption simplifies the window tracking such that the horizontal frames of the window should be parallel to each other.

3.6 Data fusion with Dempster-Shafer Theory

Failure in tracking & skipped frames:

We need four corners of the window in order to align the virtual model accordingly. However, we cannot assure that the matching points are the corners of the interested window since tracking is based on optical-flow over a series of frames. Another failure scenario in tracking might be an object blocking the window corners such as a tree, a car or some people walking in the scene (Fig .15). Also, as we declared previously, we are not extracting all the features (corners, segments, vanishing points) for every frame. We need a feedback mechanism to estimate the position of the virtual model on the planar surface for those frames.

Therefore, we use Dempster-Shafer Data Fusion model in order to define the position of the model in the current frame by using the data from visual tracking and inner sensors of the mobile.

One possible solution for this is to make a correspondence between the inner sensor data of accelerometer and digital compass to search window movement. This
correspondence can be used in the history buffer and for the cases of failure in tracking; we can estimate the location of the search window until we get back to successful tracking again. For example, imagine that a user makes a rotational movements and there is a tree that window could not tracked. Then the correspondence in the history buffer might be used to estimate how many degree of angular movement of the mobile corresponds to how many pixel of movement of search window in the image. However, it should not be forgotten that the nearer correspondence in the history buffer should be used since the user might have changed his position in the much previous frames and also the angle to the planar surface might have been changed significantly.

However, for the initial frames (5-10 frames), it is expected to be that the window is tracked correctly so that there is enough data to make this correspondence. If the frames are not the initial frames of the video, (after 5 frames), we start to use the estimation model, that we describe in the following, for the search window by using accelerometer and digital compass.

To be more precise, we are assigning adaptable weights to the sensor data that comes from the gyroscope and accelerometer of the smartphone. The weights are assigned in such a way that when the vision tracking method is not reliable, we should not miss the tracked features on the building surface. Therefore, for gyroscope example, we keep the pixel wise movement of the search window with respect to angular movement of the gyroscope in a history buffer (1 degree of angular movement in vertical direction corresponds to 5 pixel slide of the search window for example). This data helps us to estimate to make the correspondence between an inertial sensor data and the distance to the plane as we explained above. Then by using this data, if we miss some of the corner points of the window (Fig. 15), or the detected segment cannot be aligned with the vanishing point, then we assign higher belief value to the inertial sensor data until we recover the tracked features and aligned segments with respect to vanishing points. We used the idea in [34] for the basic pseudo-code of the algorithm:

- Step 1 (Initialization)
 - Capture and load the first frame
 - Extract 10 feature points from the first frame
 - Track them in the following frame
 - Save the sensor data with the tracking data to history buffer
 - If the corner points could not tracked
 - increase the weight of the sensors for the prediction step
 - decrease the weight of the vision tracking (homographies, VP alignment)

- Step 2 (Prediction):
 - Capture and load the next frame.
 - Predict the feature state by using the correspondence from the recent history
 - Set the search window location according to the prediction
 - Loop in step 2 until the feature points are recovered (more trust to sensor data)

- Step 3 (Tracking features):
 - Increase the weights of the vision tracking data
 - Go to Step 1
This part of the implementation requires specific programming methods and a deeper, oriented study with mobile sensor data treatment. We examined the use of the method in several articles [8], [12], [13] and [21], and proposed a pseudo-code above by adapting it to our implementation.

4 Conclusion

In this report, we proposed a hybrid approach for real-time augmented reality in urban environments. We tried to handle the problem in several aspects. The difference of our proposition from previous works is the utilization of the probabilistic fusion of the vision-based data with the sensor-based data. While doing this data fusion, we used the history of the feature locations in order to estimate the new locations for the next frames which let us to reduce our search space and computation time. For the extraction of the vision-based tracking information, we are using the properties of man-made architectures such as parallel lines and planar surfaces.

In order to validate several aspects of our methodology, we employed OpenCV computer vision library which allowed us to see that our approach is computationally lighter.

The main limitation of our approach is that we assume that the window frames are composed of parallel lines without including the possibility that they could rely on other architectural shapes.

In the continuation of our study, the quantitative analysis of the sensitiveness of sensor-based tracking could be done with a smartphone. Also, the possibility of having distinctive architectures (artistic structures) could be studied. Another possibility is that the approach could be merged with a touristic aspect, such that the known historical buildings could be treated with their known distinctive design properties recovered from the database saved images in the with some images saved in the database (irregular window frames, gothic style buildings could be used as an example).

Acknowledgements. I would first like to express my sincere appreciation to my advisor, Prof. Bruno TELLEZ, for his wise guidance, witty suggestions and interesting discussions during my internship. Without his enthusiasm, inspiration and efforts to make things clear and understandable, this report would not have been completed.

I also wish to thank my family for their emotional support and trust in me throughout my life and for leaving me free for all my decisions.

My special thanks to Jun-Young BAE for his constant kindness and cheerful support in every step of my studies. Without him and his generous gift (the coffee machine) that accompanied me during my sleepless nights, the preparation of this thesis would have been a lot more difficult.

I also gratefully salute my undergraduate faculty (EEE) members and university (METU) for enriching me in such a way that I found enough courage and knowledge to pursue a master in Image and Graphics.
Thanks are due also to the professors, my colleagues and the friendly environments of interns in the LIRIS research laboratory.

References

