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Mining sequential data is an old topic that has been revived in the last decade, due to the increasing

availability of sequential datasets. Most works in this field are centred on the definition and use of a

distance (or, at least, a similarity measure) between sequences of elements. A measure called dynamic

time warping (DTW) seems to be currently the most relevant for a large panel of applications. This

article is about the use of DTW in data mining algorithms, and focuses on the computation of an average

of a set of sequences. Averaging is an essential tool for the analysis of data. For example, the K-MEANS

clustering algorithm repeatedly computes such an average, and needs to provide a description of the

clusters it forms. Averaging is here a crucial step, which must be sound in order to make algorithms

work accurately. When dealing with sequences, especially when sequences are compared with DTW,

averaging is not a trivial task.

Starting with existing techniques developed around DTW, the article suggests an analysis

framework to classify averaging techniques. It then proceeds to study the two major questions lifted

by the framework. First, we develop a global technique for averaging a set of sequences. This technique

is original in that it avoids using iterative pairwise averaging. It is thus insensitive to ordering effects.

Second, we describe a new strategy to reduce the length of the resulting average sequence. This has a

favourable impact on performance, but also on the relevance of the results. Both aspects are evaluated

on standard datasets, and the evaluation shows that they compare favourably with existing methods.

The article ends by describing the use of averaging in clustering. The last section also introduces a new

application domain, namely the analysis of satellite image time series, where data mining techniques

provide an original approach.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Time series data have started to appear in several application
domains, like biology, finance, multimedia, image analysis, etc.
Data mining researchers and practitioners are thus adapting their
techniques and algorithms to this kind of data. In exploratory data
analysis, a common way to deal with such data consists in
applying clustering algorithms. Clustering, i.e., the unsupervised
classification of objects into groups, is often an important first
step in a data mining process. Several extensive reviews of
clustering techniques in general have been published [1–4] as
well as a survey on time series clustering [5].
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Given a suitable similarity measure between sequential data,
most classical learning algorithms are readily applicable.

A similarity measure on time series data (also referred to as
sequences hereafter) is more difficult to define than on classical
data, because the order of elements in the sequences has to be
considered. Accordingly, experiments have shown that the
traditional Euclidean distance metric is not an accurate similarity
measure for time series. A similarity measure called dynamic time
warping (DTW) has been proposed [6,7]. Its relevance was
demonstrated in various applications [8–13].

Given this similarity measure, many distance-based learning
algorithms can be used (e.g., hierarchical or centroid-based ones).
However, many of them, like the well-known K-MEANS algorithm,
or even Ascendant Hierarchical Clustering, also require an
averaging method, and highly depend on the quality of this
averaging. Time series averaging is not a trivial task, mostly
because it has to be consistent with the ability of DTW to realign
sequences over time. Several attempts at defining an averaging
method for DTW have been made, but they provide an inaccurate

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.09.013
mailto:fpetitjean@unistra.fr
mailto:alain@unistra.fr
mailto:gancarski@unistra.fr
mailto:gancarski@unistra.fr
mailto:gancarski@unistra.fr
dx.doi.org/10.1016/j.patcog.2010.09.013


Fig. 1. Two 1D sequences aligned with dynamic time warping. Coordinates of the

top and bottom sequences have been, respectively, computed by cos(t) and

cosðtþaÞ. For visualization purpose, the top sequence is drawn vertically shifted.
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notion of average [14], and perturb the convergence of such
clustering algorithms [15]. That is mostly why several time series
clustering attempts prefer to use the K-MEDOIDS algorithm instead
(see [16–18] for examples combining DTW and the K-MEDOIDS

algorithm). Throughout this article, and without loss of generality,
we use some times the example of the K-MEANS algorithm, because
of its intensive use of the averaging operation, and because of its
applicability to large datasets.

In this article, we propose a novel method for averaging a set
of sequences under DTW. The proposed method avoids the
drawbacks of other techniques, and is designed to be used,
among others, in similarity-based methods (e.g., K-MEANS) to mine
sequential datasets. Section 2 introduces the DTW similarity
measure on sequences. Then Section 3 considers the problem
of finding a consensus sequence from a set of sequences,
providing theoretical background and reviewing existing meth-
ods. Section 4 introduces the proposed averaging method, called
DTW barycenter averaging (DBA). It also describes experiments on
standard datasets from the UCR time series classification and
clustering archive [19] in order to compare our method to existing
averaging methods. Then, Section 5 looks deeper into the
sufficient number of points to accurately represent of a set of
sequences. Section 6 describes experiments conducted to demon-
strate the applicability of DBA to clustering, by detailing experi-
ments carried out with the K-MEANS algorithm on standard
datasets as well as on an application domain, namely satellite
image time series. Finally, Section 7 concludes the article and
presents some further work.
1 In fact, the distance dðai ,bjÞ computed in Eq. (1) is the distance between two

coordinates without considering the time distance between them.
2. Dynamic time warping (DTW)

In this section, we recall the definition of the euclidean distance
and of the DTW similarity measure. Throughout this section, let
A¼/a1, . . . ,aTS and B¼/b1, . . . ,bTS be two sequences, and let d
be a distance between elements (or coordinates) of sequences.

Euclidean distance: This distance is commonly accepted as the
simplest distance between sequences. The distance between A

and B is defined by

DðA,BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dða1,b1Þ

2
þ � � � þdðaT ,bT Þ

2
q

Unfortunately, this distance does not correspond to the common
understanding of what a sequence really is, and cannot capture
flexible similarities. For example, X ¼/a,b,a,aS and Y ¼/a,a,b,aS
are different according to this distance even though they
represent similar trajectories.

Dynamic time warping: DTW is based on the Levenshtein
distance (also called edit distance) and was introduced in [6,7],
with applications in speech recognition. It finds the optimal
alignment (or coupling) between two sequences of numerical
values, and captures flexible similarities by aligning the coordi-
nates inside both sequences. The cost of the optimal alignment
can be recursively computed by

DðAi,BjÞ ¼ dðai,bjÞþmin

DðAi�1,Bj�1Þ

DðAi,Bj�1Þ

DðAi�1,BjÞ

8><
>:

9>=
>; ð1Þ

where Ai is the subsequence /a1, . . . ,aiS. The overall similarity is
given by DðAjAj,BjBjÞ ¼DðAT ,BT Þ.

Unfortunately, a direct implementation of this recursive
definition leads to an algorithm that has exponential cost in
time. Fortunately, the fact that the overall problem exhibits
overlapping subproblems allows for the memoization of partial
results in a matrix, which makes the minimal-weight coupling
computation a process that costs jAj � jBj basic operations. This
measure has thus a time and a space complexity of OðjAj � jBjÞ.

DTW is able to find optimal global alignment between
sequences and is probably the most commonly used measure to
quantify the dissimilarity between sequences [9–13]. It also
provides an overall real number that quantifies similarity. An
example DTW-alignment of two sequences can be found in Fig. 1:
it shows the alignment of points taken from two sinusoids, one
being slightly shifted in time. The numerical result computed by
DTW is the sum of the heights1 of the associations. Alignments at
both extremities on Fig. 1 show that DTW is able to correctly re-
align one sequence with the other, a process which, in this case,
highlights similarities that Euclidean distance is unable to
capture. Algorithm 1 details the computation.

Algorithm 1. DTW
Require: A¼/a1, . . . ,aSS
Require: B¼/b1, . . . ,bTS
Let d be a distance between coordinates of sequences
Let m[S,T] be the matrix of couples (cost,path)

m½1,1�’ðdða1,b1Þ,ð0,0ÞÞ

for i’2 to S do
m½i,1�’ðm½i�1,1,1�þdðai,b1Þ,ði�1,1ÞÞ

end for
for j’2 to T do

m½1,j�’ðm½1,j�1,1�þdða1,bjÞ,ð1,j�1ÞÞ

end for
for i’2 to S do

for j’2 to T do
minimum’minValðm½i�1,j�,m½i,j�1�,m½i�1,j�1�Þ

m½i,j�’ðfirstðminimumÞþdðai,bjÞ,secondðminimumÞÞ

end for
end for
return m[S,T]
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Algorithm 2. first
Require: p ¼ (a, b): couple

return a
Algorithm 3. second
Require: p ¼ (a, b): couple

return b
Algorithm 4. minVal
Require: v1, v2, v3: couple

if firstðv1Þrminðfirstðv2Þ,firstðv3ÞÞ then
return v1

else if firstðv2Þr firstðv3Þ then
return v2

else
return v3

end if
3. Related work

In the context of classification, many algorithms require a
method to represent in one object, informations from a set of
objects. Algorithms like K-MEDOIDS are using the medoid of a set of
objects. Some others like K-MEANS need to average a set of objects,
by finding a mean of the set. If these ‘‘consensus’’ representations
are easily definable for objects in the Euclidean space, this is much
more difficult for sequences under DTW.

Finding a consensus representation of a set of sequences is
even described by [20], chapter 14, as the Holy Grail. In this
section, we first introduce the problem of finding a consensus
sequence from a set of sequences, inspired by theories developed
in computational biology. Then, we make the link between these
theories on strings and methods currently used to average
sequences of numbers under dynamic time warping.

To simplify explanations, we use the term coordinate to
designate an element, or point, or component of a sequence.
Without loss of generality, we consider that sequences contain T

coordinates that are one-dimensional data. We note AðbÞ a
sequence of length b. In the following, we consider a set
S¼ fS1, � � � ,SNg of N sequences from which we want to compute
a consensus sequence C.

3.1. The consensus sequence problem

As we focus on DTW, we will only detail the consensus
sequence problem from the edit distance side. (The problem for
DTW is almost the same, and we will detail the differences in next
subsection.) The term consensus is subjective, and depends on the
needs. In the context of sequences, this term is used with three
meanings: the longest common subsequence of a set, the medoid
sequence of the set, or the average sequence of the set.

The longest common subsequence generally permits to
visualize a summary of a set of sequences. It is, however,
generally not used in algorithms because the resulting common
subsequence does not cover the whole data.

The two other concepts refer to a more formal definition,
corresponding to the sequence in the center of the set of
sequences. We have to know what the center notion means. The
commonly accepted definition is the object minimizing the sum
of squared distances to objects of the set. When the center must
be found in the dataset, the center is called ‘‘medoid sequence’’.
Otherwise, when the search space of the center is not restricted,
the most widely used term is ‘‘average sequence’’.

As our purpose is the definition of a center minimizing the sum
of squared distances to sequences of a set, we focus on the
definition of an average sequence when the corresponding
distance is DTW.

Definition. Let E be the space of the coordinates of sequences.
By a minor abuse of notation, we use ET to designate the space
of all sequences of length T. Given a set of sequences S¼

fS1, � � � ,SNg, the average sequence CðTÞ must fulfill

8XAET ,
XN

n ¼ 1

DTW2
ðCðTÞ,SnÞr

XN

n ¼ 1

DTW2
ðX,SnÞ ð2Þ

Since no information on the length of the average sequence is
available, the search cannot be limited to sequences of a given
length, so all possible values for T have to be considered. Note that
sequences of S have a fixed length T. C has hence to fulfill

8tA ½1,þ1½, 8XAEt ,
XN

n ¼ 1

DTW2
ðC,SnÞr

XN

n ¼ 1

DTW2
ðX,SnÞ

 !
ð3Þ

This definition relies in fact on the Steiner trees theory; C is
called Steiner sequence [20]. Note that the sums in Eqs. (2) and (3),
is often called Within Group Sum of Squares (WGSS), or discrepancy

distance in [21]. We will also use the simple term inertia, used in
most works on clustering.
3.2. Exact solutions to the Steiner sequence problem

As shown in [22], when considered objects are simple points in
an a- dimensional space, the minimization problem correspond-
ing to Eq. (2) can be solved by using the property of the arithmetic
mean. As the notion of arithmetic mean is not easily extendable to
semi-pseudometric spaces (i.e., spaces induced by semi-pseudo-
metrics like DTW), we need to detail this Steiner sequence problem,
i.e., the problem to find an average sequence. To solve this
problem, there are two close families of methods.

The first one consists in computing the global multiple
alignment [23] of the N sequences of S. This multiple alignment
is computable by extending DTW for aligning N sequences. For
instance, instead of computing DTW by comparing three values in a
square, one have to compare seven values in a cube for three
sequences. This idea can be generalized by computing DTW in a N-
dimensional hypercube. Given this global alignment, C can be
found by averaging column by column the multiple alignment.
However, this method presents two major difficulties, that prevent
its use. First, the multiple alignment process takes YðTNÞ opera-
tions [24], and is not tractable for more than a few sequences.
Second, the global length of the multiple alignment can be on the
order of TN, and requires unrealistic amounts of memory.

The second family of methods consists in searching through the
solution space, keeping those minimizing the sum (Eq. (2)). In the
discrete case (i.e., sequences of characters or of symbolical values),
as the alphabet is generally finite, this scan is easy. However, as the
length of the global alignment is potentially TN

�2T, scanning the
space takes YðTNÞ operations. In the continuous case (i.e.,
sequences of numbers or of number vectors), scanning all solutions
is impossible. Nevertheless, we will explain in the next paragraph
how this search can be guided towards potential solutions, even
though this strategy also exhibits exponential complexity.

In fact, we need a method to generate all potential solutions.
Each solution corresponds to a coupling between C and each
sequence of S. As all coordinates of each sequence of S must be
associated to at least one coordinate of C, we have to generate all
possible groupings between coordinates of each sequence of S
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and coordinates of C. Each coordinate of C must be associated to a
non-empty non-overlapping set of coordinates of sequences of S.
To generate all possible groupings, we can consider that each
sequence is split in as many subsequences as there are
coordinates in C. Thus, the first coordinate of C will be associated
to the coordinates appearing in the first subsequences of
sequences of S, the second coordinate to coordinates appearing
in the second subsequences of sequences of S, and so on. Then, for
CðpÞ (C of length p), the N sequences of S have to be cut into
p parts. There are ðTpÞ ways to cut a sequence of length T into p

subsequences. Thus, for N sequences there are ðTp Þ
N possibilities.

The time complexity of this scan is therefore in YððTp Þ
N
Þ.

One can note in Eq. (3) that p4T does not make sense. It
would mean that sequences have to be split in more subse-
quences than they contain coordinates. Thus, we can limit the
search conditions of C to pA ½1,T�. But even with this tighter
bound, the overall computation remains intractable.

3.3. Approximating the exact solution

As we explained in the previous subsection, finding the average
sequence is deeply linked to the multiple alignment problem.
Unfortunately, 30 years of well-motivated research did not provide
any exact scalable algorithm, neither for the multiple alignment
problem, nor for the consensus sequence problem. Given a sequence
standing for the solution, we even cannot check if the potential
solution is optimal because we rely on a subset of the search space.
A number of heuristics have been developed to solve this problem
(see [25–29] for examples). We present in this subsection the most
common family of methods used to approximate the average
sequence: iterative pairwise averaging. We will also link this family
to existing averaging method for DTW.

Iterative pairwise averaging consists in iteratively merging two
average sequences of two subsets of sequences into a single
average sequence of the union of those subsets. The simplest
strategy computes an average of two sequences and iteratively
incorporates one sequence to the average sequence. Differences
between existing methods are the order in which the merges are
done, and the way they compute an average of two sequences.

3.3.1. Ordering schemes

Tournament scheme. The simplest and most obvious averaging
ordering consists in pairwise averaging sequences following a
tournament scheme. That way, N/2 average sequences are created
at first step. Then those N/2 sequences, in turn, are pairwise
averaged into N/4 sequences, and so on, until one sequence is
obtained. In this approach, the averaging method (between two
sequences) is applied N times.

Ascendant hierarchical scheme. A second approach consists in
averaging at first the two sequences whose distance (DTW) is
minimal over all pairs of sequences. This works like Ascendant
Hierarchical Clustering, computing a distance matrix before each
average computation. In that way, the averaging method is also
called N�1 times. In addition, one has to take into account the
required time to compute N times the distance matrix.

3.3.2. Computing the average sequence

Regarding the way to compute an average from two sequences
under DTW, most methods are using associations (coupling)
computed with DTW.

One coordinate by association. Starting from a coupling between
two sequences, the average sequence is built using the center of
each association. Each coordinate of the average sequence will
thus be the center of each association created by DTW. The main
problem of this technique is that the resulting mean can grow
substantially in length, because up to jAjþjBj�2 associations can
be created between two sequences A and B.

One coordinate by connected component. Considering that the
coupling (created by DTW) between two sequences forms a graph,
the idea is to associate each connected component of this graph to
a coordinate of the resulting mean, usually taken as the
barycenter of this component. Contrary to previous methods,
the length of resulting mean can decrease. The resulting length
will be between 2 and minðjAj,jBjÞ.

3.4. Existing algorithms

The different ordering schemes and average computations just
described are combined in the DTW literature to make up algorithms.
The two main averaging methods for DTW are presented below.

Nonlinear alignment and averaging filters: NLAAF was intro-
duced in [30] and rediscovered in [15]. This method uses the
tournament scheme and the one coordinate by association averaging
method. Its main drawback lies in the growth of its resulting
mean. As stated earlier, each use of the averaging method can
almost double the length of the average sequence. The entire
NLAAF process could produce, over all sequences, an average
sequence of length N � T . As classical datasets comprise thou-
sands of sequences made up on the order of hundred coordinates,
simply storing the resulting mean could be impossible. This
length problem is moreover worsened by the complexity of DTW,
that grows bi-linearly with lengths of sequences. That is why
NLAAF is generally used in conjunction with a process reducing
the length of the mean, leading to a loss of information and thus
to an unsatisfactory approximation.

Prioritized shape averaging: PSA was introduced in [21] to resolve
shortcomings of NLAAF. This method uses the Ascendant hierarchical

scheme and the one by connected component averaging method.
Although this hierarchical averaging method aims at preventing the
error to propagate too much, the length of average sequences
remains a problem. If one alignment (with DTW) between two
sequences leads to two connected components (i.e., associations are
forming two hand-held fans), the overall resulting mean will be
composed of only two coordinates. Obviously, such a sequence
cannot represent a full set of potentially long sequences. This is why
authors proposed to replicate each coordinate of the average
sequence as many times as there were associations in the
corresponding connected component. However, this repetition of
coordinates causes the problem already observed with NLAAF, by
potentially doubling the number of coordinates of each intermediate
average sequence. To alleviate this problem, the authors suggest
using a process in order to reduce the length of the resulting mean.

3.5. Motivation

We have seen that most of the works on averaging sets of
sequences can be analysed along two dimensions: first, the way
they consider the individual sequences when averaging, and
second, the way they compute the elements of the resulting
sequences. These two characteristics have proved useful to
classify the existing averaging techniques. They are also useful
angles under which new solutions can be elaborated.

Regarding the averaging of individual sequences, the main
shortcoming of all existing methods is their use of pairwise
averaging. When computing the mean of N sequences by pairwise
averaging, the order in which sequences are taken influences the
quality of the result, because neither NLAAF nor PSA are associative
functions. Pairwise averaging strategies are intrinsically sensitive to
the order, with no guarantee that a different order would lead to the
same result. Local averaging strategies like PSA or NLAAF may let an
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initial approximation error propagate throughout the averaging
process. If the averaging process has to be repeated (e.g., during
K-MEANS iterations), the effects may dramatically alter the quality of
the result. This is why a global approach is desirable, where
sequences would be averaged all together, with no sensitivity to
their order of consideration. The obvious analogy to a global method
is the computation of the barycenter of a set of points in a Euclidean
space. Section 4 follows this line of reasoning in order to introduce a
global averaging strategy suitable for DTW, and provides empirical
evidence of its superiority over existing techniques.

The second dimension along which averaging techniques can
be classified is the way they select the elements of the mean. We
have seen that a naive use of the DTW-computed associations
may lead to some sort of ‘‘overfit’’, with an average covering
almost every detail of every sequence, whereas simpler and
smoother averages could well provide a better description of the
set of sequences. Moreover, long and detailed averages have a
strong impact on further processing. Here again, iterative
algorithms like K-MEANS are especially at risk: every iteration
may lead to a longer average, and because the complexity of DTW
is directly related to the length of the sequences involved, later
iterations will take longer than earlier ones. In such cases,
unconstrained averaging will not only lead to an inadequate
description of clusters, it will also cause a severe performance
degradation. This negative effect of sequence averaging is well-
known, and corrective actions have been proposed. Section 5
builds on our averaging strategy to suggest new ways of
shortening the average.
4. A new averaging method for DTW

To solve the problems of existing pairwise averaging methods,
we introduce a global averaging strategy called DTW barycenter

averaging (DBA). This section first defines the new averaging
method and details its complexity. Then DBA is compared to
NLAAF and PSA on standard datasets [19]. Finally, the robustness
and the convergence of DBA are studied.

4.1. Definition of DBA

DBA stands for DTW barycenter averaging. It consists in a
heuristic strategy, designed as a global averaging method. DBA is
an averaging method which consists in iteratively refining an
initially (potentially arbitrary) average sequence, in order to
minimize its squared distance (DTW) to averaged sequences.

Let us provide an intuition on the mechanism of DBA. The aim
is to minimize the sum of squared DTW distances from the
average sequence to the set of sequences. This sum is formed by
single distances between each coordinate of the average sequence
and coordinates of sequences associated to it. Thus, the contribu-
tion of one coordinate of the average sequence to the total sum of
squared distance is actually a sum of euclidean distances between
this coordinate and coordinates of sequences associated to it
during the computation of DTW. Note that a coordinate of one of
the sequences may contribute to the new position of several
coordinates of the average. Conversely, any coordinate of the
average is updated with contributions from one or more
coordinates of each sequence. In addition, minimizing this partial
sum for each coordinate of the average sequence is achieved by
taking the barycenter of this set of coordinates. The principle of
DBA is to compute each coordinate of the average sequence as the
barycenter of its associated coordinates of the set of sequences.
Thus, each coordinate will minimize its part of the total WGSS in
order to minimize the total WGSS. The updated average sequence
is defined once all barycenters are computed.
Technically, for each refinement i.e., for each iteration, DBA
works in two steps:
1.
 Computing DTW between each individual sequence and the
temporary average sequence to be refined, in order to find
associations between coordinates of the average sequence and
coordinates of the set of sequences.
2.
 Updating each coordinate of the average sequence as the
barycenter of coordinates associated to it during the first step.

Let S¼ fS1, � � � ,SNg be the set of sequences to be averaged, let
C¼/C1, . . . ,CTS be the average sequence at iteration i and let
Cu¼/C1u, . . . ,CT uS be the update of C at iteration iþ1, of which we
want to find coordinates. In addition, each coordinate of the
average sequence is defined in an arbitrary vector space E (e.g.,
usually a Euclidean space):

8tA ½1,T�, Ct AE ð4Þ

We consider the function assoc, that links each coordinate of
the average sequence to one or more coordinates of the sequences
of S. This function is computed during DTW computation
between C and each sequence of S. The tth coordinate of the
average sequence Ct u is then defined as

Cut ¼ barycenterðassocðCtÞÞ ð5Þ

where

barycenterfX1, . . . ,Xag ¼
X1þ � � � þXa

a
ð6Þ

(the addition of Xi is the vector addition). Algorithm 5 details the
complete DBA computation.

Then, by computing again DTW between the average sequence
and all sequences of S, the associations created by DTW may
change. As it is impossible to anticipate how these associations
will change, we propose to make C iteratively converge. Fig. 2
shows four iterations (i.e., four updates) of DBA on an example
with two sequences.

Algorithm 5. DBA

Require: C¼/C1, . . . ,CT uS the initial average sequence

Require: S1 ¼/s11
, . . . ,s1T

S the 1st sequence to average

^
Require: Sn ¼/sn1

, . . . ,snT
S the nth sequence to average

Let T be the length of sequences
Let assocTab be a table of size T u containing in each cell a set of
coordinates associated to each coordinate of C
Let m[T,T] be a temporary DTW (cost,path) matrix

assocTab’½|, . . . ,|�
for seq in S do

m’DTWðC,seqÞ

i’T u

j’T

while iZ1 and jZ1 do
assocTab½i�’assocTab½i� [ seqj

ði,jÞ’secondðm½i,j�Þ
end while

end for
for i¼1to T do
Ciu¼ barycenterðassocTab½i�Þ {see Eq. (6)}

end for
return Cu

As a summary, the proposed averaging method for dynamic
time warping is a global approach that can average a set of
sequences all together. The update of the average sequence
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Fig. 2. DBA iteratively adjusting the average of two sequences.
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Fig. 3. An example of the DBA averaging method on one cluster from the ‘‘Trace’’ dataset from [19]. (a) A cluster of the Trace dataset, (b) The average sequence of the

cluster.
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between two iterations is independent of the order with which
the individual sequences are used to compute their contribution
to the update in question. Fig. 3 shows an example of an average
sequence computed with DBA, on one dataset from [19]. This
figure shows that DBA preserves the ability of DTW, identifying
time shifts.
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4.2. Initialization and convergence

The DBA algorithm starts with an initial averaging and refines
it by minimizing its WGSS with respect to the sequences it
averages. This section examines the effect of the initialisation and
the rate of convergence.

Initialization: There are two major factors to consider when
priming the iterative refinement:
�
 first the length of the starting average sequence,

�
 and second the values of its coordinates.
Regarding the length of the initial average, we have seen in
Section 3.2 that its upper bound is TN, but that such a length
cannot reasonably be used. However, the inherent redundancy of
the data lets one except that a much shorter sequence can be
adequate. We will observe in Section 4.5 that a length of around T

(the length of the sequences to average) performs well.
Regarding the values of the initial coordinates, it is theoreti-

cally impossible to determine the optimal values, otherwise the
whole averaging process would become useless. In methods that
require an initialisation, e.g., K-MEANS clustering, a large number of
heuristics have been developed. We will describe in Section 4.5
experiments with the most frequent techniques: first, a rando-
mized choice, and second, using an element of the set of
sequences to average. We will show empirically that the latter
gives an efficient initialisation.

Convergence. As explained previously, DBA is an iterative
process. It is necessary, once the average is computed, to update
it several times. This has the property of letting DTW refine its
associations. It is important to note that at each iteration, inertia
can only decrease, since the new average sequence is closer
(under DTW) to the elements it averages. If the update does not
modify the alignment of the sequences, so the Huygens’ theorem
applies; barycenters composing the average sequence will get
closer to coordinates of S. In the other case, if the alignment is
modified, it means that DTW calculates a better alignment with a
smaller inertia (which decreases in that case also). We thus have a
guarantee of convergence. Section 4.6 details some experiments
in order to quantify this convergence.

4.3. Complexity study

This section details the time complexity of DBA. Each iteration
of the iterative process is divided into two parts:
1.
 Computing DTW between each individual sequence and the
temporary (i.e., current) average sequence, to find associations
between its coordinates and coordinates of the sequences.
2.
 Updating the mean according to the associations just
computed.

Finding associations. The aim of Step 1 is to determine the set of
associations between each coordinate of C and coordinates of
sequences of S. Therefore we have to compute DTW once
per sequence to average, that is N times. The complexity of
DTW is YðT2Þ. The complexity of Step 1 is therefore YðN � T2Þ.

Updating the mean: After Step 1, each coordinate Ct of the
average sequence has a set of coordinates fp1, . . . ,pat g associated
to it. The process of updating C consists in updating each
coordinate of the average sequence as the barycenter this set of
coordinates. Since the average sequence is associated to N se-
quences, its T coordinates are, overall, associated to N � T

coordinates, i.e., all coordinates of sequences of S. The update
step will thus have a time complexity of YðN � TÞ.
Overall complexity: Because DBA is an iterative process, let us
note I the number of iterations. The time complexity of the
averaging process of N sequences, each one containing T

coordinates, is thus

YðDBAÞ ¼YðIðN � T2þN � TÞÞ ¼YðI � N � T2Þ ð7Þ

Comparison with PSA and NLAAF: To compute an average
sequence from two sequences, PSA and NLAAF need to compute
DTW between these two sequences, which has a time complexity
of YðT2Þ. Then, to compute the temporary average sequence, PSA
and NLAAF require YðTÞ operations. However, after having
computed this average sequence, it has to be shorten to the
length of averaged sequences. The classical averaging process
used is uniform scaling which requires YðTþ2Tþ3Tþ � � � þ T2Þ ¼

YðT3Þ. The computation of the average sequence of two sequences
requires YðT3þT2þTÞ ¼YðT3Þ. The overall NLAAF averaging of a
set of N sequences then requires

YððN�1Þ � ðT3þT2þTÞÞ ¼YðN � T3Þ ð8Þ

Moreover, as PSA is using a hierarchical strategy to order
sequences, it has at least to compute a dissimilarity matrix,
which requires YðN2 � T2Þ operations. The overall PSA averaging of
a set of N sequences then requires

YððN�1Þ � ðT3þT2þTÞþN2 � T2Þ ¼YðN � T3þN2 � T2Þ ð9Þ

As I5T , the time complexity of DBA is thus smaller than PSA
and NLAAF ones.

4.4. Experiments on standard datasets

Evaluating an average sequence is not a trivial task. No ground
truth of the expected sequence is available and we saw in Section 3
that many meanings are covered by the ‘‘average’’ (or consensus)
notion. Most experimental and theoretical works use the WGSS to
quantify the relative quality of an averaging technique. Thus, to
assess the performance of DBA by comparison with existing
averaging methods, we compare DBA to NLAAF and PSA in terms
of WGSS over datasets from the UCR classification/clustering
archive [19] (see Fig. 4).

Let us briefly remind what NLAAF and PSA are. NLAAF works
by placing each coordinate of the average sequence of two
sequences, as the center of each association created by DTW. PSA
associates each connected component of the graph (formed by the
coupling between two sequences) to a coordinate of the average
sequence. Moreover, to average N sequences, it uses a hierarchical
method to average at first closest sequences.

Experimental settings. To make these experiments reproducible,
we provide here the details about our experimental settings:
�
 all programs are implemented in Java and run on a Core 2 Duo
processor running at 2.4 GHz with 3 GB of RAM;

�
 the distance used between two coordinates of sequences is the

squared Euclidean distance. As the square function is a strictly
increasing function on positive numbers, and because we only
use comparisons between distances, it is unnecessary to
compute square roots. The same optimization has been used
in [31], and seems rather common;

�
 sequences have been normalized with Z-score: for each

sequence, the mean x and standard deviation s of the
coordinate values are computed, and each coordinate yi is
replaced by

yui ¼
yi�x

s
ð10Þ
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�
 we compare DBA to NLAAF on all datasets from [19] and to PSA
using results given by [21];

�
 as we want to test the capacity of DBA to minimize the

WGSS, and because we do not focus on supervised
methods, we put all sequences from both train and test dataset
together;

�
 for each set of sequences under consideration, we report the

inertia under DBA and other averaging techniques. To provide
quantitative evaluation, we indicate the ratio between the
inertia with respect to the average computed by DBA and those
computed by NLAAF and/or PSA (see the tables). To provide an
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Intraclass inertia comparison: In this first set of experiments, we
compute an average for each class in each dataset. Table 1 shows
the global WGSS obtained for each dataset. We notice that, for all
datasets, DBA reduces/improves the intraclass inertia. The geo-
metric average of the ratios shown in Table 1 is 65%.

Table 2 shows a comparison between results of DBA and PSA.
Here again, for all results published in [21], DBA outperforms PSA,
with a geometric average of inertia ratios of 65%.
0 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

90 100 110 120 130 140 150 160 170 180

5 250 275 300 325 350 375 400 425 450 475

65 70 75 80 85 90 95 100 105 110 115 120 125 130

40 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

50 55 60 65 70 75 80 85 90 95

65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

175 200 225 250 275 300 325 350

25 250 275 300 325 350 375 400 425 450 475

75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155

series from each class is displayed for each dataset.



Lighting7

0 25 50 75 100 125 150 175 200 225 250 275 300 325

OliveOil

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575

OSULeaf

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

SwedishLeaf

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

Synthetic control

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0

Trace

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

Two patterns

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

Wafer

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155

Yoga

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

0

5

10

0.0

0.5

1.0

1.5

-2.5

0.0

2.5

-2.5

0.0

2.5

-2
-1
0
1
2

0.0

2.5

-2
-1
0
1
2

-1
0
1
2

-1
0
1

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650

0.0

2.5

5.0

Lighting2

Fig. 4. (Continued)

F. Petitjean et al. / Pattern Recognition 44 (2011) 678–693686
Actually, such a decreases of inertia show that old averaging
methods could not be seriously considered for machine learning use.

Global dataset inertia: In the previous paragraph, we computed
an average for each class in each dataset. In this paragraph, the goal
is to test robustness of DBA with more data variety. Therefore, we
average all sequences of each dataset. This means that only one
average sequence is computed for a whole dataset. Thats way, we
compute the global dataset inertia under DTW with NLAAF and
DBA, to compare their capacity to summarize mixed data.

As can be seen in Table 3, DBA systematically reduces/
improves the global dataset inertia with a geometric average
ratio of 56%. This means that DBA not only performs better than
NLAAF (Table 1), but also more robust to diversity.
4.5. Impact of initialisation

DBA is deterministic once the initial average sequence C is
chosen. It is thus important to study the impact of the choice of
the initial mean on the results of DBA. When used with K-MEANS,
this choice must be done at each iteration of the algorithm, for
example by taking as the initialisation the average sequence C
obtained at the previous iteration. However, DBA is not limited to
this context.

We have seen in Section 4.2 that two aspects of initialisation
have to be evaluated empirically: first, the length of the initial
average sequence, and second the values of its coordinates.
We have designed three experiments on some of the datasets



Table 1
Comparison of intraclass inertia under DTW between NLAAF and DBA.

Dataset Intraclass inertia

NLAAF DBA DBA

NLAAF
(%)

50words 11.98 6.21 52

Adiac 0.21 0.17 81

Beef 29.90 9.50 32

CBF 14.25 13.34 94

Coffee 0.72 0.55 76

ECG200 11.34 6.95 61

FaceAll 17.77 14.73 83

FaceFour 34.46 24.87 72

Fish 1.35 1.02 75

GunPoint 7.24 2.46 34

Lighting2 194.07 77.57 40

Lighting7 48.25 28.77 60

OliveOil 0.018261 0.018259 100

OSULeaf 53.03 22.69 43

SwedishLeaf 2.50 2.21 88

Synthetic control 9.71 9.28 96

Trace 1.65 0.92 56

Two patterns 9.19 8.66 94

Wafer 54.66 30.40 56

Yoga 40.07 37.27 93

The best scores are shown in boldface.

Table 3
Comparison of global dataset inertia under DTW between NLAAF and DBA.

Dataset Global dataset inertia

NLAAF DBA DBA

PSA
(%)

50words 51 642 26 688 52

Adiac 647 470 73

Beef 3154 979 31

CBF 21 306 18 698 88

Coffee 61.60 39.25 64

ECG200 2190 1466 67

FaceAll 72 356 63 800 88

FaceFour 6569 3838 58

Fish 658 468 71

GunPoint 1525 600 39

Lighting2 25 708 9673 38

Lighting7 14 388 7379 51

OliveOil 2.24 1.83 82

OSULeaf 30 293 12 936 43

SwedishLeaf 5590 4571 82

Synthetic control 17 939 13 613 76

Trace 22 613 4521 20

Two patterns 122 471 100 084 82

Wafer 416 376 258 020 62

Yoga 136 547 39 712 29

The best scores are shown in boldface.

Table 2
Comparison of intraclass inertia under DTW between PSA and DBA.

Dataset Intraclass inertia

PSA DBA DBA

PSA
(%)

Beef 25.65 9.50 37

Coffee 0.72 0.55 76

ECG200 9.16 6.95 76

FaceFour 33.68 24.87 74

Synthetic control 10.97 9.28 85

Trace 1.66 0.92 56

The best scores are shown in boldface.
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from [19]. Because these experiments require heavy computa-
tions, we have not repeated the computation on all datasets.
1.
 The first experiment starts with randomly generated
sequences, of lengths varying from 1 to 2T, where T is the
length of the sequences in the data set. Once the length is
chosen, the coordinates are generated randomly with a normal
distribution of mean zero and variance one. The curves on
Fig. 5 show the variation of inertia with the length.
2.
 Because the previous experiment shows that the optimal
inertia is attained with an initial sequence of length in the
order of T, we have repeated the computation 100 times with
different, randomly generated initial sequences of length T: the
goal of this experiment is to measure how stable this heuristic
is. Green triangles on Fig. 5 show the inertias with the different
random initialisations of length T.
3.
 Because priming DBA with a sequence of length T seems to be
an adequate choice, we have tried to replace the randomly
generated sequence with one drawn (randomly) from the
dataset. We have repeated this experiment 100 times. Red
triangles on Fig. 5 show the inertias with the different initial
sequences from the dataset.

Our experiments on the choice of the initial average sequence
lead to two main conclusions. First, an initial average of length T

(the length of the data sequences) is the most appropriate. It
almost always leads to the minimal inertia. Second, randomly
choosing an element of the dataset leads to the least inertia on
almost all cases. Using some data to prime an iterative algorithm
is part of the folklore. DBA is another case where it performs well.
We have used this strategy in all our experiments with DBA.

Moreover, in order to compare the impact of the initialisation
on DBA and on NLAAF, we perform 100 computations of the
average on few datasets (because of computing times), by
choosing a random sequence from the dataset as an initialisation
of DBA. As NLAAF is sensitive to the initialisation too, the same
method is followed, in order to compare results. Fig. 6 presents
the mean and standard deviation of the final inertia. The results of
DBA are not only better than NLAAF (shown on the left part
of Fig. 6), but the best inertia obtained by NLAAF is even worse as
the worst inertia obtained by DBA (see the table on the right
of Fig. 6).

4.6. Convergence of the iterative process

As explained previously, DBA is an iterative process. It is
necessary, once the average is computed, to update it several times.
This has the property of letting DTW refine its associations. Fig. 7(a)
presents the average convergence of the iterative process on the
50words dataset. This dataset is diverse enough (it contains 50
different classes) to test the robustness of the convergence of DBA.

Besides the overall shape of the convergence curve in Fig. 7(a),
it is important to note that in some cases, the convergence can be
uneven (see Fig. 7(b) for an example). Even if this case is
somewhat unusual, one has to keep in mind that DTW makes
nonlinear distortions, which cannot be predicted. Consequently,
the convergence of DBA, based on alignments, cannot be always
smooth.
5. Optimization of the mean by length shortening

We mentioned in Section 3.4 that algorithms such as NLAAF
need to reduce the length of a sequence. Actually, this problem is
more global and concerns the scaling problem of a sequence under
time warping. Many applications working with subsequences or
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even with different resolutions2 require a method to uniformly
scale a sequence to a fixed length. This kind of methods is generally
called uniform scaling; further details about its inner working can
be found in [31].

Unfortunately, the use of uniform scaling is not always
coherent in the context of DTW, which computes non-uniform
distortions. To avoid the use of uniform scaling with DTW, as done
in [31,15,21], we propose here a new approach specifically
designed for DTW. It is called adaptive scaling, and aims at
reducing the length of a sequence with respect to one or more
other sequences. In this section, we first recall the definition of
uniform scaling, then we detail the proposed approach and finally
its complexity is studied and discussed.
2 The resolution in this case is the number of samples used to describe a

phenomenon. For instance, a music can be sampled with different bit rates.
5.1. Uniform scaling

Uniform scaling is a process that reduces the length of a
sequence with regard to another sequence. Let A and B be two
sequences. Uniform scaling finds the prefix Asub of A such that,
scaled up to B, DTW(Asub,B) is minimal. The subsequence Asub is
defined by

Asub ¼ argmin
iA ½1,T�

fDTWðA1,i,BÞg ð11Þ

uniform scaling has two main drawbacks: one is directly linked to
the method itself, and one is linked to its use with DTW. First,
while uniform scaling considers a prefix of the sequence (i.e., a
subsequence), the representativeness of the resulting mean using
such a reduction process can be discussed. Second, uniform
scaling is a uniform reduction process, whereas DTW makes
non-uniform alignments.



Dataset NLAAF DBA
Best score Worst score

Beef 26.7 13.2
Coffee 0.69 0.66

ECG200 9.98 8.9
Gun_Point 7.2 3.1
Lighting7 45 32

Fig. 6. Effect of initialisation on NLAAF and DBA.
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Fig. 8. Illustration of the length reduction process. (a) Alignment of two

sequences: sequence below is composed of two same coordinates, (b) alignment

of two sequences: sequence below is composed of only one coordinate.
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5.2. Adaptive scaling

We propose to make the scaling adaptive. The idea of the
proposed adaptive scaling process is to answer to the following
question: ‘‘How can one remove a point from a sequence, such as
the distance to another sequence does not increase much?’’ To
answer this question, adaptive scaling works by merging the two
closest successive coordinates.

To explain how adaptive scaling works, let us start with a
simple example. If two consecutive coordinates are identical, they
can be merged. DTW is able to stretch the resulting coordinate
and so recover the original sequence. This fusion process is
illustrated in Fig. 8. Note that in this example, DTW gives the
same score in Fig. 8(a) as in Fig. 8(b).

This article focuses on finding an average sequence consistent
with DTW. Performances of DBA have been demonstrated on an
average sequence of length arbitrarily fixed to T. In this context,
the question is to know if this average sequence can be shortened,
without making a less representative mean (i.e., without increas-
ing inertia). We show in the first example, that the constraint on
inertia is respected. Even if uniform scaling could be used to
reduce the length of the mean, an adaptive scaling would give



Table 4
Inertia comparison of intraclass inertias and lengths of resulting means with or

without using the adaptive scaling (AS) process.
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better results, because DTW is able to make deformations on the
time axis. Adaptive scaling is described in Algorithm 6.

Algorithm 6. Adaptive Scaling

Dataset Intraclass inertia Length of the mean

DBA DBA+AS DBA DBA+AS

50words 6.21 6.09 270 151

Adiac 0.17 0.16 176 162

CBF 13.34 12.11 128 57

FaceAll 14.73 14.04 131 95
Require: A¼/A1, . . . ,ATS
while Need to reduce the length of A

ði,jÞ’ successive coordinates with minimal distance
merge Ai with Aj

end while
return A
Fig. 10. Adaptive scaling: benefits of the reduction process for NLAAF.

Fish 1.02 0.98 463 365

GunPoint 2.46 2.0 150 48

Lighting2 77.57 72.45 637 188

Lighting7 28.77 26.97 319 137

OliveOil 0.018259 0.01818 570 534

OSULeaf 22.69 21.96 427 210

SwedishLeaf 2.21 2.07 128 95

Two patterns 8.66 6.99 128 59

Wafer 30.40 17.56 152 24

Yoga 37.27 11.57 426 195

Beef 9.50 9.05 470 242

Coffee 0.55 0.525 286 201

ECG200 6.95 6.45 96 48

FaceFour 24.87 21.38 350 201

Synthetic control 9.28 8.15 60 33

Trace 0.92 0.66 275 108

The best scores are shown in boldface.
Let us now explain how the inertia can also decrease by using
adaptive scaling. Fig. 9 illustrates the example used below.
Imagine now that the next to last coordinate CT�1 of the average
sequence is perfectly aligned with the last a coordinates of the N

sequences of S. In this case, the last coordinate CT of the average
sequence must still be, at least, linked to all last coordinates of the
N sequences of S. Therefore, as the next to last coordinate was (in
this example) perfectly aligned, aligning the last coordinate will
increase the total inertia. This is why adaptive scaling is not only
able to shorten the average sequence, but also to reduce the
inertia. Moreover, by checking the evolution of inertia after each
merging, we can control this length reduction process, and so
guarantee the improvement of inertia. Thus, given the resulting
mean of DBA, coordinates of the average sequence can be
successively merged as long as inertia decreases.

5.3. Experiments

Table 4 gives scores obtained by using adaptive scaling after
the DBA process on various datasets. It shows that adaptive
scaling alone always reduces the intraclass inertia, with a
geometric average of 84%. Furthermore, the resulting average
sequences are much shorter, by almost two thirds. This is an
interesting idea of the minimum necessary length for represent-
ing a tim behaviour.

In order to demonstrate that adaptive scaling is not only
designed for DBA, Fig. 10 shows its performances as a reducing
process in NLAAF. Adaptive scaling is here used to reduce the
length of a temporary pairwise average sequence (see Section 3.4).
Fig. 10 shows that adaptive scaling used in NLAAF leads to scores
similar to the ones achieved by PSA.

5.4. Complexity

Adaptive scaling (AS) consists in merging the two closest
successive coordinates in the sequence. If we know ahead of time
Fig. 9. Average sequence is drawn at the bottom and one sequence of the set is

drawn at the top.
the number K of coordinates that must be merged, for example
using AS for NLAAF to be scalable, it requires a time complexity of
YðK � TÞ, and is thus tractable.

One could, however, need to guarantee that adaptive scaling
does not merge too many coordinates. That is why we suggest to
control the dataset inertia, by computing it and by stopping the
adaptive scaling process if inertia increases. Unfortunately,
computing the dataset inertia under DTW takes YðN � T2Þ. Its
complexity may prevent its use in some cases.

Nevertheless, we give here some interesting cases, where the
use of adaptive scaling could be beneficial, because having shorter
sequences means spending less time in computing DTW. In
databases, the construction of indexes is an active research
domain. The aim of indexes is to represent data in a better way
while being fast queryable. Using adaptive scaling could be used
here, because it correctly represents data and reduces the DTW
complexity for further queries. The construction time of the index
is here negligible compared to the millions of potential queries.
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Another example is (supervised or unsupervised) learning, where
the learning time is often negligible compared to the time spent in
classification. adaptive scaling could be very useful in such
contexts, and can be seen in this case as an optimization process,
more than an alternative to uniform scaling.
6. Application to clustering

Even if DBA can be used in association to DTW out of the context
of K-MEANS (and more generally out of the context of clustering), it is
interesting to test the behaviour of DBA with K-MEANS because this
algorithm makes a heavy use of averaging. Most clustering techniques
with DTW use the K-MEDOIDS algorithm, which does not require any
computation of an average [15–18]. However, K-MEDOIDS has some
problems related to its use of the notion of median: K-MEDOIDS is not
idempotent, which means that its results can oscillate. Whereas DTW
is one of the most used similarity on time series, it was not possible to
use it reliably with well-known clustering algorithms.

To estimate the capacity of DBA to summarize clusters, we have
tested its use with the K-MEANS algorithm. We present here different
tests on standard datasets and on a satellite image time series. Here
again, result of DBA are compared to those obtained with NLAAF.

6.1. On UCR datasets

Table 5 shows, for each dataset, the global WGSS resulting
from a K-MEANS clustering. Since K-MEANS requires initial centers,
Fig. 11. Extract of the satellite image time series of KAL

Table 5
Comparison of intracluster inertia under DTW between NLAAF and DBA.

Dataset Intracluster inertia

NLAAF DBA DBA

NLAAF
(%)

50words 5920 3503 59

Adiac 86 84 98

Beef 393 274 70

CBF 12 450 11 178 90

Coffee 39.7 31.5 79

ECG200 1429 950 66

FaceAll 34 780 29 148 84

FaceFour 3155 2822 89

Fish 221 324 147

GunPoint 408 180 44

Lighting2 16 333 6519 40

Lighting7 6530 3679 56

OliveOil 0.55 0.80 146

OSULeaf 13 591 7213 53

SwedishLeaf 2300 1996 87

Synthetic control 5993 5686 95

Trace 387 203 52

Two patterns 45 557 40 588 89

Wafer 157 507 108 336 69

Yoga 73 944 24 670 33

The best scores are shown in boldface.
we place randomly as many centers as there are classes in each
dataset. As shown in the table, DBA outperforms NLAAF in all
cases except for Fish and OliveOil datasets. Including these
exceptions, the inertia is reduced with a geometric average of 72%.

Let us try to explain the seemingly negative results that appear
in Table 5. First, on OliveOil, the inertia over the whole dataset is
very low (i.e., all sequences are almost identical; see Fig. 4), which
makes it difficult to obtain meaningful results. The other particular
dataset is Fish. We have seen, in Section 4.4, that DBA outperforms
NLAAF provided it has meaningful clusters to start with. However,
here, the K-MEANS algorithm tries to minimize this inertia in
grouping elements in ‘‘centroid form’’. Thus, if clusters to identify
are not organized around ‘‘centroids’’, this algorithm may converge
to any local minima. In this case, we explain this exceptional
behaviour on Fish as due to non-centroid clusters. We have shown
in Section 4.4 that, if sequences are averaged per class, DBA
outperforms all results, even those of these two datasets. This
means that these two seemingly negative results are linked to the
K-MEANS algorithm itself, that converges to a less optimal local
minimum even though the averaging method is better.
6.2. On satellite image time series

We have applied the K-MEANS algorithm with DTW and DBA in
the domain of satellite image time series analysis. In this domain,
each dataset (i.e., sequence of images) provides thousands of
relatively short sequences. This kind of data is the opposite of
sequences commonly used to validate time sequences analysis.
Thus, in addition to evaluate our approach on small datasets of
long sequences, we test our method on large datasets of short
sequences.

Our data are sequences of numerical values, corresponding to
radiometric values of pixels from a satellite image time series
(SITS). For every pixel, identified by its coordinates (x,y), and for a
sequence of images /I1, . . . ,InS, we define a sequence as
/I1ðx,yÞ, . . . ,Inðx,yÞS. That means that a sequence is identified by
coordinates x and y of a pixel (not used in measuring similarity),
and that the values of its coordinates are the vectors of
radiometric values of this pixel in each image. Each dataset
contains as many sequences as there are pixels in one image.

We have tested DBA on one SITS of size 450�450 pixels, and
of length 35 (corresponding to images sensed between 1990 and
2006). The whole experiment thus deals with 202,500 sequences
of length 35 each, and each coordinate is made of three
radiometric values. This SITS is provided by the KALIDEOS database
[32] (see Fig. 11 for an extract).

We have applied the K-MEANS algorithm on this dataset, with a
number of clusters of 10 or 20, chosen arbitrarily. Then we
computed the sum of intraclass inertia after five or 10 iterations.
Table 6 summarizes results obtained with different parameters.

We can note that scores (to be minimized) are always ordered
as NLAAF4DBA4DBAþAS, which tends to confirm the behaviour
of DBA and adaptive scaling. As we could expect, adaptive scaling
IDEOS used. & CNES 2009—distribution spot image.



Table 6
Comparison of intracluster inertia of K-MEANS with different parameterizations.

Nb seeds Nb iterations Inertia

NLAAF DBA DBA and AS

10 5 2.82�107 2.73�107 2.59�107

20 5 2.58�107 2.52�107 2.38�107

10 10 2.79�107 2.72�107 2.58�107

20 10 2.57�107 2.51�107 2.37�107

Distance used is DTW while averaging methods are NLAAF, DBA and DBA followed

by adaptive scaling (AS).

Fig. 12. The average of one of the clusters produced by K-MEANS on the satellite

image time series. This sequence corresponds to the thematical behaviour of the

urban growth (construction of buildings, roads, etc.). The three rectangles

corresponds to three phases: vegetation or bare soil, followed by new roofs and

roads, followed by damaged and dusty roofs and roads.
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permits to significantly reduce the score of DBA. We can see that
even if the improvement seems less satisfactory, than those
obtained on synthetic data, it remains, however, better than NLAAF.

Let us try to explain why the results of DBA are close to those of
NLAAF. One can consider that when clusters are close to each other,
then the improvement is reduced. The most likely explanation is
that, by using so short sequences, DTW has not much material to
work on, and that the alignment it finds early have little chance to
change over the successive iterations. In fact, the shorter the
sequences are, the closer DTW is from the Euclidean distance.
Moreover, NLAAF makes less errors when there is no re-alignment
between sequences. Thus, when sequences are small, NLAAF makes
less errors. For that reason, even if DBA is in this case again better
than NLAAF, the improvement is smaller.

Let us now explain why adaptive scaling is so useful here. In
SITS, there are several evolutions which can be considered as
random perturbations. Thus, the mean may not need to represent
these perturbations, and we think that shorter means are some-
times better, because they can represent a perturbed constant
subsequence by a single coordinate. Actually, this is often the case
in SITS. As an example, a river can stay almost the same over a SITS
and one or two coordinates can be sufficient to represent the
evolution of such an area.

From a thematic point of view, having an average for each
cluster of radiometric evolution sequences highlights and
describes typical ground evolutions. For instance, the experiment
just described provides a cluster representing a typical urban
growth behaviour (appearance of new buildings and urban
densification). This is illustrated on Fig. 12. Combining DTW
with DBA has led to the extraction of urbanizing zones, but has
also provided a symbolic description of this particular behaviour.
Using euclidean distance instead of DTW, or any other averaging
technique instead of DBA, has led to inferior results. Euclidean
distance was expected to fail somehow, because urbanization has
gone faster in some zones than in others, and because the data
sampling is nonuniform. The other averaging methods have also
failed to produce meaningful results, probably because of the
intrinsic difficulty of the data (various sensors, irregular sampling,
etc.), which leads to difficultly separable objects. In such cases,
less precise averaging tends to blur cluster boundaries.
7. Conclusion

The DTW similarity measure is probably the most used and
useful tool to analyse sets of sequences. Unfortunately, its
applicability to data analysis was reduced because it had no
suitable associated averaging technique. Several attempts have
been made to fill the gap. This article proposes a way to classify
these averaging methods. This ‘‘interpretive lens’’ permits to
understand where existing techniques could be improved. In light
of this contextualization, this article defines a global averaging
method, called DTW barycenter averaging (DBA). We have shown
that DBA achieves better results on all tested datasets, and that its
behaviour is robust.

The length of the average sequence is not trivial to choose. It has
to be as short as possible, but also sufficiently long to represent the
data it covers. This article also introduces a shortening technique of
the length of a sequence called adaptive scaling. This process is
shown to shorten the average sequence in adequacy to DTW and to
the data, but also to improve its representativity.

Having a sound averaging algorithm lets us apply clustering
techniques to time series data. Our results show again a significant
improvement in cluster inertia compared to other techniques,
which certainly increases the usefulness of clustering techniques.

Many application domains now provide time-based data and
need data mining techniques to handle large volumes of such
data. DTW provides a good similarity measure for time series, and
DBA complements it with an averaging method. Taken together,
they constitute a useful foundation to develop new data mining
systems for time series. For instance, satellite imagery has started
to produce satellite image time series, containing millions of
sequences of multi-dimensional radiometric data. We have briefly
described preliminary experiments in this domain.

We believe this work opens up a number of research
directions. First, because it is, as far as we know, the first global
approach to the problem of averaging a set of sequences, it raises
interesting questions on the topology of the space of sequences,
and on how the mean relates to the individual sequences.

Regarding DTW barycenter averaging proper, there are still a
few aspects to be studied. One aspect could be the choice of the
initial sequence where sequences to be averaged do not have
the same length. Also we have provided an empirical analysis of
the rate of convergence of the averaging process. More theoretical
or empirical work is needed to derive a more robust strategy, able
to adjust the number of iterations to perform. An orientation of
this work could be the study of the distribution of coordinates
contributing to a coordinate of the average sequence.

Adaptive scaling has important implications on performance
and relevance. Because of its adaptive nature, it ensures that
average sequences have ‘‘the right level of detail’’ on appropriate
sequence segments. It currently considers only the coordinates of
the average sequence. Incorporating averaged sequences may
lead to a more precise scaling, but would require more computa-
tion time. Finding the right balance between cost and precision
requires further investigation.

When combining DBA with adaptive scaling, e.g., when
building reduced average sequences, we have often noticed that
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they provide short summaries, that are at the same time easy to
visualize and truly representative of the underlying phenomenon.
For instance, the process of length reduction builds an average
sequence around the major states of the data. It thus provides a
sampling of the dataset built from the data themselves. Exploiting
and extending this property is a promising research direction.

References

[1] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (3) (1999) 264–323.

[2] A. Rauber, E. Pampalk, J. Paralic, Empirical evaluation of clustering algorithms,
Journal of Information and Organizational Sciences (JIOS) 24 (2) (2000)
195–209.

[3] P. Berkhin, Survey of clustering data mining techniques, Technical Report,
Accrue Software, San Jose, CA, 2002.

[4] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Transactions on
Neural Networks 16 (3) (2005) 645–678.

[5] T.W. Liao, Clustering of time series data—a survey, Pattern Recognition 38
(11) (2005) 1857–1874.

[6] H. Sakoe, S. Chiba, A dynamic programming approach to continuous speech
recognition, Proceedings of the Seventh International Congress on Acoustics,
vol. 3, 1971, pp. 65–69.

[7] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken
word recognition, IEEE Transactions on Acoustics, Speech and Signal
Processing 26 (1) (1978) 43–49.

[8] A.P. Shanker, A. Rajagopalan, Off-line signature verification using DTW,
Pattern Recognition Letters 28 (12) (2007) 1407–1414.

[9] D. Sankoff, J. Kruskal, The symmetric time-warping problem: from contin-
uous to discrete, in: Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison, Addison Wesley Publishing
Company1983, pp. 125–161.

[10] J. Aach, G.M. Church, Aligning gene expression time series with time warping
algorithms, Bioinformatics 17 (6) (2001) 495–508.

[11] Z. Bar-Joseph, G. Gerber, D.K. Gifford, T.S. Jaakkola, I. Simon, A new approach
to analyzing gene expression time series data, in: RECOMB: Proceedings of
the Sixth Annual International Conference on Computational Biology, ACM,
New York, NY, USA2002, pp. 39–48.

[12] D.M. Gavrila, L.S. Davis, Towards 3-D model-based tracking and recognition
of human movement: a multi-view approach, in: IEEE International Work-
shop on Automatic Face- and Gesture-Recognition., 1995, pp. 272–277.

[13] T. Rath, R. Manmatha, Word image matching using dynamic time warping,
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2003,
pp. 521–527.

[14] V. Niennattrakul, C.A. Ratanamahatana, Inaccuracies of shape averaging
method using dynamic time warping for time series data, in: S. Berlin (Ed.),
Computational Science–ICCS, Lecture Notes in Computer Science, vol. 4487,
2007.

[15] V. Niennattrakul, C.A. Ratanamahatana, On clustering multimedia time series
data using K-means and dynamic time warping, in: International Conference
on Multimedia and Ubiquitous Engineering, 2007, pp. 733–738.

[16] T. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R. Kaste, J. O’May,
Understanding and projecting the battle state, in: 23rd Army Science
Conference, 2002.

[17] T.W. Liao, C.-F. Ting, P.-C. Chang, An adaptive genetic clustering method for
exploratory mining of feature vector and time series data, International
Journal of Production Research 44 (2006) 2731–2748.

[18] V. Hautamaki, P. Nykanen, P. Franti, Time-series clustering by approximate
prototypes, in: 19th International Conference on Pattern Recognition, 2008,
pp. 1–4.

[19] E. Keogh, X. Xi, L. Wei, C.A. Ratanamahatana, The UCR time series classification/
clustering homepage, /http://www.cs.ucr.edu/�eamonn/time_series_data/S,
2006.

[20] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997.

[21] V. Niennattrakul, C.A. Ratanamahatana, Shape averaging under time warping,
in: International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications, and Information Technology, 2009.

[22] E. Dimitriadou, A. Weingessel, K. Hornik, A combination scheme for fuzzy
clustering, International Journal of Pattern Recognition and Artificial
Intelligence 16 (7) (2002) 901–912.

[23] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, Journal of Molecular
Biology 48 (3) (1970) 443–453.

[24] L. Wang, T. Jiang, On the complexity of multiple sequence alignment, Journal
of Computational Biology 1 (4) (1994) 337–348.

[25] R.C. Edgar, MUSCLE: a multiple sequence alignment method with reduced
time and space complexity, BMC Bioinformatics 5 (1) (2004) 1792–1797.

[26] J. Pei, R. Sadreyev, N.V. Grishin, PCMA: fast and accurate multiple sequence
alignment based on profile consistency, Bioinformatics 19 (3) (2003)
427–428.

[27] T. Lassmann, E.L.L. Sonnhammer, Kalign—an accurate and fast multiple
sequence alignment algorithm, BMC Bioinformatics 6 (1) (2005) 298–306.

[28] C. Notredame, D.G. Higgins, J. Heringa, T-coffee: a novel method for fast and
accurate multiple sequence alignment, Journal of Molecular Biology 302 (1)
(2000) 205–217.

[29] J. Pei, N.V. Grishin, PROMALS: towards accurate multiple sequence align-
ments of distantly related proteins, Bioinformatics 23 (7) (2007) 802–808.

[30] L. Gupta, D. Molfese, R. Tammana, P. Simos, Nonlinear alignment and
averaging for estimating the evoked potential, IEEE Transactions on
Biomedical Engineering 43 (4) (1996) 348–356.

[31] A.W.-C. Fu, E.J. Keogh, L.Y.H. Lau, C.A. Ratanamahatana, R.C.-W. Wong, Scaling
and time warping in time series querying, VLDB Journal 17 (4) (2008)
899–921.

[32] CNES, Kalideos, Distribution Spot Image, /http://kalideos.cnes.frS, 2009.
Franc-ois Petitjean is a Ph.D. student in Computer Science at the University of Strasbourg, France. His research interests include complex time series clustering and remote
sensing image analysis.
Alain Ketterlin holds a Ph.D. in Computer Science from the University Louis Pasteur, Strasbourg, France. Since 1995, he is Assistant Professor at University of Strasbourg.
His research interests include data mining and remote sensing image processing.
Pierre Ganc-arski received his Ph.D. degree in 1989 and his Habilitation in 2007 in Computer Science from the University Louis Pasteur, Strasbourg, France. He is currently
an Associate Professor at the Department of Computer Science from the University of Strasbourg. His current research interests include collaborative multistrategical
clustering with applications to complex data mining and remote sensing image analysis.

http://www.cs.ucr.edu/&sim;eamonn/time_series_data/
http://www.cs.ucr.edu/&sim;eamonn/time_series_data/
http://kalideos.cnes.fr

	A global averaging method for dynamic time warping, with applications to clustering
	Introduction
	Dynamic time warping (DTW)
	Related work
	The consensus sequence problem
	Exact solutions to the Steiner sequence problem
	Approximating the exact solution
	Ordering schemes
	Computing the average sequence

	Existing algorithms
	Motivation

	A new averaging method for DTW
	Definition of DBA
	Initialization and convergence
	Complexity study
	Experiments on standard datasets
	Impact of initialisation
	Convergence of the iterative process

	Optimization of the mean by length shortening
	Uniform scaling
	Adaptive scaling
	Experiments
	Complexity

	Application to clustering
	On UCR datasets
	On satellite image time series

	Conclusion
	References




