INFORMATION THEORY AND PROBABILITIES

Hervé Blanchon Laurent Besacier Laboratoire LIG Équipe GETALP

herve.blanchon@univ-grenoble-alpes.fr laurent.besacier@univ-grenoble-alpes.fr

Language as data

- Large amounts of texts available in digital form
- Billions of documents available on the Web
- Tens of thousands of annotated sentences (syntax trees)
- Hundred million words translated between English and other languages

Statistics on the novel "Tom Sawyer" by M. Twain

	Word	Count	Use	
at the top	the	3332	determiner (article)	
	and	2973	conjunction	
Exception: Tom	а	1775	determiner	
	to	1725	preposition, verbal infinitive marker	
word tokens: 73,370	of	1440	preposition	
	was	1161	auxiliary verb	
word types: 8,018	it	1027	(personal/expletive) pronoun	
	in	906	preposition	
tokens to types ratio: 8.9	that	877	complementizer, demonstrative	
	he	877	(personal) pronoun	
	1	783	(personal) pronoun	
	his	772	(possessive) pronoun	
	you	686	(personal) pronoun	
	Tom	679	proper noun	
	with	642	preposition	

Distributions

🛃 3993 singletons					
Ś	Most words appear somewhat rarely				
	The main part of the				
	text corresponds to				
	the hundred most				
	frequent words				

Count	Count of count
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
11-50	540
51-100	99
> 100	102

George Kingsley Zipf (1902–1950)

Law : $f \times r = k$

Rank r	Word	Count f	f imes r
1	the	3332	3332
2	and	2973	5944
3	а	1775	5235
10	he	887	8770
20	but	410	8400
30	be	294	8820
100	two	104	10400
1000	family	8	8000
8000	applausive	1	8000

Zipf's Law for the Brown corpus

Brown Univ. Standard Corpus of Present-Day American English

Information Theory & Probab httetps://en.wikipedia.org/wiki/Brown_Corpus

Probability distribution

The probability (distribution) p(w) of a word w in a corpus with s distinct words is:

$$p(w) = \frac{\operatorname{count}(w)}{\sum_{i=1}^{s} \operatorname{count}(w_i)}$$

- This estimation is referred to as "maximum likelihood"
- **E** Distribution which answers the question:
 - "If I select randomly a word from a text, what is the probability that this word is the word w?"

Formalization

🛃 Let W be a random variable

- \blacksquare We define the probability distribution p,
 - which indicates how likely the variable W takes the 'value' w ("is the word w")

$$prob(W = w) = p(w)$$

Joint Probability

🛃 Goal

Study of two random variables at the same time

< Example:

- the words w_1 and w_2 that appear one after the other (a bigram), we model this with the distribution $p(w_1, w_2)$
 - If the occurrence of two words in bigrams is independent, we can write:
 - $p(w_1, w_2) = p(w_1)p(w_2)$, this assumption is probably wrong!
- Estimating the joint probability of two variables:
 - the same way this is done for a single variable

$$p(w_1, w_2) = \frac{\text{count}(w_1, w_2)}{\sum_{w'_1, w'_2} \text{count}(w'_1, w'_2)}$$

Conditional probability

Here $p(w_2|w_1)$

- 🛃 Goal
 - solution answer the question: if the random variable $W_1 = w_1$, what is the probability that the variable W_2 takes the 'value' w_2

Mathematically:
$$p(w_2|w_1) = \frac{p(w_1,w_2)}{p(w_1)}$$

 $\leq p(w_1, w_2)$ joint probability

📙 Note

 $if W_1$ and W_2 are independent then $p(w_2|w_1) = p(w_2)$

Rule 1: "Chain rule"

🛃 We have

$p(w_1, w_2) = p(w_1)p(w_2|w_1)$ $p(w_1, w_2, w_3) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2)$ etc.

Rule 2: "Bayes rule"

E The rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

E Obtained from:

$$p(x,y) = p(y,x)$$
$$p(x|y)p(y) = p(y|x)p(x)$$
$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

In other words...

In other words...

P(X,Y) means "probability that X and Y are both true"

P(brown-eyed baby, baby boy)

Size of brown-eyed baby \cap baby boy relative to babies

In other words...

P(X|Y) means "probability that X is true while Y is true"

 \checkmark P(baby is named John | baby is a boy) = 0.002

 \checkmark P(baby is a boy | baby is named John) = 1

Expectation

🛃 Informal definition

- the expected value of a random variable is intuitively the long-run mean or average value of repetitions of the experiment it represents
- Expectation of a random variables X

a set of values
$$x_1, x_2, \dots, x_n$$

Solution a probability
$$p(x_i), \forall i \in [1..n]$$

$$E(X) = \sum_{i=1}^{n} p(x_i) x_i$$

Example: a dice

 $\mathbf{6}$ 6 equiprobable (1/6) resting positions (1, 2, ... 6)

$$E(dice) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

Variance

🛃 Variance (Var)

- the expectation of the squared deviation of a random variable from its mean
- measures how far a set of (random) numbers are spread out from their average value

$$\bigvee Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$

For a discrete random variable $X: x_1 \mapsto p_1, ..., x_n \mapsto p_n$ $\bigvee Var(X) = \sum_{i=1}^n p(x_i) \cdot (x_i - E(X))^2$

E Standard deviation (σ)

- Low: points close to the mean (expected value)
- High: points spread out over wider range of values

$$\mathbf{\mathbf{6}} \sigma^2 = Var(X)$$

Variance

1

Example with the dice

$$War(X) = \frac{1}{6}(1-3.5)^2 + \frac{1}{6}(2-3.5)^2 + \frac{1}{6}(3-3.5)^2 + \frac{1}{6}(4-3.5)^2 + \frac{1}{6}(4-3.5)^2 + \frac{1}{6}(5-3.5)^2 + \frac{1}{6}(6-3.5)^2$$
$$= \frac{1}{6}((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2)$$
$$= \frac{1}{6}(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25)$$
$$= 2.917$$

Distributions

🛃 Uniform

All events are equiprobable

$$\oint p(x) = p(y)$$
 for all x, y

🛃 Binomial

- a series of trials with binary output (eg success / failure) with probability p of success
- the probability of k successes in n trials is given by the probability mass function:

Bayesian estimation

🛃 Model *M*, Data *D*

Solution What is the most likely model given the data? => p(M|D)

$$p(M|D) = \frac{p(D|M) p(M)}{p(D)}$$

 $\leq argmax_M p(M|D) = argmax_M p(D|M) p(M)$

👂 with

the estimation of a model p(w) with the frequencies of words corresponds to a Bayesian estimation with a uniform prior probability (estimated by maximum likelihood)

Entropy

Important concept that measures the "degree of disorder"

 $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$

Examples

- 4 1 event: p(a) = 1
 - $\clubsuit H(X) = 0 = -1\log 1$
- Solution 2 equiprobable events: p(a) = 0.5, p(b) = 0.5 $H(X) = 1 = -0.5\log 0.5 0.5\log 0.5$
- 4 equiprobable events:
 - 4 H(X) = 2

Entropy

4 events with a more likely than other (a) = 0.7, p(b) = 0.1, p(c) = 0.1, p(d) = 0.1

$$H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1 -0.1 \log_2 0.1 - 0.1 \log_2 0.1$$

$$= -0.7 \log_2 0.7 - 0.3 \log_2 0.1$$

- $= -0.7 \times -0.5146 0.3 \times -3.3219$
- = 0.36020 + 0.99658
- = 1.35678

Entropy

🛃 Intuition:

source a good model should have a low entropy ...

Many probabilistic models in language processing lead to a reduction of entropy

Information theory and entropy

- Suppose we want to encode a sequence of events *X*
- Each event is encoded by a sequence of bits

E Examples

- **I** Coin: a = 0, b = 1
- Four equiprobable events: a = 00, b = 01, c = 10, d = 11

Huffman coding (less bits for more frequent letter)

The number of bits needed to encode the events of X is greater than or equal to the entropy of X

References

- Manning and Schutze: "Foundations of Statistical Language Processing", 1999, MIT Press, available online
- Jurafsky and Martin: "Speech and Language Processing", 2000, Prentice Hall.
- Rajman M. "Speech and language engineering", 2007, EPFL Press.