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Language as	data

Large	amounts	of	texts	available	in	digital	form
Billions	of	documents	available	on	the	Web
Tens	of	thousands	of	annotated	sentences	
(syntax	trees)
Hundred	million	words	translated	between	
English	and	other	languages
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Statistics	on	the	novel	“Tom	Sawyer”	by	M.	Twain
Word Count Use
the 3332 determiner	(article)
and 2973 conjunction
a 1775 determiner
to 1725 preposition,	verbal	infinitive	marker
of 1440 preposition
was 1161 auxiliary	verb
it 1027 (personal/expletive) pronoun
in 906 preposition
that 877 complementizer,	demonstrative
he 877 (personal) pronoun
I 783 (personal)	pronoun
his 772 (possessive)	pronoun
you 686 (personal)	pronoun
Tom 679 proper	noun
with 642 preposition

Function words
at	the	top

Exception:	Tom

word tokens:
73,370

word types:
8,018

tokens to	types	
ratio:	8.9
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Distributions
3993	singletons
Most	words	appear
somewhat	rarely

The	main	part	of	the	
text	corresponds	to	
the	hundred	most	
frequent	words

Count Count	of	count
1 3993
2 1292
3 664
4 410
5 243
6 199
7 172
8 131
9 82
10 91
11-50 540
51-100 99
>	100 102
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Zipf’s Law

Law	:	𝑓	×	𝑟 = 𝑘
Rank					𝑟 Word Count				 𝑓 𝒇	×	𝒓

1 the 3332 3332
2 and 2973 5944
3 a 1775 5235
10 he 887 8770
20 but 410 8400
30 be 294 8820
100 two 104 10400
1000 family 8 8000
8000 applausive 1 8000

George	Kingsley	Zipf
(1902–1950)
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Zipf’s Law	for	the	Brown	corpus
Brown	Univ.	Standard	Corpus	of	Present-Day	American	English

Compiled
in	the	60s
1M	words

k	=	100,000

https://en.wikipedia.org/wiki/Brown_CorpusInformation	Theory	&	Probabilities 5



Probability	distribution

The	probability	(distribution)	𝑝(𝑤) of	a	word	𝑤
in	a	corpus	with	𝑠	distinct	words	is:

This	estimation	is	referred	to	as	“maximum	
likelihood”
Distribution	which	answers	the	question:
“If	I	select	randomly	a	word	from	a	text,	what	is	the	
probability	that	this	word	is	the	word	𝑤?”
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𝑝 𝑤 =
count 𝑤

∑ count 𝑤45
467



Formalization

Let	𝑊 be	a	random	variable
We	define	the	probability	distribution	𝑝,	
which	indicates	how	likely	the	variable	𝑊 takes	the	
‘value’	𝑤	(“is	the	word	𝑤”)

𝑝𝑟𝑜𝑏 𝑊 = 𝑤 = 𝑝(𝑤)
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Joint	Probability

Goal
Study	of	two	random	variables	at	the	same	time
Example:
the	words	𝑤7 and	𝑤; that	appear	one	after	the	other	(a	
bigram),	we	model	this	with	the	distribution	𝑝(𝑤7, 𝑤;)
If	the	occurrence	of	two	words	in	bigrams	is	independent,	we	
can	write:
𝑝(𝑤7,𝑤;) 	= 	𝑝(𝑤7)𝑝(𝑤;),	this	assumption	is	probably	wrong!

Estimating	the	joint	probability	of	two	variables:
the	same	way	this	is	done	for	a	single	variable
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𝑝 𝑤7, 𝑤; =
count 𝑤7, 𝑤;

∑ count 𝑤7=, 𝑤;=�
?@A ,?BA



Conditional	probability

Written	𝑝(𝑤;|𝑤7)
Goal
answer	the	question:	if	the	random	variable	𝑊7 = 𝑤7,	
what	is	the	probability	that	the	variable	𝑊;	takes	the	
‘value’	𝑤;

Mathematically:	𝑝 𝑤; 𝑤7 = D(?@,?B)
D(?@)

𝑝(𝑤7, 𝑤;) joint	probability

Note
if	𝑊7 and	𝑊; are	independent then	𝑝 𝑤; 𝑤7 = 𝑝(𝑤;)
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Rule	1:	“Chain	rule”

We	have
𝑝 𝑤7, 𝑤; = 𝑝 𝑤7 𝑝 𝑤; 𝑤7
𝑝 𝑤7, 𝑤;, 𝑤E = 𝑝 𝑤7 𝑝 𝑤; 𝑤7 𝑝 𝑤E 𝑤7, 𝑤;
etc.
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Rule	2:	“Bayes	rule”

The	rule:

Obtained	from:
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𝑝 𝑥, 𝑦 = 𝑝(𝑦, 𝑥)

𝑝 𝑥 𝑦 𝑝 𝑦 = 𝑝 𝑦 𝑥 𝑝 𝑥

𝑝 𝑥|𝑦 =
𝑝 𝑦|𝑥 𝑝 𝑥

𝑝 𝑦

𝑝 𝑥|𝑦 =
𝑝 𝑦|𝑥 𝑝 𝑥

𝑝 𝑦



In	other	words…

𝑃(𝑋)means	“probability	that	𝑋 is	true”
𝑃 𝑏𝑎𝑏𝑦	𝑖𝑠	𝑎	𝑏𝑜𝑦 	≅ 0.5
%	of	total	that	are	boys
𝑃 𝑏𝑎𝑏𝑦	𝑖𝑠	𝑛𝑎𝑚𝑒𝑑	𝐽𝑜ℎ𝑛 ≅ 0.001
%	of	total	named	John

babiesbaby boys

John
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In	other	words…

𝑃(𝑋, 𝑌)means	“probability	that	𝑋 and	𝑌 are	both	
true”	

Size	of	𝑋 ∩ 𝑌 relative	to	Ω
𝑃(𝑏𝑟𝑜𝑤𝑛−𝑒𝑦𝑒𝑑	𝑏𝑎𝑏𝑦, 𝑏𝑎𝑏𝑦	𝑏𝑜𝑦)
Size	of	𝑏𝑟𝑜𝑤𝑛−𝑒𝑦𝑒𝑑	𝑏𝑎𝑏𝑦 ∩ 𝑏𝑎𝑏𝑦	𝑏𝑜𝑦 relative	to	𝑏𝑎𝑏𝑖𝑒𝑠

babiesbaby boys

John brown-eyed 
babies
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In	other	words…

𝑃(𝑋|𝑌)means	“probability	that	𝑋 is	true	while	
𝑌 is	true”

Size	of	𝑋 ∩ 𝑌 relative	to	𝑌
𝑃(𝑏𝑎𝑏𝑦	𝑖𝑠	𝑛𝑎𝑚𝑒𝑑	𝐽𝑜ℎ𝑛	|	𝑏𝑎𝑏𝑦	𝑖𝑠	𝑎	𝑏𝑜𝑦) 	= 	0.002
D \]^_,`]a
D `]a

= b.bb7
b.c

𝑃(𝑏𝑎𝑏𝑦	𝑖𝑠	𝑎	𝑏𝑜𝑦	|	𝑏𝑎𝑏𝑦	𝑖𝑠	𝑛𝑎𝑚𝑒𝑑	𝐽𝑜ℎ𝑛	) 	= 	1
D \]^_,`]a
D \]^_

= b.bb7
b.bb7

babiesbaby boys

John
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Expectation
Informal	definition
the	expected	value	of	a	random	variable	is	intuitively	
the	long-run	mean	or	average	value	of	repetitions	of	
the	experiment	it	represents
Expectation	of	a	random	variables	𝑋
a	set	of	values	𝑥7,	𝑥; , … , 𝑥_
a	probability	𝑝 𝑥4 , ∀𝑖 ∈ [1. . 𝑛]

𝐸 𝑋 =j 𝑝 𝑥4 𝑥4
_

467
Example:	a	dice
6	equiprobable (1/6)	resting	positions	(1, 2, …6)
𝐸 𝑑𝑖𝑐𝑒 = @

n×7o
@
n×;o

@
n×E

@
pn×qo

@
n×co

@
n×r6E.c
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Variance

Variance	(𝑉𝑎𝑟)
the	expectation	of	the	squared	deviation	of	a	random	variable	from	its	mean
measures	how	far	a	set	of	(random)	numbers	are	spread	out	from	their	average	value

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸(𝑋) ; = 𝐸 𝑋; − 𝐸 𝑋 ;

For	a	discrete	random	variable	𝑋:	𝑥7 ⟼ 𝑝7,… , 𝑥_ ⟼ 𝑝_
𝑉𝑎𝑟 𝑋 = ∑ 𝑝 𝑥4 . (𝑥4 − 𝐸(𝑋));_

467

Standard	deviation	(𝜎)	
quantify	the	amount	of	variation	or	dispersion	of	a	set	of	data	values

Low:	points	close	to	the	mean	(expected	value)
High:	points	spread	out	over	wider	range	of	values

𝜎; = 𝑉𝑎𝑟 𝑋
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Variance

Example	with	the	dice

𝑉𝑎𝑟 𝑋 =
1
6 1 − 3.5 ; +  16 2 − 3.5 ; +

1
6 3 − 3.5 ;

+
1
6 4 − 3.5 ; +

1
6 5 − 3.5 ; +

1
6 6 − 3.5 ;

= 1
6 −2.5 ; + −1.5 ; + −0.5 ; + 0.5; + 1.5; + 2.5;

= 1
6 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25

= 2.917
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Distributions

Uniform
All	events	are	equiprobable
𝑝(𝑥) 	= 	𝑝(𝑦)	for	all	𝑥, 𝑦

Binomial
a	series	of	trials	with	binary	output	(eg success	/	failure)	with	
probability	𝑝 of	success
the	probability	of	𝑘 successes	in	𝑛 trials	is	given	by	the	
probability	mass	function:

𝑃𝑟 𝑘; 𝑛, 𝑝 = 𝑛
𝑘 𝑝| 1 − 𝑝 _}|

with	 𝑛𝑘 = _!
|! _}| !

(binomial	coefficient)
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Bayesian	estimation

Model	𝑀,	Data	𝐷
What	is	the	most	likely	model	given	the	data?	=>	𝑝(𝑀|𝐷)

𝑝 𝑀|𝐷 = D �|� 	D(�)
D(�)

𝑎𝑟𝑔𝑚𝑎𝑥�	𝑝 𝑀 𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥�	𝑝 𝐷 𝑀 	𝑝 𝑀

with	
𝑝(𝑀):	a	priori	probability	of	the	model
the	estimation	of	a	model	𝑝(𝑤)	with	the	frequencies	of	words	
corresponds	to	a	Bayesian	estimation	with	a	uniform	prior	
probability	(estimated	by	maximum	likelihood)
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Entropy

Important	concept	that	measures
the	“degree	of	disorder”

𝐻 𝑋 = −∑ 𝑝 𝑥4 log 𝑝(𝑥4)_
467

Examples
1	event:	𝑝(𝑎) 	= 	1
𝐻(𝑋) 	= 	0	 = −	1log1

2	equiprobable events:	𝑝(𝑎) 	= 	0.5,	𝑝(𝑏) 	= 	0.5
𝐻(𝑋) 	= 	1	 = 	−0.5log0.5 − 0.5log0.5

4	equiprobable events:
𝐻(𝑋) 	= 	2
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Entropy

4	events with a more likely than other
𝑝(𝑎) 	= 	0.7,	𝑝(𝑏) 	= 	0.1,	𝑝(𝑐) 	= 	0.1,	𝑝(𝑑) 	= 	0.1

𝐻(X) = −0.7 log; 0,7 − 0.1 log; 0.1
−0.1 log; 0.1 − 0.1 log; 0.1

= −0.7 log; 0.7 − 0.3 log; 0.1

= −0.7×−0.5146 − 0.3×−3.3219

= 0.36020 + 0.99658

= 1.35678
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Entropy

Intuition:
a	good	model	should	have	a	low	entropy	...

Many	probabilistic	models	in	language	
processing	lead	to	a	reduction	of	entropy
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Information theory and entropy

Suppose	we	want	to	encode	a	sequence	of	
events	𝑋
Each	event	is	encoded	by	a	sequence	of	bits
Examples
Coin:	𝑎 = 0,	𝑏 = 1
Four	equiprobable events:	𝑎	 = 	00,	𝑏	 = 	01,	
𝑐	 = 	10,	𝑑	 = 	11
Huffman	coding	(less	bits	for	more	frequent	letter)

The	number	of	bits	needed	to	encode	the	
events	of	𝑋 is	greater	than	or	equal	to	the	
entropy	of	𝑋
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