INFORMATION THEORY AND
PROBABILITIES

== AQY

Hervé Blanchon **‘ o0

ALenave
Laurent Besacier TA ﬁo,ew

Laboratoire LIG
Equipe GETALP

herve.blanchon@univ-grenoble-alpes.fr
laurent.besacier@univ-grenoble-alpes.fr



Language as data

1 Large amounts of texts available in digital form
B Billions of documents available on the Web

¥l Tens of thousands of annotated sentences
(syntax trees)

™1 Hundred million words translated between
English and other languages
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Function words
at the top

Exception: Tom

word tokens:
73,370

word types:
8,018

tokens to types
ratio: 8.9

Count Words

the
and
a

to

of

his
you
Tom

with

3332
2973
1775
1725
1440
1161
1027
906
877
877
783
772
686
679
642

B Statistics on the novel “Tom Sawyer” by M. Twain

Word | Count JUse

determiner (article)
conjunction

determiner

preposition, verbal infinitive marker
preposition

auxiliary verb
(personal/expletive) pronoun
preposition

complementizer, demonstrative
(personal) pronoun

(personal) pronoun
(possessive) pronoun
(personal) pronoun

proper noun

preposition
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Distributions

¥ 3993 singletons

“© Most words appear i 3993
2 1292
somewhat rarely
3 664
™ The main part of the 4 410
text corresponds to 5 243
the hundred most 6 199
frequent words 7 172
8 131
9 82
10 91
11-50 540
51-100 99

> 100 102
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George Kingsley Zipf

Zi pf’S Law (1902-1950)

Hlaw: f xXr ==k

I!M-

3332 3332

2 and 2973 5944

3 a 1775 5235
10 he 887 8770
20 but 410 8400
30 be 294 8820
100 two 104 10400
1000 family 8 8000

8000 applausive 1 8000
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Zipf's Law for the Brown corpus

Brown Univ. Standard Corpus of Present-Day American English
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Probability distribution

™ The probability (distribution) p(w) of a word w
in a corpus with s distinct words is:

count(w)

p(w) = >_, count(w;)

®1 This estimation is referred to as “maximum
likelihood”

B2 Distribution which answers the question:

< “If | select randomly a word from a text, what is the
probability that this word is the word w?”
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Formalization

¥ Let W/ be a random variable

™ We define the probability distribution p,

> which indicates how likely the variable I/ takes the
‘value’ w (“is the word w”)

prob(W = w) = p(w)
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Joint Probability

*1 Goal

“ Study of two random variables at the same time

< Example:

&% the words w, and w, that appear one after the other (a
bigram), we model this with the distribution p(w, w,)

&% If the occurrence of two words in bigrams is independent, we
can write:

® p(wy,w,) = p(wy)p(w,), this assumption is probably wrong!
B! Estimating the joint probability of two variables:

> the same way this is done for a single variable
count(wq, w,)

Wy, Wy) =
Py, w2) Zw;,wg count(w;, w,)
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Conditional probability

= Written p(w, |wq)
= Goal

< answer the question: if the random variable W, = wy,
what is the probability that the variable I/, takes the
‘value’ w,
p(W11W2)
p(W1)

1 Mathematically: p(w;|wy) =

< p(wy,w,) joint probability
™ Note
< if W, and W, are independent then p(w,|w,) = p(w,)
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Rule 1: “Chain rule”

=1 We have
N p(wq,wy) = p(wy)p(wy|wy)

N p(wy, wy, w3) = p(w)p(w,|wy)p(wsz|wy, w,)
< etc.
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Rule 2: “Bayes rule”

¥ The rule:

p(y|x)p(x)

p(x|y) = >0

®1 Obtained from:
p(x,y) = p(y,x)

p(xly)p(y) = p(ylx)p(x)

p(y|x)p(x)
p(y)

p(x|y) =

Information Theory & Probabilities
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In other words...

2! P(X) means “probability that X is true”
< P(baby is a boy) = 0.5
% % of total that are boys

< P(baby is named John) = 0.001
% % of total named John

baby boys babies
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In other words...

2! P(X,Y) means “probability that X and Y are both
true”
% Size of X NY relative to Q)
€ P(brown—eyed baby, baby boy)
&% Size of brown—eyed baby N baby boy relative to babies

baby boys

Information Theory & Probabilities
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In other words...

2 P(X|Y) means “probability that X is true while

Y is true”
% Sizeof X NY relativetoY

< P(baby is named John | baby is a boy) = 0.002

p(john,boy) _ 0.001

p(boy) 0.5
< P(babyis a boy | baby is named John) = 1

p(john,boy) _ 0.001

p(john) ~0.001

baby boys
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Expectation

¥ Informal definition

< t

t
t

ne expected value of a random variable is intuitively
ne long-run mean or average value of repetitions of

ne experiment it represents

B Expectation of a random variables X

© asetofvalues xq, x5, ..., x,

< a probability p(x;), Vi € [1..7n]

B0 =) plrn

™ Example: a dice
“ 6 equiprobable (1/6) resting positions (1, 2, ... 6)

© E(dice) = 3x14+3x2+3x3--x4+3X5+2X6=3.5

Information Theory & Probabilities

15



Variance

2 Variance (Var)

&% the expectation of the squared deviation of a random variable from its mean
&% measures how far a set of (random) numbers are spread out from their average value

¢ Var(X) =E((X —E(X))?) = E(X?) — E(X)?
&% For a discrete random variable X: x; — pq, ..., X,, /— D,
G Var(X) = XLip(x). (x; — E(X))?
2 Standard deviation (o)

&  quantify the amount of variation or dispersion of a set of data values

% Low: points close to the mean (expected value)
% High: points spread out over wider range of values

©C 0% =Var(X)
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Variance

2 Example with the dice

1 1 1
Var(X) = 6(1 — 35)2 + 6(2 — 35)2 + 6(3 — 35)2

1 1 1
+o (4 =352 +-(5 =352 +2(6-3.5)7

1
= g((—2.5)2 + (—=1.5)2 + (=0.5)2 + 0.5% + 1.5%2 + 2.52)

1
= 2(625+225+0.25+0.25 +2.25 + 6.25)

= 2917

Information Theory & Probabilities
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Distributions

=1 Uniform

> All events are equiprobable
<C p(x) = p(y)forallx,y

=1 Binomial

&% a series of trials with binary output (eg success / failure) with
probability p of success

% the probability of k successes in n trials is given by the
probability mass function:

n _
< Pr(k;n,p) = (k) p(1—p)n~

| : ny  nl : : . .
&% with (k) = ] (binomial coefficient)

Information Theory & Probabilities
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Bayesian estimation

=Y Model M, Data D

“© What is the most likely model given the data? =>p(M|D)

& _ p(D[M) p(M)
> p(M|D) (D)
&

U argmaxy p(M|D) = argmaxy, p(D|M) p(M)

< with

% p(M): a priori probability of the model

&% the estimation of a model p(w) with the frequencies of words
corresponds to a Bayesian estimation with a uniform prior
probability (estimated by maximum likelihood)
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Entropy

™! Important concept that measures
the “degree of disorder”

© HX) = —-XL,p(x) logp(x;)

21 Examples

© levent:p(a) =1
% H(X) = 0 =—1logl

€ 2 equiprobable events: p(a) = 0.5, p(b) = 0.5
& H(X) = 1 = —0.5log0.5 — 0.5log0.5

€ 4 equiprobable events:
% HX) =2

Information Theory & Probabilities
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Entropy

1 4 events with a more likely than other
< pa) = 0.7,p(b) = 0.1,p(c) = 0.1,p(d) = 0.1

H (X) —0.71og, 0,7 — 0.11log, 0.1

—0.1log, 0.1 — 0.11o0g, 0.1

—0.71og, 0.7 — 0.3 log, 0.1
—0.7X—0.5146 — 0.3x—3.3219
0.36020 + 0.99658

1.35678
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Entropy

= Intuition:
> a good model should have a low entropy ...

1 Many probabilistic models in language
processing lead to a reduction of entropy

Information Theory & Probabilities
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Information theory and entropy

2 Suppose we want to encode a sequence of
events X

B2 Each event is encoded by a sequence of bits

2 Examples
< Cointa=0,b=1

“© Four equiprobable events:a = 00,b = 01,
c = 10,d = 11

> Huffman coding (less bits for more frequent letter)

! The number of bits needed to encode the
events of X is greater than or equal to the
entropy of X
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