INFORMATION THEORY AND Probabilities

Hervé Blanchon
Laurent Besacier
Laboratoire LIG
Équipe GETALP
herve.blanchon@univ-grenoble-alpes.fr
laurent.besacier@univ-grenoble-alpes.fr

Language as data

E Large amounts of texts available in digital form
B Billions of documents available on the Web

- Tens of thousands of annotated sentences (syntax trees)
- Hundred million words translated between English and other languages

Distributions

© 3993 singletons
\& Most words appear somewhat rarely
E The main part of the text corresponds to the hundred most frequent words

Count	Count of count
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
$11-50$	540
$51-100$	99
>100	102

Zipf's Law

Law : $f \times r=k$

Rank r	Word	Count f	$\boldsymbol{f} \times \boldsymbol{r}$
1	the	3332	3332
2	and	2973	5944
3	a	1775	5235
10	he	887	8770
20	but	410	8400
30	be	294	8820
100	two	104	10400
1000	family	8	8000
8000	applausive	1	8000

Zipf’s Law for the Brown corpus

Brown Univ. Standard Corpus of Present-Day American English

Compiled in the 60s

1M words
$k=100,000$

Probability distribution

\square The probability (distribution) $p(w)$ of a word w in a corpus with s distinct words is:

$$
p(w)=\frac{\operatorname{count}(w)}{\sum_{i=1}^{S} \operatorname{count}\left(w_{i}\right)}
$$

E This estimation is referred to as "maximum likelihood"

D Distribution which answers the question:
"If I select randomly a word from a text, what is the probability that this word is the word w ?"

Formalization

Let W be a random variable
\square We define the probability distribution p,
which indicates how likely the variable W takes the 'value' w ("is the word w ")

$$
\operatorname{prob}(W=w)=p(w)
$$

Joint Probability

E Goal

© Study of two random variables at the same time

- Example:
(the words w_{1} and w_{2} that appear one after the other (a bigram), we model this with the distribution $p\left(w_{1}, w_{2}\right)$
(If the occurrence of two words in bigrams is independent, we can write:
$p\left(w_{1}, w_{2}\right)=p\left(w_{1}\right) p\left(w_{2}\right)$, this assumption is probably wrong!
Estimating the joint probability of two variables:
the same way this is done for a single variable

$$
p\left(w_{1}, w_{2}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}\right)}{\sum_{w_{1}^{\prime}, w_{2}^{\prime}} \operatorname{count}\left(w_{1}^{\prime}, w_{2}^{\prime}\right)}
$$

Conditional probability

Written $p\left(w_{2} \mid w_{1}\right)$
E Goal
answer the question: if the random variable $W_{1}=w_{1}$, what is the probability that the variable W_{2} takes the 'value' w_{2}

- Mathematically: $p\left(w_{2} \mid w_{1}\right)=\frac{p\left(w_{1}, w_{2}\right)}{p\left(w_{1}\right)}$
$p\left(w_{1}, w_{2}\right)$ joint probability
Note
if W_{1} and W_{2} are independent then $p\left(w_{2} \mid w_{1}\right)=p\left(w_{2}\right)$

Rule 1: "Chain rule"

We have

$\Leftrightarrow p\left(w_{1}, w_{2}\right)=p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right)$
$p\left(w_{1}, w_{2}, w_{3}\right)=p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right)$
etc.

Rule 2: "Bayes rule"

\# The rule:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

E Obtained from:

$$
\begin{aligned}
p(x, y) & =p(y, x) \\
p(x \mid y) p(y) & =p(y \mid x) p(x) \\
p(x \mid y) & =\frac{p(y \mid x) p(x)}{p(y)}
\end{aligned}
$$

In other words...

- $P(X)$ means "probability that X is true"
$\leftrightarrow P($ baby is a boy $) \cong 0.5$
\% of total that are boys
\& $P($ baby is named John $) \cong 0.001$
\% of total named John

In other words...

- $P(X, Y)$ means "probability that X and Y are both true"

Size of $X \cap Y$ relative to Ω
$P($ brown-eyed baby, baby boy)
Size of brown-eyed baby \cap baby boy relative to babies

In other words...

■ $P(X \mid Y)$ means "probability that X is true while Y is true"

- Size of $X \cap Y$ relative to Y
$P($ baby is named John \mid baby is a boy $)=0.002$
- $\frac{p(\text { john }, \text { boy })}{p(b o y)}=\frac{0.001}{0.5}$
$\leftrightarrow P($ baby is a boy \mid baby is named John $)=1$
$\frac{p(\text { john,boy })}{p(\text { john })}=\frac{0.001}{0.001}$

Expectation

E Informal definition

the expected value of a random variable is intuitively the long-run mean or average value of repetitions of the experiment it represents
Expectation of a random variables X
a set of values $x_{1}, x_{2}, \ldots, x_{n}$
a probability $p\left(x_{i}\right), \forall i \in[1 . . n]$

$$
E(X)=\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}
$$

Example: a dice
6 equiprobable ($1 / 6$) resting positions ($1,2, \ldots 6$)
$E($ dice $)=\frac{1}{6} \times 1+\frac{1}{6} \times 2+\frac{1}{6} \times 3 \frac{1}{+6} \times 4+\frac{1}{6} \times 5+\frac{1}{6} \times 6=3.5$

Variance

E Variance (Var)
8 the expectation of the squared deviation of a random variable from its mean
(measures how far a set of (random) numbers are spread out from their average value

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E(X)^{2}
$$

- For a discrete random variable $X: x_{1} \mapsto p_{1}, \ldots, x_{n} \mapsto p_{n}$

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} p\left(x_{i}\right) \cdot\left(x_{i}-E(X)\right)^{2}
$$

\square Standard deviation (σ)
(quantify the amount of variation or dispersion of a set of data values

- Low: points close to the mean (expected value)

High: points spread out over wider range of values

$$
\sigma^{2}=\operatorname{Var}(X)
$$

Variance

Example with the dice

$$
\begin{aligned}
\operatorname{Var}(X)= & \frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\frac{1}{6}(3-3.5)^{2} \\
& +\frac{1}{6}(4-3.5)^{2}+\frac{1}{6}(5-3.5)^{2}+\frac{1}{6}(6-3.5)^{2} \\
= & \frac{1}{6}\left((-2.5)^{2}+(-1.5)^{2}+(-0.5)^{2}+0.5^{2}+1.5^{2}+2.5^{2}\right) \\
= & \frac{1}{6}(6.25+2.25+0.25+0.25+2.25+6.25) \\
= & 2.917
\end{aligned}
$$

Distributions

E Uniform

\& All events are equiprobable
$p(x)=p(y)$ for all x, y

Binomial

(a series of trials with binary output (eg success / failure) with probability p of success

- the probability of k successes in n trials is given by the probability mass function:
\& $\operatorname{Pr}(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- with $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ (binomial coefficient)

Bayesian estimation

© Model M, Data D
\& What is the most likely model given the data? $=>p(M \mid D)$
$\Leftrightarrow p(M \mid D)=\frac{p(D \mid M) p(M)}{p(D)}$
$\Leftrightarrow \operatorname{argmax}_{M} p(M \mid D)=\operatorname{argmax}_{M} p(D \mid M) p(M)$
\leftrightarrow with

- $p(M)$: a priori probability of the model
the estimation of a model $p(w)$ with the frequencies of words corresponds to a Bayesian estimation with a uniform prior probability (estimated by maximum likelihood)

Entropy

E Important concept that measures

the "degree of disorder"
$\Leftrightarrow H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)$

Examples
$\leftrightarrow 1$ event: $p(a)=1$

* $H(X)=0=-1 \log 1$
(2 equiprobable events: $p(a)=0.5, p(b)=0.5$
- $H(X)=1=-0.5 \log 0.5-0.5 \log 0.5$

4 equiprobable events:

- $H(X)=2$

Entropy

E 4 events with a more likely than other

$$
\begin{aligned}
\Leftrightarrow p(a)= & 0.7, p(b)=0.1, p(c)=0.1, p(d)=0.1 \\
H(\mathrm{X})= & -0.7 \log _{2} 0,7-0.1 \log _{2} 0.1 \\
& -0.1 \log _{2} 0.1-0.1 \log _{2} 0.1 \\
= & -0.7 \log _{2} 0.7-0.3 \log _{2} 0.1 \\
= & -0.7 \times-0.5146-0.3 \times-3.3219 \\
= & 0.36020+0.99658 \\
= & 1.35678
\end{aligned}
$$

Entropy

E Intuition:

a good model should have a low entropy ...

Many probabilistic models in language processing lead to a reduction of entropy

Information theory and entropy

E Suppose we want to encode a sequence of events X

Each event is encoded by a sequence of bits
E Examples
Coin: $a=0, b=1$
\leftrightarrow Four equiprobable events: $a=00, b=01$,
$c=10, d=11$
Huffman coding (less bits for more frequent letter)
The number of bits needed to encode the events of X is greater than or equal to the entropy of X

References

E Manning and Schutze: "Foundations of Statistical Language Processing", 1999 , MIT Press, available online

E Jurafsky and Martin: "Speech and Language Processing", 2000, Prentice Hall.
© Rajman M. "Speech and language engineering", 2007, EPFL Press.

