Machine Translation Evaluation

Hervé Blanchon
Laboratoire LIG
Équipe GETALP
herve.blanchon@univ-grenoble-alpes.fr

Foreword

What is this session about?
\leftrightarrow Machine translation systems evaluation
What will we cover?
Evaluation by humans: subjective evaluation

- measures
(pros \& cons of subjective evaluation
Efforts to formalize MT systems evaluation
\& Evaluation by programs: objective evaluation
(measures
- pros \& cons of objective evaluation

Some proposals to do better

Outline

© Subjective evaluation foundations
■ "Let's try to formalize" efforts

- Subjective evaluation in practice

E Subjective evaluation final remarks
— Objective evaluation
© Objective evaluation final remarks
E Conclusion
B Bibliography

SUBJECTIVE EVALUATION FOUNDATIONS

Important dates

1966: ALPAC, the (In-)famous report
\& Automatic Language Processing Advisory Committee

- 1989 \& 1992: JEIDA
© Japanese Electronic Industry Development Association
- 1992 \& 1994: ARPA
\& Advanced Research Projects Agency
- 2000- : NIST

National Industry Standards and Technology

ALPAC (1966)

Automatic Language Processing Advisory
Committee
[ALPAC, 1966]
EAn Experiment in Evaluating the Quality of Translations
© (Appendix 10)
E Comment
\& Poor MT performance led to cuts in MT funding in the United-States
Highly influential work

ALPAC

2 major independent characteristics of a

 translation\Leftrightarrow Its intelligibility
\leftrightarrow Its fidelity to the sense of the original text
Subjective rating
R Rating of intelligibility without reference to the source
S Indirect rating of fidelity
Gather whatever possible meaning from the translation sentence
(Evaluate the source sentence "informativeness" in relation to the understanding from the translation sentence
A highly informative source sentence implies that the translation is lacking in fidelity

ALPAC

E Language pair / Domain
\leftrightarrow Russian \rightarrow English / Scientific
B Data
↔ 36 sentences / 6 translations (3 human, 3 MT
systems)

ALPAC

© 2 sets of evaluation (1/2)

\& Monolingual evaluation

- 18 native English speakers with no knowledge of Russian and good background in science
* Carefully prepared English translation of the source sentences (references)

ALPAC

© 2 sets of evaluation (1/2)

© Bilingual evaluation

- 18 native English speakers with a high degree of competence in comprehension of scientific Russian

ALPAC: Intelligibility

9- Perfectly clear and intelligible. Reads like ordinary text; has no stylistic infelicities.
8- Perfectly or almost clear and intelligible, but contains minor grammatical or stylistic infelicities, and/or midly unusual word usage that could, nevertheless, be easily "corrected."
7- Generally clear and intelligible, but style and word choice and/or syntactical arrangement are somewhat poorer than in category 8.
6- The general idea is almost immediately intelligible, but full comprehension is distinctly interfered with by poor style, poor word choice, alternative expressions, untranslated words, and incorrect grammatical arrangements. Postediting could leave this in nearly acceptable form.
5- The general idea is intelligible only after considerable study, but after this study one is fairly confident that he understands. Poor word choice, grotesque syntactic arrangement, untranslated words, and similar phenomena are present, but constitute mainly "noise" through which the main idea is still perceptible.
4- Masquerades as an intelligible sentence, but actually it is more unintelligible than intelligible. Nevertheless, the idea can still be vaguely apprehended. Word choice, syntactic arrangement, and/or alternative expressions are generally bizarre, and there may be critical words untranslated.
3- Generally unintelligible; it tends to read like nonsense but, with a considerable amount of reflection and study, one can at least hypothesize the idea intended by the sentence.
2- Almost hopelessly unintelligible even after reflection and study. Nevertheless, it does not seem completely nonsensical.

1- Hopelessly unintelligible. It appears that no amount of study and reflection would reveal the thought of the sentence.

ALPAC: Informativeness

9- Extremely informative. Makes "all the difference in the world" in comprehending the meaning intended. (A rating of 9 should always be assigned when the original completely changes or reverses the meaning conveyed by the translation.)
8- Very informative. Contributes a great deal to the clarification of the meaning intended. By correcting sentence structure, words, and phrases, it makes a great change in the reader's impression of the meaning intended, although not so much as to change or reverse the meaning completely.
7- (Between 6 and 8.)
6- Clearly informative. Adds considerable information about the sentence structure and individual words, putting the reader "on the right track" as to the meaning intended.
5- (Between 4 and 6.)
4- In contrast to 3, adds a certain amount of information about the sentence structure and syntactical relationships; it may also correct minor misapprehensions about the general meaning of the sentence or the meaning of individual words.
3- By correcting one or two possibly critical meanings, chiefly on the word level, it gives a slightly different "twist" to the meaning conveyed by the translation. It adds no new information about sentence structure, however.
2- No really new meaning is added by the original, either at the word level or the grammatical level, but the reader is somewhat more confident that he apprehends the meaning intended.
1- Not informative at all; no new meaning is added, nor is the reader's confidence in his understanding increased or enhanced.
0- The original contains, if anything, less information than the translation. The translator has added certain meanings, apparently to make the passage more understandable.

ALPAC

Quotes

"MT presumably means going by algorithm from machine-readable source text to useful target text, without recourse to human translation or editing." \rightarrow "In this context, there has been no machine translation of general scientific text, and none is in immediate prospect."
\& "The reader will find it instructive to compare the samples above with the results obtained on simple, selected, text 10 years earlier (the Georgetown IBM Experiment, January 7, 1954) in that the earlier samples are more readable than the later ones."
\& In the final chapter (p.32-33), ALPAC underlined once more that "we do not have useful machine translation [and] there is no immediate or predictable prospect of useful machine translation." It repeated the potential opportunities to improve translation quality, particularly in various machine aids: "Machine-aided translation may be an important avenue toward better, quicker, and cheaper translation." But ALPAC did not recommend basic research: "What machine-aided translation needs most is good engineering."

Jeida (1989 \& 1992)

Japanese Electronic Industry Development Association

Jeida 1989 [JEIDA, 1989]
\& A Japanese view of machine translation in light of the considerations and recommendations reported by ALPAC.

3 questions
(What are the technological and social changes of the market since the ALPAC report?

* According to these changes, are the conclusions of the ALPAC report still valid today?
(If not, how should we evaluate the current state and the future of machine translation?
↔ No clear answer!

Jeida (1989 \& 1992)

Jeida 1992 [JEIDA, 1992]
\& JEIDA Methodology and Criteria on Machine Translation Evaluation

Several point of view using complex forms

* Economical factors evaluation by the users
- Technical evaluation of the systems by the users
* "Satisfaction of the users' needs"
- Technical evaluation of the systems by the developers
"Criteria to help researchers, developers, and project leaders in evaluating their systems"

ARPA (1992-1994) \& NIST (2000-)

Advanced Research Projects Agency

National Industry Standards and Technology
■ Comparative/competitive evaluation [White et al, 1994]
Systems
Fully automatic / Human Aided MT
Language pairs
Source language: several / Target language: English
Domain
(Newspaper articles about financial mergers and acquisitions
(Professionally translated into the respective source languages or into English
\& Evaluators
literate, monolingual English speakers

ARPA \& NIST

Criteria

Fluency

without reference to the source

Adequacy

(in contrast to the the English original or translation

Score	Adequacy	Fluency
5	All information	Flawless English
4	Most	Good
3	Much	Non-Native
2	Little	Disfluent
1	None	Incomprehensible

ARPA \& NIST

When source document is not available

ARPA \& NIST

E When source document is available

"LET’S TRY TO FORMALIZE" EFFORTS

Important dates

E 1993-1996: EAGLES
\& Expert Advisory Group on Language Engineering
S Initiative of the European Commission
\& [EAGLES-EWG, 1996] [EAGLES-EWG, 1999]
1999-2002: ISLE (FEMTI)
Framework for Machine Translation Evaluation on ISLE (International Standards for Language Engineering) Joined initiative of the European Commission and National Science Foundation (NSF)
Shttp://www.isi.edu/natural-language/mteval/
[Hovy et al., 2002] [King et al., 2003]

EAGLES

Expert Advisory Group on Language Engineering

E Goal
Standards for the language engineering industry
Targets
\leftrightarrow Corpora
Lexicons
Grammatical formalisms
Evaluation

- On evaluation

A quality model for natural language processing tools...
... validated on grammar checkers,

EAGLES: A 7-steps Recipe

1. Why is the evaluation being done?
2. Elaborate a task model
3. Define top level quality characteristics
4. Produce detailed requirements for the system
under evaluation, on the basis of 2 and 3
5. Devise the metrics to be applied to the system for the requirements produced under 4
6. Design the execution of the evaluation
7. Execute the evaluation

EAGLES: A 7-steps Recipe

1. Why is the evaluation being done?

What is the purpose of the evaluation? Do all parties involved have the same understanding of the purpose?
\& What exactly is being evaluated? Is it a system or a system component? A system in isolation or a system in a specific context of use? Where are the boundaries of the system?

2. Elaborate a task model

Identify all relevant roles and agents
What is the system going to be used for?
Who will use it? What will they do with it? What are these people like?

3. Define top level quality characteristics

What features of the system need to be evaluated? Are they all equally important?

EAGLES: A 7-steps Recipe

4. Produce detailed requirements for the system under evaluation, on the basis of 2 and 3
\& For each feature which has been identified as important, can a valid and reliable way be found of measuring how the object being evaluated performs with respect to that feature?
\leftrightarrow If not, then the features have to be broken down in a valid way, into sub-attributes which are measurable. This point has to be repeated until a point is reached where the attributes are measurable.

EAGLES: A 7-steps Recipe

5. Devise the metrics to be applied to the system for the requirements produced under 4

\Leftrightarrow Both measure and method for obtaining that measure have to be defined for each attribute.
For each measurable attribute, what will count as a good score, a satisfactory score or an unsatisfactory score given the task model (2)? Where are the cut off points? Usually, an attribute has more than one sub-attributes. How are the values of the different sub-attributes combined to a value for the mother node in order to reflect their relative importance (again given the task model)?

EAGLES: A 7-steps Recipe

6. Design the execution of the evaluation

\leftrightarrow Develop test materials to support the testing of the object.
Who will actually carry out the different measurements? When? In what circumstances? What form will the end result take?

7. Execute the evaluation:

Make measurement.
© Compare with the previously determined satisfaction ratings.
Summarize the results in an evaluation report, cf. point 1.

FEMTI

Framework for Machine Translation Evaluation on ISLE (International Standards for Language Engineering)
Attempt to organize the various methods for MT evaluation

FEMTI

FEMTI contains

\& A classification of the main features defining the context of use (type of user of the MT system, type of task the system is used for, nature of the input to the system)
A classification of the MT software quality characteristics, into hierarchies of sub-characteristics, with internal and/or external attributes (i.e., metrics) at the bottom level.

A mapping from the first classification to the second, which defines or suggests the quality characteristics, subcharacteristics and attributes/metrics that are relevant to each context of use.

FEMTI (top level classification)

1 Evaluation requirements

- 1.1 The purpose of evaluation
- 1.2 The object of evaluation
- 1.3 Characteristics of the translation task
- 1.3.1 Assimilation
- 1.3.2 Dissemination
- 1.3.3 Communication
- 1.4 User characteristics
- 1.4.1 Machine translation user
- 1.4.2 Translation consumer
- 1.4.3 Organisational user
- 1.5 Input characteristics (author and text)
- 1.5.1 Document type (genre, domain/field of application)
- 1.5.2 Author characteristics (proficiency in source language, training)
- 1.5.3 Characteristics related to sources of errors (unproofed text)

FEMTI (top level classification)

2 System characteristics to be evaluated

- 2.1 System internal characteristics
- 2.1.1 MT system-specific characteristics
- 2.1.2 Translation process models
- 2.1.3 Linguistic resources and utilities
- 2.1.4 Characteristics of process flow
- 2.2 System external characteristics
- 2.2.1 Functionality
- 2.2.1.1 Suitability, Accuracy, Wellformedness, Interoperability, Compliance, Security
- 2.2.2 Reliability
- 2.2.3 Usability
- 2.2.4 Efficiency
- 2.2.5 Maintainability
- 2.2.6 Portability
- 2.2.7 Cost

FEMTI (Section 2.2.1 Functionality)

- 2.2.1.1 Suitability
- 2.2.1.1.1 Target-language only
-2.2.1.1.1.1 Readability (or: fluency, intelligibility, clarity)
- 2.2.1.1.1.2 Comprehensibility
- 2.2.1.1.1.3 Coherence
- 2.2.1.1.1.4 Cohesion
- 2.2.1.1.2 Cross-language / contrastive
-2.2.1.1.2.1 Coverage of corpus-specific phenomena
- 2.2.1.1.2.2 Style
- 2.2.1.2 Accuracy
- 2.2.1.2.1 Fidelity
- 2.2.1.2.2 Consistency
- 2.2.1.2.3 Terminology

FEMTI (Section 2.2.1 Functionality [cont.])

- 2.2.1.3 Wellformedness
- 2.2.1.3.1 Punctuation
- 2.2.1.3.2 Lexis / lexical choice
- 2.2.1.3.3 Grammar / syntax
- 2.2.1.3.4 Morphology
- 2.2.1.4 Interoperability
- 2.2.1.5 Compliance
- 2.2.1.6 Security

FEMTI (2.2.1.1.1.1 readability)

Definition

\& The extent to which a sentence reads naturally.
\& Ease with which a translation can be understood, i.e. its clarity to the reader. (Halliday in Van Slype's Critical Report) .
\& This has also been called fluency, intelligibility, and clarity.

Metrics

\& ...
© Pfafflin (in Van Slype's Critical Report): Rating of sentences read on a 3-point scale.
\& Vanni \& Miller (2001, 2002): "Do you get it?" - snap judgement rating of sentences on scale from 0 to 3.
\& Niessen, Och, Leusch and Ney, 2000 measure syntactic errors with an automated string edit distance metric, which according to them can also be used as a measure of readability. See also Wellformedness (2.2.1.3/186).
J.B. Carroll: by measuring the time spent by the evaluator in reading each sentence of the sample.
© Pfafflin and Orr (both quoted by T.C. Halliday): by measuring the response time to a multiplechoice questionnaire.
H.W. Sinaiko: by measuring the time necessary for the execution of the cloze test.

Notes

S Readability is intended to be a metric applied at the sentence-level. ..
\& Readability is a quality of the output that can be measured independently of the source language.
\leftrightarrow Cloze tests can be used either at sentence-level or cross-sentence level.
\& This quality has been merged with clarity, which was a separate taxon in earlier versions of this taxonomy.

FEMTI (2.2.1.2.1 Fidelity)

Definition

\& Subjective evaluation of the degree to which the information contained in the original text has been reproduced without distortion in the translation (Van Slype).
\& Measurement of the correctness of the information transferred from the source language to the target language (Halliday in Van Slype's Critical Report).

Metrics

...
© White and O'Connell (in DARPA 94): Rating of 'Adequacy' on a 5-point scale.
\leftrightarrow Bleu evaluation tool kit (in Papineni et al. 2001): Automatic n-gram comparison of translated sentences with one or more human reference translations.
© Rank-order evaluation of MT system: correlation of automatically computed semantic and syntactic attributes of the MT output with human scores for adequacy and informativeness, and also fluency. Hartley and Rajman 2001 and 2002.
\& Automated word-error-rate evaluation (in Och, Tillmann and Ney, 1999).

Notes

The fidelity rating has been found to be equal to or lower than the comprehensibility rating, since the unintelligible part of the message is not found in the translation. Any variation between the comprehensibility rating and the fidelity rating is due to additional distortion of the information, which can arise from: - loss of information (silence) - example: word not translated, - interference (noise) - example: word added by the system, - distortion from a combination of loss and interference - example: word badly translated.
\& Detailed analysis of the fidelity of a translation is very difficult to carry out, since each sentence conveys not a single item of information or a series of elementary items of information, but rather a portion of message or a series of complex messages whose relative importance in the sentence is not easy to appreciate.

SUBJECTIVE EVALUATION IN PRACTICE

The settings

B Bilingual evaluation

The settings

Monolingual evaluation

Example: NESPOLE! (2002)

\& Language pairs

- French \rightarrow Italian
- Italian \rightarrow French

French \rightarrow French (speech recognition results)
Domain
Tourism

Evaluators

Trained students from a translation school
3 Native French speakers for Italian \rightarrow French \& French \rightarrow French
3 Native Italian speakers for French \rightarrow Italian
Evaluation criterion
Quality of the translation on a 4 grades scale
(Very good (all information \& easy to understand), Good (all important information)
Bad (one or several important information missing), Very Bad (almost all important information missing)

Example: NESPOLE! (2002)

Protocol

- Trained evaluators
(Evaluators inter-agreement
(Same data evaluated by each group (French, Italian): control test set
- Evaluators self-agreement
- Same data evaluated by each evaluator before \& after the actual evaluation: control test set

Example: NESPOLE! (2002)

E Evaluators inter-agreement

\& French or Italian \rightarrow French

	Unanimity	Majority	No Majority
Before the task	71%	28%	1%
After the task	73%	27%	0%

French \rightarrow Italian

	Unanimity	Majority	No Majority
Before the task	88%	15%	0%
After the task	75%	25%	0%

Conclusion

Fairly good inter-agreement

Example: NESPOLE! (2002)

Evaluators self-agreement (before vs after, over 102)
French evaluators

	$=$	class $=$	class \neq
Eval1	58	27	17
Eval2	83	13	6
Eval3	65	18	19

© Italian evaluators

	$=$	class $=$	class \neq
Eval4	83	13	6
Eval5	102	0	0
Eval6	58	27	17

- Conclusion

Evaluators tend to be more harsh, scores are always lowered VG to \mathbf{G}, \mathbf{B} to VB or (VG,G) to (B, VB)

Example: NESPOLE! (2002)

$\underline{\square}$	Evaluation Excel file (lt \rightarrow Fr)		Very Good	Good	Bad	Very Bad
TURN	1		-----	--	--	-----
1	APT del trentino	1	X			
2	buongiorno	2	X			
TRANS	Ici une agence d'informations du Trentin. Bonjour!	-	-----	--	-----	-----
TURN	39	-	-----	-----	-----	-----
1	sì	1	x			
2	poi ci sono incluse nel pacchetto 4 lezioni di sci e 2 lezioni pattinaggio	2	X			
TRANS	Oui. Il y a un forfait avec 4 leçons du ski. Le 2 du patin.	-	-----	-----	-----	-----
\checkmark AP \checkmark Bu \checkmark Ici \checkmark Tr \checkmark po th \checkmark O les	PT del trentino = trentino tourism agency uongiorno = good moring, hello i une agence d'information du Trentin. Bonjour ! = Here a entino. Good Morning! = yes i ci sono incluse nel pacchetto 4 lezioni di sci e 2 lezioni p e package 4 ski lessons and 2 skating lessons ui. Il y a un forfait avec 4 leçons du ski. Le 2 du patin. $=$ Yes ssons of the ski. The 2 of skating.	in	aggio = ere is a	agenc hen are ackage	clude th 4	

Example: IWSLT (2004)

Language pair
Japanese \rightarrow English
Domain
- Tourism
Evaluators
Native English speakers
Evaluation criterion
Fluency
- Adequacy

Example: IWSLT (2004)

Fluency

test_IWSLTO4 2004 FLUENCY evaluation

CLIPS_030

sentence: 6 / 111

6.a Fluency: How good is the English?

Evaluate this segment: could you give some medicine me drink a glass of water
\bigcirc Flawless English

- Good English

O Non-native English

- Disfluent EnglishIncomprehensible

Comment:

\square

Example: IWSLT (2004)

Adequacy

test_IWSLT04 2004 ADEQUACY evaluation

CLIPS_030

sentence: 6 / 111

6.a Fluency: Non-native English

6.b Adequacy: How much information is retained?

Reference: (Situation)	can i have some medicine and a glass of water (airplane / become ill)
Evaluate this segment:	could you give some medicine me drink a glass of water
All of the information	
\bigcirc Most of the information	
Much of the information	
Little information	
Nome of it	

SUBJECTIVE EVALUATION FINAL REMARKS

Pro of subjective evaluation

Very informative

Cons of subjective evaluation

\& Labor-intensive \& Time-consuming (Evaluators, Translators)
(In practice, impossible for evaluation campaigns (subset or one run evaluation organized as a shared task between participants)
Not reusable

- MT systems as dynamic components improving along time
- Human assessment as a one shot measure to be repeated

Subjective

* Evaluators' understanding of the guidelines
* Evaluators' inter-agreement
. Evaluators' intra-agreement

Possibly partial

Mostly limited to fluency and adequacy

- Difficulty to compare
E.g. fluency(SystA)<fluency(SystB) \& adequacy(SystA)>adaquacy(SystB) ...
... Best(SystA, SystB) or Best(SystB, SystA)??????

OBJECTIVE EVALUATION

Ideas

G Get ride of ...

S Subjectivity, Non reusability, Slowness, Expensiveness

How?

\leftrightarrow Take advantage of the reference(s) produced for subjective evaluation
Use a deterministic program to compare hypothesis with reference(s)

Important dates

- 2002: BLEU [Papineni et al. 2002]

The beginning of objective evaluation measures
E Systems evaluation campaigns 2001-: NIST Open MT
http://www.itl.nist.gov/iad/mig/tests/mt/
2004-: IWSLT

- Speech translation
http://iwslt2011.org/doku.php?id=14_related_events
2006-: WMT
- Broadcast news
http://www.statmt.org/wmt12/
Metrics evaluation campaigns 2008-: NIST MetricsMaTr
- Metrics for Machine Translation Evaluation
http://www.nist.gov/it//iad/mig/metricsmatr.cfm

Summary

The rough idea: lexical similarity
■ Several measures*
\& Edit distance measures
(WER, PER, TER
\leftrightarrow Precision-oriented measures
BLEU, NIST, WNM
Recall-oriented measures
\& ROUGE, CDER
Balancing precision \& recall measures
GTM, METEOR, BLANC, SIA

```
*Incomplete because new measures are
proposed every other day!!
```


Edit distance measures

Number of changes:

hypothesis \rightarrow reference or acceptable translation
© WER (Word Error Rate) [Nießen et al., 2000]
Based on the Leveinstein distance: minimum number of substitutions, deletions, or insertions that have to be performed to convert the hypothesis into the reference
E PER (Position-independent Word Error Rate) [Tillmann et al., 1997]
A shortcoming of WER, PER compare the words in the hypothesis and reference without taking into account word order (bags of words)
ETER (Translation Edit Rate) [Snover et al. 2006] [Przybocki et al. 2006]
Operations performed by a post-editor to correct the hypothesis (insertion, deletion, substitution of words or sequences)

WER

Reference: the green house was right in front of the lake.
© Translation 1: a green house was by the lake shore .

- Translation 2: the green house was by the lake shore .

Translation 3: the green potato right in front of the lake was right
ETranslation 4: the green house was right in front of the lake.

	WER
T1	54.5455
T2	45.4545
T3	36.3636
T4	00.0000

WER

© Reference: the green house was right in front of the lake.
© Translation 1: a green house was by the lake shore .

Computation

```
REF: the green house was right in front of the lake ***** .
HYP: a green house was ***** ** ***** by the lake shore.
EVAL:S D D D D S S I
SHFT:
WER Score: 54,55 ( 6,0/ 11,0)
```


WER

R Reference: the green house was right in front of the lake.
E Translation 1: the green house was by the lake shore .

Computation

```
REF: the green house was right in front of the lake ***** .
HYP: the green house was ***** ** ***** by the lake shore.
EVAL: D D D D S S I
SHFT:
WER Score: 45,45 ( 5,0/ 11,0)
```


WER

© Reference: the green house was right in front of the lake.
E Translation 1: the green potato right in front of the lake was right

Computation

```
REF: the green house was right in front of the lake *** ***** .
HYP: the green ***** potato right in front of the lake was right .
EVAL: D S I I
SHFT:
TER Score: 36,36 ( 4,0/ 11,0)
```


PER

\# Reference: the green house was right in front of the lake .
E Translation 1: a green house was by the lake shore .

- Translation 2: the green house was by the lake shore .
- Translation 3: the green potato right in front of the lake was right

ETranslation 4: the green house was right in front of the lake.

	PER
T1	45.4545
T2	36.3636
T3	18.1818
T4	00.0000

TER in GALE (HTER)

E GALE (global autonomous language exploitation) program (DARPA, 05-06)
develop and apply computer software technologies to absorb, translate, analyze, and interpret huge volumes of speech and text in multiple languages evaluation for "go, no-go" funding
http://www.darpa.mil/Our_Work/I2O/Programs/Glo bal_Autonomous_Language_Exploitation_(GALE).asp x

GALE

GALE

䍃
post-editor 1

post-editor 2

post-editor 4 (min step 1)

post-editor 5 (med step 1)

min step 2

$$
\begin{array}{|c|}
\hline \text { refs } \\
\hline \text { ref 1 } \\
\hline \text { ref } 2 \\
\hline \text { ref 3 } \\
\hline \text { ref 4 } \\
\hline \text { ref 5 } \\
\hline
\end{array}
$$

TER: examples

- Source: a burglar broke into my room.
* Best Ref: un cambrioleur a forcé ma chambre .

四 Orig Hyp: un cambrioleur est entré de force dans ma pièce.
REF: un cambrioleur *** ****** ** a forcé ma chambre. HYP: un cambrioleur est entré de force dans ma pièce. EVAL:

I I I S

S
S SHFT:
\checkmark TER Score: 85,71 (6,0/ 7,0)

* Source: a man snatched my bag on the street.
* Best Ref: un homme a saisi mon sac dans la rue .

四 Orig Hyp: un homme a saisi mon sac sur la rue.
REF: un homme a saisi mon sac dans la rue .
HYP: un homme a saisi mon sac sur la rue.
EVAL: S
SHFT:
\checkmark TER Score: 10,00 ($1,0 / 10,0$)

TER: examples

■ Source: a pickpocket took my wallet.
© Best Ref: un pickpocket a pris mon portefeuille .
(Orig Hyp: un pickpocket a pris mon portefeuille .
REF: un pickpocket a pris mon portefeuille.
HYP: un pickpocket a pris mon portefeuille.
EVAL:
SHFT:
\checkmark TER Score: $0,00(0,0 / 7,0)$

- Source: about how much would a taxi be from here .

田 Best Ref: combien est-ce qu'un taxi coûterait d'ici ?
(Orig Hyp: au sujet de combien est-ce qu'un taxi serait d'ici ?

REF: ** ***** ** combien est-ce qu'un taxi coûterait d'ici ? HYP: au sujet de combien est-ce qu'un taxi serait d'ici ? EVAL: I I S SHFT:
\checkmark TER Score: 57,14 (4,0/7,0)

TER：examples

－Source：about ten minutes．
© Best Ref：approximativement dix minutes ．
四 Orig Hyp：approximativement dix minutes ．
REF：approximativement dix minutes ．
HYP：approximativement dix minutes．
EVAL：
SHFT：
\checkmark TER Score： $0,00(0,0 / 4,0)$

四 Source：actualy $i^{\prime} m$ on my period．
＊Best Ref：en fait j＇ai mes règles．
田 Orig Hyp：réellement je suis sur ma période．
REF：en fait j＇ai mes règles
HYP：réellement je suis sur ma période．
EVAL：$S \quad S \quad S \quad S \quad S \quad S$
SHFT：
\checkmark TER Score： 85,71 （ 6，0／7，0）

TER with Sectra_w

Source	MT Results
A burglar broke into my room.	Un cambrioleur est entré de force dans ma pièce.
A man snatched my bag on the street.	Un homme a saisi mon sac sur la rue.
A pickpocket took my wallet.	Un pickpocket a pris mon portefeuille.
About how much would a taxi be from here?	Au sujet de combien est-ce qu'un taxi serait d'ici ?
About ten minutes.	Approximativement dix minutes.
Actually l'm on my period.	Réellement je suis sur ma période.

TER with Sectra_w

MT Results	Distance	Reference
	$\begin{gathered} \mathrm{D}=\mathrm{a} \cdot \mathrm{Dc}+\mathrm{b} \cdot \mathrm{Dw} \\ \mathrm{a}: 0.2, \mathrm{~b}: 0.8 \end{gathered}$	
Un cambrioleur est entré de force dans ma pièce.	$\begin{aligned} & \mathrm{Dc}=23, \mathrm{Dw}=6 \\ & \mathrm{D}=9.4 \end{aligned}$	Un cambrioleur est a entré forcé de force dans ma pièce-chambre.
Un homme a saisi mon sac sur la rue.	$\begin{aligned} & D c=4, D w=1 \\ & D=1.6 \end{aligned}$	Un homme a saisi mon sac sur dans la rue-rue.
Un pickpocket a pris mon portefeuille.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{Dw}=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Un pickpocket a pris mon portefeuille-portefeuille.
Au sujet de combien est-ce qu'un taxi serait d'ici ?	$\begin{aligned} & \mathrm{D} \mathrm{c}=17, \mathrm{D} w=4 \\ & \mathrm{D}=6.6 \end{aligned}$	combien est-ce qu'un taxi serait couterait d'ici ??
Approximativement dix minutes.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{D} w=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Approximativement dix minuter-minutes.
Réellement je suis sur ma période.	$\begin{aligned} & \mathrm{Dc}=26, \mathrm{Dw}=6 \\ & \mathrm{D}=10.0 \end{aligned}$	En fait héellement j'ai je mes suis règles. sur ma période.

TER with Sectra_w

Source	MT Results	Distance	Reference
	Trace Reject	$\begin{aligned} & \mathrm{D}=\mathrm{a} . \mathrm{Dc}+\mathrm{b} \cdot \mathrm{Dw} \\ & \mathrm{a}: 0.2, \mathrm{~b}: 0.8 \end{aligned}$	
A burglar broke into my room.	Un cambrioleur est entré de force dans ma pièce.	$\begin{aligned} & \mathrm{Dc}=23, \mathrm{Dw}=6 \\ & \mathrm{D}=9.4 \end{aligned}$	Un cambrioleur est a entré forcé de force dans ma pièce-chambre.
A man snatched my bag on the street.	Un homme a saisi mon sac sur la rue.	$\begin{aligned} & \mathrm{Dc}=4, \mathrm{Dw}=1 \\ & \mathrm{D}=1.6 \end{aligned}$	Un homme a saisi mon sac sur dans la fue-rue.
A pickpocket took my wallet.	Un pickpocket a pris mon portefeuille.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{D} w=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Un pickpocket a pris mon portefeuille-portefeuille.
About how much would a taxi be from here?	Au sujet de combien est-ce qu'un taxi serait d'ici ?	$\begin{aligned} & \mathrm{Dc}=17, \mathrm{Dw}=4 \\ & \mathrm{D}=6.6 \end{aligned}$	combien est-ce qu'un taxi serait coûterait d'ici ??
About ten minutes.	Approximativement dix minutes.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{D} w=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Approximativement dix minutes-minutes.
Actually I'm on my period.	Réellement je suis sur ma période.	$\begin{aligned} & \mathrm{Dc}=26, \mathrm{Dw}=6 \\ & \mathrm{D}=10.0 \end{aligned}$	En fait héellement j'ai je mes suis règles. sur ma période.

TER with Sectra_w

MT Results	Distance	Reference
	$\begin{aligned} & \mathrm{D}=\mathrm{a} . \mathrm{D} c+\mathrm{b} . \mathrm{Dw} \\ & \mathrm{a}: 0.2, \mathrm{~b}, \mathrm{ob} . \mathrm{B} \end{aligned}$	Trace Reject
Un cambrioleur est entré de force dans ma pièce.	$\begin{aligned} & \mathrm{Dc}=23, \mathrm{Dw}=6 \\ & \mathrm{D}=9.4 \end{aligned}$	Un cambrioleur a forcé ma chambre.
Un homme a saisi mon sac sur la rue.	$\begin{aligned} & \mathrm{Dc}=4, \mathrm{Dw}=1 \\ & \mathrm{D}=1.6 \end{aligned}$	Un homme a saisi mon sac dans la rue.
Un pickpocket a pris mon portefeuille.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{Dw}=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Un pickpocket a pris mon portefeuille.
Au sujet de combien est-ce qu'un taxi serait dici ?	$\begin{aligned} & \mathrm{Dc}=17, \mathrm{Dw}=4 \\ & \mathrm{D}=6.6 \end{aligned}$	Combien est-ce qu'un taxi coûterait d'ici ?
Approximativement dix minutes.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{D} w=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Approximativement dix minutes.
Réellement je suis sur ma période.	$\begin{aligned} & \mathrm{Dc}=26, \mathrm{Dw}=6 \\ & \mathrm{D}=10.0 \end{aligned}$	En fait j'ai mes règles.

TER with Sectra_w

Source	MT Results	Distance	Reference
	Trace Reject	$\begin{gathered} \mathrm{D}=\mathrm{a}=\mathrm{D}+\mathrm{D}+\mathrm{b} . \mathrm{Dw} \\ \mathrm{a} .0 .2, \mathrm{~b}-\mathrm{b} \cdot \mathrm{~B} \end{gathered}$	Trace Reject
A burglar broke into my room.	Un cambrioleur est entré de force dans ma pièce.	$\begin{aligned} & \mathrm{Dc}=23, \mathrm{Dw}=6 \\ & \mathrm{D}=9.4 \end{aligned}$	Un cambrioleur a forcé ma chambre.
A man snatched my bag on the street.	Un homme a saisi mon sac sur la rue.	$\begin{aligned} & \mathrm{Dc}=4, \mathrm{Dw}=1 \\ & \mathrm{D}=1.6 \end{aligned}$	Un homme a saisi mon sac dans la rue.
A pickpocket took my wallet.	Un pickpocket a pris mon portefeuille.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{Dw}=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Un pickpocket a pris mon portefeuille.
About how much would a taxi be from here?	Au sujet de combien est-ce qu'un taxi serait dici ?	$\begin{aligned} & \mathrm{Dc}=17, \mathrm{Dw}=4 \\ & \mathrm{D}=6.6 \end{aligned}$	Combien est-ce qu'un taxi coûterait d'ici ?
About ten minutes.	Approximativement dix minutes.	$\begin{aligned} & \mathrm{Dc}=0, \mathrm{Dw}=0 \\ & \mathrm{D}=0.0 \end{aligned}$	Approximativement dix minutes.
Actually l'm on my period.	Réellement je suis sur ma période.	$\begin{aligned} & \mathrm{Dc}=26, \mathrm{Dw}=6 \\ & \mathrm{D}=10.0 \end{aligned}$	En fait j'ai mes règles.

Precision \& Recall

- Precision

\& fraction of retrieved instances that are relevant
$P=\frac{\# \text { of relevant answers }}{\# \text { of answers }}$
E Recall
fraction of relevant instances that are retrieved

$$
R=\frac{\# \text { of relevant answers }}{\# \text { of relevant instances }}
$$

- Example

$$
P=\frac{10}{17}=0.58 \quad R=\frac{10}{34}=0.29
$$

Precision-oriented measures

Proportion of lexical units (n-grams) in the hypothesis covered by the reference(s) translation
B BLEU (Bilingual Evaluation Understudy) [Papinieni et al., 2001]
\& Modified precision (1 to 4 grams), geometric mean, brevity penalty
E NIST [Doddington, 2002]
\& N -gram informativeness (1 to 5 grams), arithmetic mean, brevity penalty
E WNM [Babych \& Hartley, 2004]
\& Variant of BLEU which weights n-grams according to their statistical salience estimated out from a large monolingual corpus

BLEU: modified n-gram precision

- Definition

\& Count the number of occurrences of each candidate n gram in the hypothesis and count their maximum number of occurrences in the associated reference(s)
Clip the candidate n-gram counts by their maximum number in the associated reference(s)
\leftrightarrow Sum the clipped count for all n-grams and divide by the total number of candidate n-grams

$$
P_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{C^{\prime} \in\{\text { Candidates }\} \in C} \sum_{n-\text {-gram }} \text { Count }_{\text {clip }}(n-\text { gram })}{} \operatorname{Count}(n-\text { gram' })
$$

BLEU: modified n-gram precision

Example 1 on unigrams

\leftrightarrow Hypothesis
it is a guide to action which ensures that the military always obeys the commands of the party .

References

(it is a guide to action that ensures that the military will forever heed party commands. (2 "that")
it is the guiding principle which guarantees the military forces always being under the command of the party. (4 "the")
it is the practical guide for the army always to heed the directions of the party . (3 "the")

BLEU: modified n-gram precision

Example 1 on unigrams (cont.)

Candidate words	Count	Max_ref_count	Count clip
it	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
is	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
a	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
guide	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
to	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
action	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
which	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
ensure	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
that	$\mathbf{1}$	$\mathbf{2}$	1
military	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
always	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
obeys	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
the	3	4	3
commands	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
of	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
party	$\mathbf{1}$		$\mathbf{1}$
sum	18		$\mathbf{1}$

$$
P_{1}=\frac{17}{18}
$$

BLEU: modified n-gram precision

Example 2 on unigrams

SHypothesis
(it is to insure the troops forever hearing the activity guidebook that party direct.
EReferences
(it is a guide to action that ensures that the military will forever heed party commands. (2 "that")
(it is the guiding principle which guarantees the military forces always being under the command of the party . (4 "the")
(it is the practical guide for the army always to heed the directions of the party. (2"the")

BLEU: modified n-gram precision

Example 2 on unigrams (cont.)

Candidate words	Count	Max_ref_count	Count ${ }_{\text {clip }}$
it	1	1	1
is	1	1	1
to	1	1	1
insure	1	0	0
the	2	4	2
troops	1	0	0
forever	1	1	1
hearing	1	0	0
activity	1	0	0
guidebook	1	0	0
that	1	2	1
party	1	1	1
direct	1	0	0
sum	14	1	8

$$
P_{1}=\frac{8}{14}
$$

BLEU: hypotheses brevity penalty

definition

Hypothesis longer than references already penalized with modified precision (Countclip/Count)
Need to penalize shorter hypotheses
No penalty when the hypothesis length is the same as any reference

$$
r=\sum_{\mathrm{C} \in\{\text { candidats }\}} \text { best reference match for } \mathrm{C}
$$

- let r be the test corpus' effective reference length

$$
c=\sum_{\mathrm{C} \in\{\text { candidats }\}} \text { length of } \mathrm{C}
$$

- let c be the total length of the hypothesis corpus
- Brevity Penalty

$$
B P= \begin{cases}1, & \text { if } c>r \\ e^{(1-r / c)}, & \text { if } c \leq r\end{cases}
$$

BLEU: the formula

B BLEU is computed as follows:

$$
\operatorname{BLEU}=B P \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right)
$$

where

$$
N=4 \text { and } w_{n}=1 / N
$$

BLEU $\in[0 . .1]$

BLEU: example

E Reference: the green house was right in front of the lake.
E Translation 0: the green house was right in front of the lake.

For N-Gram (green): 1
For N-Gram (house): 1
For N-Gram (was): 1
For N-Gram (right): 1
For N-Gram (in): 1
For N-Gram (front): 1
For N-Gram (of): 1
For N-Gram (the): 2
For N-Gram (lake): 1
For N-Gram (the green): 1
For N-Gram (green house): 1
For N -Gram (house was): 1
For N-Gram (was right): 1
For N -Gram (right in): 1
For N-Gram (in front): 1
For N-Gram (front of): 1
For N-Gram (of the): 1
For N-Gram (the lake): 1

For N -Gram (the green house): 1
For N-Gram (green house was): 1
For N-Gram (house was right): 1
For N-Gram (was right in): 1
For N-Gram (right in front): 1
For N-Gram (in front of): 1
For N-Gram (front of the): 1
For N-Gram (of the lake): 1

For N-Gram (the green house was): 1 For N-Gram (green house was right): 1
For N -Gram (house was right in): 1
For N -Gram (was right in front): 1
For N-Gram (right in front of): 1
For N-Gram (in front of the): 1
For N-Gram (front of the lake): 1

Precision 1-gram: $1.00=10 / 10$
Precision 2-gram: $1.00=9 / 9$
Precision 3-gram: $1.00=8 / 8$
Precision 4-gram: $1.0=7 / 7$
Weighted Precision: 1.00
Brevity Penalty: 1.00

BLEU = 1.00

Back to subjective evaluation

Eluency evaluation for the 3 following translations

	Fluency
a green house was by the lake shore .	5
the green house was by the lake shore .	5
the green potato right in front of the lake was right .	$3 \sim 1$

Score	Fluency
5	Flawless English
4	Good
3	Non-Native
2	Disfluent
1	Incomprehensible

Back to subjective evaluation

\square Adequacy evaluation given reference

the green house was right in front of the lake .

	Adequacy
a green house was by the lake shore .	$5 \sim 4$
the green house was by the lake shore .	5
the green potato right in front of the lake was right .	1

5	All information
4	Most
3	Much
2	Little
1	None

BLEU: example

E Reference: the green house was right in front of the lake.
© Translation 1: a green house was by the lake shore .

```
For N-Gram (a ): 0
For N-Gram (green ): }
For N-Gram (house ): }
For N-Gram (was ): }
For N-Gram (by ): 0
For N-Gram (the ): }
For N-Gram (lake ): 1
For N-Gram (shore ): 0
```

For N-Gram (a green): 0 For N-Gram (green house): 1 For N-Gram (house was): 1 For N -Gram (was by): 0 For N-Gram (by the): 0 For N-Gram (the lake): 1 For N-Gram (lake shore): 0

For N-Gram (a green house): 0
For N-Gram (green house was): 1 For N-Gram (house was by): 0 For N-Gram (was by the): 0 For N -Gram (by the lake): 0 For N -Gram (the lake shore): 0

For N-Gram (a green house was): 0 For N-Gram (green house was by): 0 For N-Gram (house was by the): 0 For N-Gram (was by the lake): 0 For N-Gram (by the lake shore): 0

Precision 1-gram: $0.625000=5 / 8$
Precision 2-gram: $0.428571=3 / 7$
Precision 3-gram: $0.166667=1 / 6$
Precision 4-gram: $0.000000=0 / 5$
Weighted Precision: 0.000000
(because 4-gram precision $=0$)
Brevity Penalty: 0.778801
$B L E U=0.000000$

BLEU: example

E Reference: the green house was right in front of the lake.
ETranslation 2: the green house was by the lake shore .

For N-Gram (green): 1
For N-Gram (house): 1
For N-Gram (was): 1
For N-Gram (by): 0
For N-Gram (the): 2
For N-Gram (lake): 1
For N-Gram (shore): 0

For N-Gram (the green): 1
For N-Gram (green house): 1 For N-Gram (house was): 1
For $\mathrm{N}-\mathrm{Gram}$ (was by): 0
For N -Gram (by the): 0
For N-Gram (the lake): 1
For N-Gram (lake shore): 0

For N-Gram (the green house): 1
For N-Gram (green house was): 1
For N-Gram (house was by): 0
For N-Gram (was by the): 0
For N -Gram (by the lake): 0 For N -Gram (the lake shore): 0

For N-Gram (the green house was): 1 For N-Gram (green house was by): 0 For N -Gram (house was by the): 0 For N-Gram (was by the lake): 0 For N-Gram (by the lake shore): 0

Precision 1-gram: $0.750000=6 / 8$
Precision 2-gram: $0.571429=4 / 7$
Precision 3-gram: $0.333333=2 / 6$
Precision 4-gram: $0.200000=1 / 5$
Weighted Precision: 0.411134
Brevity Penalty: 0.778801

BLEU $=0.320191$

BLEU: example

E Reference: the green house was right in front of the lake.
© Trans. 3: the green potato right in front of the lake was right .

For N-Gram (green): 1
For N-Gram (potato): 0
For N-Gram (in): 1
For N-Gram (front): 1
For N-Gram (of): 1
For N-Gram (the): 2
For N-Gram (lake): 1
For N-Gram (was): 1
For N-Gram (right): 1
For N-Gram (the green): 1
For N-Gram (green potato): 0
For N-Gram (potato right): 0
For N-Gram (right in): 1
For N-Gram (in front): 1
For N-Gram (front of): 1
For N-Gram (of the): 1
For N-Gram (the lake): 1
For N-Gram (lake was): 0
For N-Gram (was right): 1

For N -Gram (the green potato): 0
For N-Gram (green potato right): 0
For N-Gram (potato right in): 0
For N-Gram (right in front): 1
For N-Gram (in front of): 1
For N-Gram (front of the): 1
For N-Gram (of the lake): 1
For N -Gram (the lake was): 0
For N-Gram (lake was right): 0
For N-Gram (the green potato right): 0
For N-Gram (green potato right in): 0
For N-Gram (potato right in front): 0
For N-Gram (right in front of): 1
For N-Gram (in front of the): 1
For N -Gram (front of the lake): 1
For N-Gram (of the lake was): 0
For N -Gram (the lake was right): 0

Precision 1-gram: $0.818182=9 / 11$
Precision 2-gram: $0.700000=7 / 10$
Precision 3-gram: $0.444444=4 / 9$
Precision 4-gram: $0.375000=3 / 8$
Weighted Precision: 0.555839
Brevity Penalty: 1.000000

BLEU $=0.555839$

BLEU: example

E Reference: the green house was right in front of the lake.
E Translation 1: a green house was by the lake shore .

- Translation 2: the green house was by the lake shore .
- Translation 3: the green potato right in front of the lake was right.

	WP	BP	BLEU
T1	0.000000	0.778801	0.000000
T2	0.411134	0.778801	0.320191
T3	0.555839	1.000000	0.555839

© Don’t we have a problem!!!!
T1 acceptable (one word changed compared to T2)
T3 wrong and nonsense

NIST: n-gram information weight

Definition

With BLEU all n-grams are equally important
NIST associate an information weight to each n-gram of the reference set

Info $\left(w_{1} w_{2} \ldots w_{n}\right)=\log _{2}\left(\frac{\text { the \# of occurrences of } w_{1} w_{2} \ldots w_{n-1}}{\text { the \# of occurrences of } w_{1} w_{2} \ldots w_{n}}\right)$
for a unigram w_{1} :
the \# of occurrences = the \# of occurrences in the reference

NIST: hypotheses brevity penalty

Definition

New $B P$ to minimize the impact on the score of small variations in the length of a translation
It reduces the contributions of length variations to the score for small variations

$$
B P=\exp \left\{\beta \log ^{2}\left[\min \left(\frac{L_{\text {sys }}}{\bar{L}_{\text {ref }}}, 1\right)\right]\right\}
$$

where
β is chosen to make the brevity penalty factor $=0.5$ when the \# of words in the system output is $2 / 3$ of the average \# of words in the reference translation
($\bar{L}_{\text {ref }}=$ the average number of words in a reference translation, averaged over all reference translations
($L_{s y s}=$ the number of words in the translation being scored

BLEU vs NIST: Brevity Penalty

Hypo/Ref Length Ratio ≈ 0.85

BLEU vs NIST: Brevity Penalty

\# 0 < Hypo(Sys)/Ref Length Ratio ≤ 1

NIST: the formula

NIST is computed as follows:

Where

$N=4$ at least
NIST $\in[0 . .+\infty[$ ([0..15[in practice)
\# Reference: the green house was right in front of the lake . (11 1-grams)

- Translation 1: a green house was by the lake shore .
- Co-occurring n-grams
© 1-grams: 'the', 'green', 'house', 'was', 'lake', '.'
$\leftrightarrow \quad$ 2-grams: 'green house', 'house was', 'the lake'
(the green house was right in front of the lake.
- a green house was by the lake shore.

3-gram: "green house was"

* the green house was right in front of the lake.
- a green house was by the lake shore.

E Info
Info(the) $=\log _{2}(11 / 2)=2.4594$
Info(green) $=$ Info(house) $=$ Info(was) $=\operatorname{Info}($ lake $)=\operatorname{Info}()=.\log _{2}(11 / 1)=3.4594$
Info(green house) $=$ Info(house was) $=\log _{2}(1 / 1)=0.0000$
Info(the lake) $=\log _{2}(2 / 1)=1.0000$
Info(green house was) $=\log _{2}(1 / 1)=0.0000$

NIST: Example

- NIST 1-gram $=\frac{\operatorname{lnfo(the)}+\operatorname{Info}(\text { green })+\operatorname{Info}(\text { house })+\operatorname{Info}(\text { was })+\operatorname{Info}(\text { lake })+\operatorname{Info}(.)}{9_{(\# 1-\text {-grams in hypothesis })}}$
- NIST 2-gram $=\frac{\operatorname{lnfo}(\text { green house })+\operatorname{Info} \text { (house was) }+ \text { Info(the lake) }}{8_{(\# 2 \text {-grams in hypothesis) })}}$
- NIST 2-gram $=\frac{\operatorname{lnfo}(\text { green house was) }}{7_{(\# 3 \text {-grams i i hypothesis) })}}$

Penalty

$$
\begin{aligned}
& \leftrightarrow \beta=4.2162 ; \text { ratio hypo } / \text { ref }=9 / 11=0.8181 \\
& \leftrightarrow B P=\exp \left(\beta \cdot \log ^{2}(\text { ratio })\right)=0.8439
\end{aligned}
$$

NIST: example

目 Reference: the green house was right in front of the lake.
ETranslation 1: a green house was by the lake shore .

E NIST score $=1.9579$

* Brevity Penalty $=0.8439$

Individual N -gram scoring

NIST: example

© Reference: the green house was right in front of the lake.

- Translation 2: the green house was by the lake shore .

E NIST score $=2.2940$
田 Brevity Penalty $=0.8439$

Individual N-gram scoring with BP

1-gram	2 -gram	3-gram	4 -gram	5-gram
-----	-----	-----	-----	-----
2.0830	0.2110	0.0000	0.0000	0.0000

\#
Individual N -gram scoring x BP

| 1-gram | 2 -gram | 3 -gram | 4 -gram | 5 -gram |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ------ | ------ | ----- | ----- | ------ |
| NIST: 2.0830 | 2.2940 | 2.2940 | 2.2940 | 2.2940 |

NIST: example

© Reference: the green house was right in front of the lake.
© Trans. 3: the green potato right in front of the lake was right .

E NIST score $=2.8980$

* Brevity Penalty $=1.0000$

Individual N-gram scoring with BP

$1-g r a m$	$2-g r a m$	$3-g r a m$	$4-g r a m$	$5-g r a m$
-----	-----	-----	-----	-----
2.7162	0.1818	0.0000	0.0000	0.0000

\#
Cumulative N -gram scoring

| 1-gram | $2-$-gram | $3-$-gram | 4 -gram | 5 -gram |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ------ | ------ | ----- | ----- | ------ |
| NIST: 2.7162 | 2.8980 | 2.8980 | 2.8980 | 2.8980 |

NIST: example

R Reference: the green house was right in front of the lake.
E Translation 1: a green house was by the lake shore .

- Translation 2: the green house was by the lake shore .

田 Translation 3: the green potato right in front of the lake was right.

	BLEU
T1	1.9579
T2	2.2940
T3	2.8980

巴 Don't we have a problem!!!!
T1 acceptable (one word changed compared to T2)
T3 wrong and nonsense

NIST: example

© Reference: the green house was right in front of the lake.
ETranslation 0: the green house was right in front of the lake.

E NIST score $=3.2776$
田 Brevity Penalty $=1.0000$

Individual N-gram scoring with BP

1-gram	2 -gram	3-gram	4 -gram	5-gram
-----	-----	-----	-----	-----
3.2776	0.2000	0.0000	0.0000	0.0000

\#
Cumulative N -gram scoring

Recall-oriented measures

Proportion of the lexical unit in the reference translation(s) covered by the hypothesis

E ROUGE (Recall-Oriented Understudy for Gisiting
Evaluation) [Lin\&Och, 2004]
\& Lexical recall among n-grams (1 to 4 grams); allows for stemming and discontinuous matching (skip n-grams)
E CDER (Cover/Disjoint Error Rate) [Leusch et al., 2006]
Recall oriented measure modeling block reordering; movements of word blocks as an edit operation

Measures balancing precision \& recall

Precision \& recall combination

$$
F_{1} \text { score } F_{1}=2 \cdot \frac{P \cdot R}{P+R}, F_{\beta} \text { score } F_{\beta}=\left(1+\beta^{2}\right) \cdot \frac{P \cdot R}{\left(\beta^{2} \cdot P\right)+R}
$$

- GTM (General Text Matcher) [Meamedetal, 2003; Turianetal,2003]

F-measure; adjusted importance of n-grams matching

- METEOR [Banerjee \& Lavie, 2005]
\& F-measure based on 1-gram alignment \& word ordering;
+ stemming \& synonymy through WordNet
- BLANC [Lita et al., 2005]

Family of trainable n-gram based metrics; variable size noncontinuous word sequences
ESIA (Stochastic Iterative Alignment) [Liu \& Gileda, 2006]
\leftrightarrow Loose sequence alignment enhanced with alignment scores, stochastic word matching and iterative alignment scheme

CLIPS at IWSLT 2004

E Setting

\leftrightarrow Language pair

- Japanese \rightarrow English

Domain

- Tourism

Systems

- Systran Web \& Systran Professionnal Premium (PP) V5 used at that time as baseline systems

clips-1	Systran Web V5
clips-2	Systran PP V5 with original dictionaries
clips-3	Systran PP V5 with original and user dictionaries

CLIPS at IWSLT 2004

B Results

\leftrightarrow Subjective evaluation of clips-3
non-native English > Fluency > disfluent English
\& much > Adequacy > little

Objective evaluation (score ${ }_{\text {rank }}$)

	BLEU	GMT	NIST	PER	WER
clips-3	0.1320_{1}	0.5687_{1}	5.6476_{1}	0.5978_{1}	0.7304_{1}
clips-2	0.1311_{2}	0.5672_{2}	5.6096_{2}	0.6012_{2}	0.7349_{2}
clips-1	0.0810_{3}	0.5116_{3}	4.1935_{3}	0.7179_{3}	0.8726_{3}

systems ranked as expected!

CLIPS at IWSLT 2004

Errors

\leftrightarrow Bad translation when subject is omitted
－ここで降ります。 \rightarrow It gets off here．
（koko de orimasu）I will get off here．Euphemistic utterance が translated by＂but＂
＊両替をしたいのですが。 \rightarrow It is to like to exchange but． （ryoukake o shitai no desu ga）I would like to change money．
Question word order
入場料はいくらですか。 \rightarrow Is admission fee how much？
（nyuujouryou wa ikura desu ka）How much is the admission fee？
Requests or invitations
－一緒に行きましょう。 \rightarrow It will go together．
（isshoni ikimashou）Let＇s go together．

CLIPS at IWSLT 2004

E TER

Best Ref: i will get off here .
Orig Hyp: it gets off here .

```
REF: i will get off here
HYP: * it gets off here
EVAL: D S S
SHFT:
TER Score: 50,00 ( 3,0/ 6,0)
```


CLIPS at IWSLT 2004

TER

Best Ref: i would like to exchange money .
Orig Hyp: it is to like to exchange but .
© REF: ** i would like to exchange money.
HYP: it is to like to exchange but .
EVAL: I S S S
SHFT:
TER Score: 57,14 (4,0/ 7,0)

CLIPS at IWSLT 2004

TER

Best Ref: how much is the admission fee?
\leftrightarrow Orig Hyp: is admission fee how much ?

* Shift [how, much] 3 words left

REF: how much is the admission fee ?
HYP: [how much] is *** admission fee @ ?

CLIPS at IWSLT 2004

E TER

Best Ref: let 's go together .
Orig Hyp: it will go together .
\& REF: let 's go together.
HYP: it will go together .
EVAL: S S
SHFT:
TER Score: 40,00 (2,0/ 5,0)

CLIPS at IWSLT 2004

© Competitive objective evaluation

\leftrightarrow Systran PP V5 is fourth

	BLEU	GMT	NIST	PER	WER
JE_1	0.6306_{1}	0.6306_{2}	10.7201_{2}	0.2333_{1}	0.2631_{1}
JE_3	0.6190_{2}	0.8243_{1}	11.2541_{1}	0.2492_{1}	0.3056_{1}
JE_4	0.3970_{3}	0.6722_{3}	7.8893_{3}	0.4202_{3}	0.4857_{3}
CLIPS-3	0.1320_{4}	0.5687_{4}	5.6476_{4}	0.5978_{4}	0.7304_{4}

CLIPS at IWSLT 2004

\square Competitive objective evaluation with post-edited (PE) Systran outputs

A 5 score at subjective evaluation for both fluidity and adequacy

	BLEU	GMT	NIST	PER	WER
JE_1	0.6306_{1}	0.6306_{2}	10.7201_{2}	0.2333_{1}	0.2631_{1}
JE_3	0.6190_{2}	0.8243_{1}	11.2541_{1}	0.2492_{1}	0.3056_{1}
PE-CLIPS-3	0.4691_{-}	0.7777_{-}	9.9189_{-}	0.3236_{-}	0.3711_{-}
JE_4	0.3970_{3}	0.6722_{3}	7.8893_{3}	0.4202_{3}	0.4857_{3}
CLIPS-3	0.1320_{4}	0.5687_{4}	5.6476_{4}	0.5978_{4}	0.7304_{4}

\leftrightarrow Scores improve but not enough post-eds still far from refs
\& system JE_4 beaten
\& PE-CLIPS-3 still to far from references to beat JE_1 \& JE_3

Zied Elloumi, Hervé Blanchon
Gilles Sérasset \& Laurent Besacier
MT SUMMIT 2015

METEOR FOR MULTIPLE TARGET LANGUAGES USING DBNARY

Outline

Situation

\& METEOR, WordNet, Dbnary
■ "Dbnary Synsets" Extraction
METEOR Scores on English
WordNet vs Dbnary Synsets

- Correlation with human judgment
\& METEOR without Synset vs METEOR with "Dbnary Synsets"
© Conclusion and Perspectives

SITUATION

METEOR

E Introduced by (Banerjee and Lavie, 2005)
> to overcome several weaknesses of BLEU (Papineni, 2002) and NIST (Doddington, 2002)
$>$ to better correlate with human judgment
E A 3-leveled mapping approach
between a MT Hypothesis and one or several References surface forms overlap of words stems (lemma) overlap of surface forms
tool: a stemmer (lemmatizer) for the language synonymy overlap through shared WordNet Synsets resource: a WordNet for the language

METEOR Recent Extensions

METEOR-NEXT (Denkowski and Lavie, 2010a)
to better correlate with HTER (Snover \& al., 2006)
a $4^{\text {th }}$ mapping level to accommodate multi-word matches
(resource: a paraphrase database for the language
\# METEOR Universal (Denkowski and Lavie 2014)

- tool: automatic extraction of paraphrase tables and function word lists from bitexts
- resources: paraphrase tables for English, Arabic, Czech, French, German, Spanish
(parameter set (learned from human judgments)
- METEOR-WSD (Apidianaki and Marie, 2015)
> to filter synonyms/paraphrases according to word senses
\& English references further disambiguated and annotated using Babelfly (Moro et al., 2014)

WordNet

A large lexical database for English (Fellbaum, 1998)

W WordNet links nouns, verbs, adjectives and adverbs to sets of cognitive synonyms (Synsets)

E Different versions of WordNet in other languages (Arabic, French, ...)
pro: important and a very useful resources
cons: not free and/or not available for every language

METEOR \& WordNet

synonym match increases the chance of the MT output words to match the reference words
E Cons
synonym match available only for English

Latest version of WordNet $3.0=117659$ Synsets

Categories	\# of Synsets
Verb	13767
Noun	82115
Adverb	3621
Adjective	18156

Table 1. Number of Synsets in WordNet

METEOR \& WordNet

(METEOR uses the Morphy-7WN function from WordNet to lemmatize forms
E Morphy-7WN uses a two-step process to find lemma of a particular word \boldsymbol{W}

- Check \boldsymbol{W} in the exception list (containing morphological transformations that are not regular)
- Use rules of detachment for NOUN, VERB and ADJ categories (no rules applied to ADV)
- Find the Synset list of \boldsymbol{W}

Dbnary (http://kaiko.getalp.org/about-dbnary/)

What is it?

a multilingual lexical resource in RDF (Klyne \& Carroll, 2004) collected at the LIG (Sérasset, 2015) and extracted from Wiktionary (currently 21 languages editions)
the lexical data is made available as LLOD (Linguistic Linked Open Data) the lexicon structure is defined using the LEMON vocabulary (McCrae et al., 2011)
Availability
downloadable files
queried locally using SPARQL
Linked Open Data directly accessible to browsers or applications queried online using SPARQL

Wiktionary	the dictionary counterpart of Wikipedia
LEMON	a model for modeling lexicon and machine-readable dictionaries linked to the Semantic Web and the Linked Data cloud
SPARQL	a standard language for querying linked data

Dbnary: the dataset

© Core data
Lexical Entries, Lexical Senses and Translations

- Additional data

S Semantically enriched Relations
Translations: attached to their source Lexical Sense when possible
Lexico-semantic relations: also attached to their source Lexical Sense
syno/anto-nymy, hypo/hyper-nymy

- mero/holo-nymy, tropo-nymy
\& Morphology
Extensive representation of morphology (a set of "lemon:otherForm")

LEMON

A quick overview

Dbnary example: entry chat in French

\# http://kaiko.getalp.org/dbnary/fra/chat


```
About: dbnary-fra:chat nom_\ Goto Sponge Permalink
An Entity of Type :lemon:Word, within Data Space :kaiko.getalp.org associated with source dataset(s).
Type: lemon:Word \hat{v New Facets Session with This Class}
```


About: dbnary-fraschat nom__3 Goto Sponge Permalink An Entity of Type : lemon:Word, within Data Space :kaiko.getalp.org associated with source dataset(s) Type: lemon:Word $\hat{\imath}$ New Facets Session with This Class

Attributes rdf:type	Values lemon:LexicalEntry lemon:Word
dcterms:language	lexvo:fra

Dbnary: a source of Synsets for METEOR?

The big picture

© 21 languages

2.9M lexical entries (pos, canonical form, +\{\})
divided into 2.5 M senses (def, example)
4.9M translations (from 21 languages)
© We will consider the following languages

	English	French	Russian	German	Spanish
\# of entries	620,369	322,018	185,910	104,505	86,388
\# of senses	498,415	416,323	176,335	116,290	126,411
\#of synonyms	35,437	36,019	31,345	33,282	21,024

Table 2. Number of entries, senses, and synonyms in Dbnary for the target languages considered in this study.

SYNSET EXTRACTION FROM DBNARY

Querying Dbnary

\square SPARQL queries to extract every synonym (?s) in the Dbnary database for each word (?w) in a specific language

SELECT distinct ?w ?s

WHERE \{ ?s dbnary:synonym ?w.
?w dbnary:refersTo ?le.
?le lemon:language 'en'.\}
Example
?w = "cut"

lower	reduce	juice	decrease
vigorish	decrease	ripped	cutting

Producing the Synsets

- Produce a la WordNet Synsets from Dbnary

2 dictionaries of synonyms

DB-4-catg

with the 4 WordNet categories: Verb, Noun, Adverb, Adjective DB-all-catg
with all the existing categories in Dbnary

	category	
Noun	Phrase	Proverb
Adjective	Suffix	Numeral
Verb	Pronoun	Determiner
Adverb	Prep_phr	Symbol
Proper_noun	Conj	Card_num
Interjection	Prefix	Infix
Preposition	Particle	Idiom

Table 3. All category extracted from Dbnary for English

\# of Dbnary categories/language

\# of categories for the languages considered
English, French, German, Russian, and Spanish

60

Scores comparison with reported results of WMT14 on French-English
\checkmark WordNet original Synsets (4 categories)
\checkmark "Dbnary 4 cats Synsets" (DB-4-catg)
$\boldsymbol{\checkmark}$ "Dbnary 21 cats Synsets" (DB-all-catg)
METEOR SCORES ON ENGLISH WORDNET VS DBNARY

Impact of the "Synsets"

METEOR	Baseline (WordNet)	DB-4-catg	DB-all-catg
online A	36.97%	36.91%	37.13%
rbmt-1	33.74%	33.60%	33.89%

Table 4 . METEOR-Baseline vs METEOR-Dbnary for 2 randomly picked up systems from WMT14 data (French-English MT)

© Comments

© similar scores for the Baseline \& DB-4-catg
(the size of the WordNet dictionary is 2,5 times larger than the size of Dbnary (4-catg).
small increase (>0.2, >0.6\%) using all 21 Dbnary categories with DB-all-Catg

The second hidden parameter

METEOR uses the Morphy-7WN function to find the lemma of a given English word
what would we do for the other languages?
E Idea
\& Use Treetagger (Schmid, 1994) to lemmatize forms for any language
E Cons
Using Treetagger while computing METEOR score will slow down the execution time
ESolution
Spreprocess the data (hypo, ref) to get lists of pairs (word, lemma)

Impact of the lemmatizer

	METEOR-Morphy	METEOR-TTG
online A	36.97%	37.00%
rbmt-1	33.74%	33.76%

Table 5. Impact of lemmatization; METEOR-Morphy vs METEOR-TTG for 2 randomly picked up systems from WMT14 data (French-English MT)

- Comment

A slight increase between the scores of METEORMorphy and METEOR-TTG

Possible explanation

- TreeTagger lemmatizes all categories
- Morphy-7WN lemmatizes only three categories (Noun, Verb and Adjective)

Correlation comparison with previously reported results
\checkmark English-Spanish (WMT13)
$\boldsymbol{\checkmark}$ French-English, English-French, English-Russian, English-German (WMT14) CORRELATION WITH HUMAN JUDGMENT METEOR WORDNET VS DBNARY

Goal

E Compare correlation of METEOR and METEOR-Dbnary with human judgments of MT hypotheses
\& WMT13 Metrics Shared Task (Machacek and Bojar, 2013)
(English-Spanish
WMT14 Metrics Shared Task (Machacek and Bojar, 2014)
(French-English, English-French, English-German and English-Russian
Evaluation measures
System-level: Pearson correlation coefficient between system rankings based on human judgments vs automatic score
Segment-level: Kendall's τ rank correlation coefficient between system rankings based on human judgments vs automatic score

Setup

© "Dbnary Synsets" for all the target languages: FR, SP, RU, GE
weight of 0.8 for the synonyms for each language
(same weight as the English synonym module in the METEOR default setting
E Two configurations of METEOR
\& METEOR-Baseline: METEOR Universal (v1.5) with the synonym module activated for English only with WordNet
METEOR-Dbnary: METEOR Universal with the synonym module activated for EN, FR, SP, RU, GE, using "Dbnary Synsets"

Results for Pearson Correlation Coeff.

	WMT14				WMT13
	FR-EN	EN-FR	EN-RU	EN-GE	EN-ES
Meteor-Baseline	.975	.941	.923	.263	.886
Meteor-Dbnary	.973	.943	.928	.320	.895

Table 6. System-level correlations (Pearson Correlation Coefficient) between Baseline (or METEOR-Dbnary) and the WMT13/WMT14 human rankings

\triangle Comments

\leftrightarrow when WordNet Synsets are available (FR-EN)

* slight degradation (size(Dbnary) << size(WordNet))
when WordNet Synsets are not available (EN-XX)
use of "Dbnary Synsets" slightly improves system-level correlations of METEOR score with human judgment

Results for Kendall's τ rank corr. coeff.

	WMT14				WMT13
	FR-EN	EN-FR	EN-RU	EN-GE	EN-ES
Meteor-Baseline	.406	.280	.238	.427	.184
Meteor-Dbnary	.406	.284	.240	.435	.187

Table 7. Segment-level correlations (Kendall's τ) between METEOR-Baseline (or METEOR-Dbnary) and the the WMT13/WMT14 human rankings

- Comments

S Same trend that before for segment-level correlations
D Dbnary can be a useful resource for MT evaluation to bring synonyms as an added feature

Changes in the METEOR score

	WMT14			WMT13
	EN-FR	EN-RU	EN-GE	EN-ES
Meteor-Baseline	50.94	36.21	38.06	49.88
Meteor-Dbnary	$\mathbf{5 2 . 3 4}$	$\mathbf{3 7 . 6 0}$	$\mathbf{4 1 . 5 1}$	$\mathbf{5 1 . 0 4}$

Table 8 : Comparison of METEOR-Baseline without synonyms vs METEOR-Dbnary (for rbmt-1 system)
© Comments
METEOR-Dbnary scores are better
E Explanation
Using Dbnary as a lexical resource for synonymy, the metric maps more words with the same meaning

Example 1

Reference: [...] alors les dirigeants d'entreprise sont sûrement aussi des cibles potentielles.
Hypothesis: [...] alors sûrement les chefs de file des affaires sont également les cibles potentielles.

- Synonym match

Word	Lemma	Synonym list
dirigeants	dirigeant	[chef, maître, leader, directeur]
chefs	chef	[tête, maître, cuisinier, leader, maître_queux, patron]
aussi	aussi	[ainsi, également, itou]

$>$ Segment score:
METEOR-Baseline: 0.6762
METEOR-Dbnary : 0.7290

Example 2

Reference: J'estime qu'il est concevable que ces données soient utilisées dans leur intérêt mutuel.
Hypothesis: Je pense qu'il est concevable que ces données soient employées pour le bénéfice mutuel.
© Synonym match

Word	Lemma	Synonym list
utilisées	$\underline{\text { utiliser }} \leftarrow$	[user]
employés	employer	[occuper, $\underline{\text { utiliser] }}$

$>$ Segment score :
METEOR-Baseline : 0.6609
METEOR-Dbnary : 0.7133

Example 3

Reference: Il me parlait, m'encourageait constamment, il habitait mon corps.
Hypothesis: II me parlerait, m'encouragent constamment, il a vécu dans mon corps.
© Synonym match

Word	Lemma	Synonym list
habitait	$\underline{\text { habiter }} \rightleftarrows$	[occuper]
vécu	vivre	[habbiter, nourriture]

$>$ Segment score :
METEOR-Baseline : 0.6743
METEOR-Dbnary : 0.7688

OBJECTIVE EVALUATION FINAL REMARKS

Pros of objective evaluation

Costless
No! References have to be produced at some point!
Objective
(OK, always the same results with the same hypo \& ref(s)
Reusable
Always on the same test set (not a real life situation)
(Correlation between "translation improvement" \& "score improvement"
© System optimization

- is it good or bad?

System comparison
\& as far as they use the same development protocol! (cf. IWSLT 04)

Cons of objective evaluation

System over tuning
(When system parameters are adjusted towards the main evaluation metric
if it is BLEU then tune with BLEU, if it is NIST then tune with NIST

- Several metrics used for ranking

Blind system development
When metrics are unable to capture system improvements
Unfair system comparison
When metrics are unable to reflect difference in quality between MT systems
When systems are based on different paradigms (SMT vs. RBMT) (cf. IWSLT 2004)
\& No utility, usability evaluation yet

CONCLUSION

To be remembered

E On BLEU [Callison-Burch et al., 2006]
\& Under some circumstances an improvement in BLEU is not sufficient to reflect a genuine improvement in translation quality
Under other circumstances that it is not necessary to improve BLEU in order to achieve a noticeable improvement in translation quality
\square To be transposed to all other objective metrics!

External vs internal measures

External measures

\& linguistic criteria: grammaticality, fidelity...
usage criteria: productivity, cost, delay...
conflict between linguistic \& usage criteria
(ex: Systran, Euratom, ISPRA: 2/20 (linguistic quality) - 18/20 (usability)

E Internal measures

system design: linguistic \& computational architecture
perspectives of improvements: quality, coverage
ease of extension to
new languages
(new document types
(new tasks (assimilation \rightarrow dissemination)

Classification of external measures

© Measures related to the task
\& High quality written communication
two tasks: acquisition (from one language source), diffusion (to one target language)

- Produce a professional quality translation
\diamond reduction of costs (human labor) and delays

Spoken communication

Help two people to conduct a bilingual dialogue to accomplish a task accomplishment of the task
Comprehension, understanding of written material
Translate Web pages, newspapers, e-commerce services so that end users can understand information in foreign languages and act accordingly
\diamond number of purchases per visited page in e-commerce, time spent reading newspapers page (objectives measures)
user feedback, answers to customer questionnaires (subjective measures)

Classification of external measures

— Measures related to the task (cont.)
ゃ Comprehension, understanding of spoken material the typical task is to follow a monologue (speech, Parliament, etc.). or a dialogue in a foreign language (television, intelligence)
8roduce as much information as possible
\diamond determine the level of understanding
\diamond objective measure: time to complete the task, MCQ about the content
४ subjective measures: sense of understanding, judgment of fluidity

Classification of external measures

E Measures non related to the task
\leftrightarrow with references
\diamond adequacy a la NIST
\diamond fidelity a la JEIDA or FEMTI
\diamond informativeness a la ALPAC
without references
\diamond fluidity a la NIST
\diamond adequacy through MCGQ a la TOEFL or TOEIC

Proposal

Use only cheap task-related measures for external evaluation!

© MT for written input

Diffusion

(objective usability measures
time spend for post-edition, correction of raw MT output
(Relative Efficiency:

$$
\text { Relative Efficiency }{ }_{M T}=\frac{\text { Time }_{\text {Human }}}{\text { Time }_{M T+H \text { Haman }}}
$$

8 an MT system may be considered efficient if it's relative efficiency is >2 (upper bound of the gain with a translation memory)
$>$ subjective measure such as fluency or adequacy are useless and counterproductive

* corrections made easy by the environment (cf. "is admission fee how much?"

Proposal

E MT for written input

Acquisition, understanding

Web pages

(compare reading time translated Web page vs reading time original Web page
(\%) if shorter: very bad translation
\& if longer: bad translation but usable for some understanding
\& if equal: quality OK of the use
Multiple Choice Questions

Proposal

MT for spoken input

Diffusion

(MCQ for understanding

Acquisition, Understanding

MCQ but hard for dialogue

Final words...

E External methods for evaluating MT systems define various measures based on MT results and their usage.

- While operational systems are mostly evaluated since long by taskbased methods, evaluation campaigns of the last years use (parsimoniously) quite expensive subjective methods based on unreliable human judgments, and (for the most part) methods based on reference translations, that are impossible to use during the real usage of a system, less correlated with human judgments when quality increases, and totally unrealistic in that they force to measure progress on fixed corpora, endlessly retranslated, and not on new texts to be translated for real needs.
- There are also numerous biases introduced by the desire to diminish costs, in particular the usage of parallel corpora in the direction opposed to that of their production, and of monolingual rather than bilingual judges.
- We propose to abandon the reference-based methods in external evaluations, and to replace them by strictly task-based methods, while reserving them for internal evaluations.

BIBLIOGRAPHY

Bibliography (1/5)

ALPAC (1966). Language and Machine: Computers in Translation and Linguistics. n. 1416. Automatic Language Processing Advisory Committee, Division of Behavioral Sciences, National Academy of Science - National Research Council. Washington, D. C. November 1966. 138 p.
E Babych, B., \& Hartley, A. (2004). Extending BLEU MT Evaluation Method with Frequency Weightings. Proceedings of ACL 2004. Barcelona, Spain. July 21-26, 2004. pp. 622-629.
E Banerjee, S., \& Lavie, A. (2005). METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgement. Proceedings of ACL-05, Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Ann Arbor, USA. June 29, 2005. pp. 25-32.

E Blanchon, H. (2004). HLT Modules Scalability within the NESPOLE! Project. Proceedings of ICSLP. Jeju Island, Korea. October 4-8, 2004. 4 p.

- Blanchon, H., Boitet, C., \& Besacier, L. (2004). Spoken Dialogue Translation System Evaluation: Results, New Trends, Problems and Proposals. Proceedings of IWSLT 2004. Kyoto, Japan. September 30 - October 1, 2004. pp. 95-102.

Bibliography (2/5)

Blanchon, H., Boitet, C., Brunet-Manquat, F., Tomokio, M., Hamon, A., Hung, V. T. et al. (2004). Towards Fairer Evaluation of Commercial MT Systems on Basic Travel Expressions Corpora. Proceedings of IWSLT 2004. Kyoto, Japan. September 30 - October 1, 2004. pp. 21-26.
\# Callison-Burch, C., Osborne, M., \& Koehn, P. (2006). Re-evaluating the Role of BLEU in Machine Trans/ation Research. Proceedings of ACL-2006. Trento, Italy. April 3-7, 2006. pp. 249-256.

- Doddington, G. (2002). Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics. Proceedings of HLT 2002. San Diego, California. March 24-27, 2002. pp. 138-145.
- EAGLES-EWG (1996). EAGLES - Evaluation of Natural Language Processing Systems. Final Report EAG-EWG-PR.2, Project LRE-61-100. Center for Sprogteknologi. Copenhagen, Denmark. October, 1996. 287 p.
EAGLES-EWG (1999). EAGLES - Evaluation Working Group. Final Report EAG-II-EWG-PR.2, Project LRE-61-100. Center for Sprogteknologi. Copenhagen, Denmark. April, 1999. 173 p.
© Hovy, E., King, M., \& Popescu-Belis, A. (2002). Principles of Context-Based Machine Translation Evaluation. Machine Trans/ation, 17(1): pp. 43-75.

Bibliography (3/5)

- JEIDA (1989). A Japanese view of machine translation in light of the considerations and recommendations reported by ALPAC, U.S.A. Japan Electronic Industry Development Association. Tokyo, Japan. July, 1989. 197 p.
■ JEIDA (1992). JEIDA Methodology and Criteria on Machine Trans/ation Evaluation. Japan Electronic Industry Development Association. Tokyo, Japan. November, 1992. 129 p.
E King, M., Popescu-Belis, A., \& Hovy, E. (2003). FEMTI: creating and using a framework for MT evaluation. Proceedings of MT Summit IX. New Orleans, USA. September 23-27, 2003. 8 p.

E Leusch, G., Ueffing, N., \& Ney, H. (2006). CDER: Efficient MT evaluation using block movements. Proceedings of 11th Conference of the European Chapter of the Association for Computational Linguistics. Trento, Italy. April 3-7, 2006. pp. 241-248.
E Lin, C.-Y., \& Och, F. J. (2004). Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and SkipBigram Statistics. Proceedings of ACL 2004. Barcelona, Spain. July 21-26, 2004. pp. 605-612.

Bibliography (4/5)

© Lita, L. V., Rogati, M., \& Lavie, A. (2005). BLANC: learning evaluation metrics for MT. Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Vancouver, B.C., Canada. October 6-8, 2005. pp. 740-747.
E Liu, D., \& Gildea, D. (2006). Stochastic Iterative Alignment for Machine Translation Evaluation. Proceedings of COLING-ACL. Sydney, Australia. 1721 July, 2006. pp. 539-546.

- Melamed, I. D., Green, R., \& Turian, J. P. (2003). Precision and Recall of Machine Translation. Proceedings of HLT-NAACL 2003 - short papers. Edmonton, Canada. May 27 - June 1, 2003. pp. 61-63.
\# Nießen, S., Och, F. J., Leusch, G., \& Ney, H. (2000). An Evaluation Tool for Machine Translation: Fast Evaluation for MT Research. Proceedings of LREC 2000. Athens, Greece. 31 May - 2 June, 2000. pp. 39-45.
© Papineni, K., Roukos, S., Ward, T., \& Zhu, W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation. Proceedings of ACL-02. Philadelphia, USA. July 7-12, 2002. pp. 311-318.

Bibliography (5/5)

E Przybocki, M., Sanders, G., \& Le, A. (2006). Edit Distance: A Metric for Machine Translation Evaluation. Proceedings of LREC 2006. Genoa, Italy. May 24-26, 2006. pp. 2038-2043.
© Snover, M., Dorr, B., Schwartz, R., Micciulla, L., \& Makhoul, J. (2006). A Study of Translation Edit Rate with Targeted Human Annotation. Proceedings of AMTA 2006. Cambridge, MA, USA. August 8-12, 2006. pp. 223-231.

- Tillmann, C., Vogel, S., Ney, H., Zubiaga, A., \& Sawaf, H. (1997). Accelerated DP-based search for statistical translation. Proceedings of Fifth European Conference on Speech Communication and Technology (EUROSPEECH'97). Rhodos, Greece. September 22-25, 1997. pp. 2667-2670.
- Turian, J. P., Shen, L., \& Melamed, I. D. (2003). Evaluation of Machine Translation and its Evaluation. Proceedings of MT Summit IX. New Orleans, USA. September 23-27, 2003. pp. 386-393.
\# White, J. S., O'Connell, T., \& O'Mara, F. E. (1994). The ARPA MT Evaluation Methodologies: Evolution, Lessons and Further Approaches. Proceedings of Technology Partnerships for Crossing the Language Barrier (the First Conference of the Association for Machine Translation in the Americas). Columbia, Maryland, USA. October 5-8, 1994. pp. 193-205.

