Master MOSIG

Laurent.Besacier@imag.fr

- 2. Speech and voice technologies
 - DSP reminder
 - The speech signal
 - Speech Technologies
 - Overview
 - Modelling (parameters, models)

Digital Signal Processing Reminder

Bibliography

Cours ENSIMAG de Jim Crowley

http://www-prima.imag.fr/Prima/Homepages/jlc/Courses/Courses.html

- DSP First, A Multimedia Approach, J.H. McClellan, R. W. Schafer, M.A. Yoder
- Traitement numérique des signaux, M. Kunt, Presses Polytechniques Romandes
- Théorie et traitement des signaux, F. De Coulon, Editions de l'Ecole Polytechnique Fédérale de Lausanne

Digital / Analogic Signals

Analog-Digital Conversion

Sampling and Quantification

sampling

quantification

Energy of a signal

Continuous signal s(t) on [t1,t2] $W_{s}(t_{1},t_{2}) = \int_{t_{1}}^{t_{2}} s^{2}(t) dt$

Discrete signal x(n) on [n1,n2]

$$W_s(n_1, n_2) = \sum_{n=n_1}^{n_2} s^2(n)$$

SNR : Signal-to-Noise Ratio

For x(t)=s(t)+n(t)

$$SNR = \frac{W_s}{W_n}$$
$$SNR_{dB} = 10\log_{10} SNR$$
$$SNR_{dB} = 20\log_{10} \frac{Amplitude}{Amplitude}$$

Fourier Transform - TF

Spectral representation of signalsCore mathematical tool in DSP

TF for continuous signals

x(t) signal

TF is a function of variable $\omega = 2\pi f$ defined by :

$$\mathcal{F}\left\{x(t)\right\} = X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

Inverse transform

$$x(t) = \mathcal{F}^{-1} \{ X(\omega) \} = \int_{-\infty}^{+\infty} X(\omega) e^{-j\omega t} d\omega$$

 $-\infty$

(2-D)

$$\mathcal{F}\left\{g(x,y)\right\} = G(u,v) = \int_{-\infty-\infty}^{+\infty+\infty} \int_{-\infty-\infty}^{+\infty} g(x,y)e^{-j(ux+vy)}dxdy$$

$$g(x, y) = \mathcal{F}^{-1}\left\{G(u, v)\right\} = \int_{-\infty-\infty}^{+\infty+\infty} G(u, v)e^{j(ux+vy)}dudv$$

TF of a periodic signal (cos)

$$\cos(w_0 t) \stackrel{TF}{\longleftrightarrow} \frac{1}{2} \left[\delta(w - w_0) + \delta(w + w_0) \right]$$

Time-frequency representation

Time-frequency representation Spectrogram

$$S_{x}(t,f) = \left| \int_{-\infty}^{+\infty} x(s)h^{*}(s-t)e^{-i2\pi fs} ds \right|^{2}$$

Case of square signal

Sawtooth signal

Other examples

Chirps

The Speech Signal

Speech : one modality among others ?

From the user point of vue

- As ouput
 - Visual (2D,3D)
 - Sound/Speech
 - ...
- As input
 - Spoken command
 - Gesture
 - ...

Speech in HMI : ergonomic aspects

Communication Mean

- natural
- fast and concise
- Hands free
- Gaze can be used for other task
- Helpful for disabled people

But...

- Critical Situations
 - degradation of performances
- Training of the Machine Needed
 - Might be long, constraints (do you know IBM ViaVoice?)

Linguistic constraints

- Vocabulary size
- Syntactic structure
- Mode (isolated words, connected words, natural spoken language, disfluencies)

Human factors

- micro + headset => acceptability of the user
- Privacy issues

Goals

- Satisfaction of the user
- Quality
 - System delay
 - Robustness
 - Need to have plan B (or C, or D...)
- Cost
 - Use of speech must have a limited impact on the costs

Avoid...

- Full speech interface
 - It is just another modality
- Complicated systems
 - ergonomy
- Annoy user
 - Robustness needed

Speech technologies

- Speech compression / coding (*wireless*, $IP,\ldots)$
- Speech synthesis / recognition for dialog systems (information access...)
- Speaker authentication (voice biometrics)

More details will be given in my last course...

Speech sounds : phonemes

- Establish distinctive units of meaning
- Phonemes are the shortest sound units in speech that allow to distinguish different words
- Examples [p] [b]
 - pas / bas
 - paie / baie
 - pot / beau

French phonemes

TABLEAU I. — Les phonèmes du français							
Consonnes							
	[p] paie [b] baie [m] mais [f] fait [v] vais [w] ouais	[t] taie [d] dais [n] nez [s] sait [z] zéro [y] huer	[k] quai [g] gai [ɲ] gagner [∫] chez [ȝ] geai [j] yéyé				
Vovelles		[l] lait	[R] raie				
	[i] lit [e] les [ε] lait [a] là [ε̃] lin	[y] lu [Ø] leu [œ] leur [ə] le [ã] lent	[u] loup [o] lot [ɔ] lotte [õ] long				

Note : Les distinctions vocaliques [e]-[ϵ], [\emptyset]-[α] et [o]-[\mathfrak{o}] ne sont pas faites dans tous les contextes et par tous les locuteurs du français. Par contre, certains locuteurs font aussi des distinctions entre patte et pâte, ([a]-[\mathfrak{a}]) ainsi qu'entre brin et brun ([$\tilde{\epsilon}$]-[$\tilde{\alpha}$]).

French phonemes

 TABLEAU II. — Classification des phonèmes du français en traits distinctifs

CONSONNES Mode d'articulation ↓	Labiales	Dentales	Vélo-palatales	←	Lieu d'articulation
Occlusives			1		
non voisées	[p]	[t]	[k]		
voisées	[b]	[d]	[g]		
Nasales	[m]	[n]	[ɲ]		
Fricatives					
non voisées	[f]	[s]	[z]		
voisées	[v]	[z]	[3]		
Glissantes	[w]	[y]	[j]		
Liquides		[1]	[R]		
VOYELLES					
Orales	Antérie	ures	Postérieures		
	Non arrondies	Ar	rondies		
Fermées	[i]	[y]	[u]		
	[e]	[Ø]	[0]		
	[3]	[œ]	[ɔ]		
Ouvertes	[a]				
Nasales	Antérieures		Postérieures		
Fermées	[ã]		[õ]		
Ouvertes		[ã]			

Speech signal

Bonsoir

Speech signal

Vous êtes Monsieur Gilbert Dupont n'est-ce pas ?

Variability

- First caractersitic of speech signals is variability
 - A speaker nevers pronounces two times the exact same sound
 - Two speakers do not pronounce the same sound the same way
- However, this sound is perfectly recognized by a human listener

Intra-Speaker variability

Same sounds, same person, same recording conditions

Inter-speaker variability

Same sounds, different persons, same recording conditions

Variability due to recording conditions

Same sounds, same person, different microphones

Tools for speech analysis

- The spectral peaks of the sound spectrum |P(f)|' of the voice
- Acoustic resonance of the human vocal tract
- Vocal triangle for vowels

Formants

Les hachures délimitent les zones de recouvrement pour un même sexe.

Variability of speech and speakers

Formants : values for french vowels

TABLEAU III.1. — Valeur en Hz des 4 premières fréquences formantiques. 10 sujets masculins ; 9 sujets féminins — Analyse LPC. Med. : valeur de la médiane ; σ : écart-type ; Ki : coefficient d'écart entre formants masculins et féminins : (Ki = Fi ♀/Fi♂). Corpus : [pV] ou [pVR], 2 répétitions par sujet.

voyelles		Sujets masculins					Sujets féminins			
		F_1 F_2 F_3 F_4				F_1	F_2	F_3	F_4	
i	Med. σ Ki	308 34 0,99	2064 134 1,19	2976 147 1,14	3407 208 1,16	Hz Hz %	306 42	2456 111	3389 68	3966 169
e	Med σ Ki	365 31 1,14	1961 119 1,20	2644 107 1,18	3362 155 1,24		417 31	2351 52	3128 115	4161 121
3	Med σ Ki	530 49 1.25	1718 132 1,21	2558 103 1,15	3300 221 1,28		660 46	2080 108	2954 156	4231 210
a	Med σ Ki	684 47 1.15	1256 32 1,20	2503 131 1,09	3262 155 1,27		788 51	1503 86	2737 174	4143 192
э	Med σ Ki	531 39 1,19	998 60 1,18	2399 116 1,12	3278 155 1,21		634 48	1180 59	2690 198	3950 201
0	Med σ Ki	383 22 1,20	793 63 1,08	2283 126 1,21	3256 161 1,17		461 38	855 73	2756 240	3805 183
u	Med σ Ki	315 43 0.99	764 59 1,05	2027 136 1,23	3118 172 1,14		311 43	804 53	2485 284	3550 197
у	Med σ Ki	300 37 1.02	1750 121 1,17	2120 182 1,20	3145 141 1,14		305 68	2046 124	2535 139	3570 216
ø	Med σ Ki	381 44 1,23	1417 106 1.13	2235 113 1,15	3215 201 1,25		469 36	1605 90	2581 148	4005 168
æ	Med σ Ki	517 42 1,25	1391 94 1,21	2379 91 1,16	3353 149 1,20		647 58	1690 47	2753 155	4038 202

Spectrogram

Spectrogram (large band) - 2

Prosody

- Pitch or fundamental frequency
- Voice energy
- Syllable / phoneme duration

Fundamental frequency f0

- Vibration of the vocal cords
- Depnds on speaker age and sex
 - 100 à 150 Hz for adult male speaker
 - 140 à 240 Hz for adult female speaker
 - Can have huge variations for a single speaker
 - Depending on the type of sentence uttered
 - Depending on the emotional / affect of the speaker

Practical lab (optional)

Speech Analysis Tools

http://www-

clips.imag.fr/geod/User/laurent.besacier/NEW -TPs/TP-CL/tp7.html

Speech technologies

Overview Modelling (parameters, stochastic models HMMs)

Speech, a source of informations

Linguistic informations (what is uttered)

Extra-linguistic info. (speaker, language, speaker state)

Linguistic Informations

What is uttered by the speaker....

Automatic Speech Recognition (ASR)

Different levels of difficulty

- Number of speakers : systems monospeakers ...until multi-speakers
- Vocabulary size
- Transmission channel : «direct mic. », téléphone, mobile phone, VoIP

Different levels of difficulty

Acoustic Environment : quiet, normal (officeroom), noisy (train station, street), extreme (plane cockpit) Speaking style : digits, isolated words, connected words, continuous speech (read, spontaneous)

1 person or conversation

Applications

- Services (vocal servers)
- Vocal terminals (on site)
- Transports (vocal commands help, command for navigation system, EVV)
- Language learning
- Dictation
- Information retrieval
- Control / vocal commands

Best systems achieve*

- ~10-12% WER for English on European Parliament Speeches or Broadcast News Data !
- ~20% WER for English on broadcast or telephone conversations
- Large Improvements over the years See DARPA & NIST evaluations...

*sources: TCSTAR & GALE projects

- Improvements over the last 15 years mostly due to...
 - Better modeling : discriminant approaches (MMI,MPE), tying (mixtures, states)
 - Adaptation techniques (MAP, MLLR, VTLN)
 - Computational power : for multipass decoding and multiengine approaches (ROVER)
 - And last but not least...

More Data !!

"There's no data like more data", Robert L.
 Mercer

From LIMSI, Lamel (2002)

Training (hrs)	141	297	602	843
WER(%)	17.2	15.4	14.7	14.5

From RT03 (BBN)

Where we go...

Evolution of the domain

- 'Simple' Transcription
 Rich Transcription
- Controlled Audio Stream
 Continuous Audio Stream
- One sensor
- Monolingual
- Audio only

Multiple sensors Multilingual

Multimodal

Increasing difficulty of the tasks

	Broadcast news	Meetings	
Dictation	Transcription	Smart rooms	

Human versus machine

Task	Machine	Human
Connected digits	0.72%	0.009%
Letters	5.0%	1.60%
Transactional speech	3.6%	0.10%
Dictation	7.2%	0.9%
Conversational telephone	43.0%	5.0%

Source: R. Lippmann, Speech Communication, 1997

Limits and open issues

Rich Transcription

- Mark speaker turns, disfluencies, ...
- Continuous Audio Flaw
 - Need for sentence breaks, punctuation, ...
- Multiple sensors
- Multilingual
 - Portability to new languages, non native speakers
- Multimodal
 - Multiple data streams, asynchronism

Statistical modelling

 $\hat{P}(Y|X)$

Sequence of acoustic observations

• Signal frames

...

- Filterbank coefficients
- Cepstral coefficients
- Time-frequency principal components

Sound object (or class) hypothesis

- Sound type (speech / music / ...
- speaker / language / channel
- phone / syllable / word
- Sound event (jingle)
- Past or future of a break (ex: speaker change)
- ...

→ Generic Approach

Speech parameters

Acoustic parameters extracted from speech

- LPC (Linear Predictive Coefficients)
- MFCC (Mel Frequency Cepstral Coefficients)
- FilterBanks

Speech parameters

- Mostly for automatic speech recognition and speech compression
 - Spectral analysis
 - Cepstral analysis
 - Linear prediction
- Also used
 - Prosodic information (fundamental frequency, energy features, duration)

Acoustic parameters

- Filterbank coefficients : signal energy in different frequency bands
- Cepstral coefficients

Acoustic parameters

LPC (Linear Predictive Coding)

A sample is predicted as a weighted sum of preceding samples

$$\hat{s}_n = \sum_{i=1}^p a_i s_{n-i}$$

- p is the model order
- $-a_i$ = linear prediction coefficients
- different methods to predict this coeff. (levinson-durbin algo.)

Acoustic parameters

Fundamental frequency (pitch or f0) :

- analyseurs temporels

$$Speech \longrightarrow Law pass filter \longrightarrow Zero crossing \\ detection \longrightarrow \downarrow \downarrow \downarrow \downarrow$$

 $T_0 - 1/f_0$

Problem with pitch : large variability, fine estimation is difficult...

Statistical modelling

 $\hat{P}(Y|X)$

Sequence of acoustic observations

• Signal frames

...

- Filterbank coefficients
- Cepstral coefficients
- Time-frequency principal components

Sound object (or class) hypothesis

- Sound type (speech / music / ...
- speaker / language / channel
- phone / syllable / word
- Sound event (jingle)
- Past or future of a break (ex: speaker change)
- ...

→ Generic Approach

Bayes

Bayes

x: observation (signal) ci : class to be recognized $c^* = \underset{i}{\operatorname{argmax}} p(c_i / x) = \underset{i}{\operatorname{argmax}} \frac{p(x / c_i) \cdot P(c_i)}{p(x)} \approx \underset{i}{\operatorname{argmax}} p(x / c_i) \cdot P(c_i)$ • Automatic Speech Recognition (ASR) $w^* = \underset{i}{\operatorname{argmax}} \frac{p(x/w_i) \cdot P(w_i)}{p(x)} = \underset{i}{\operatorname{argmax}} p(x/w_i) \cdot P(w_i)$ Language model Statistical Machine Translation (SMT) Translation model $e^* = \arg\max_{i} \frac{p(f/e_i).P(e_i)}{p(f)} = \arg\max_{i} p(f/e_i).P(e_i)$ Language model

Phone (Acoustic) Models

Generally, the acoustic units modeled are phonemes rather than words

– Exemple : ~40 phone models for french

To calculate p(x/w_i) an acoustic model, as well as a pronunciation dictionary are needed Context Dependent vs. Context Independent Models

- Independent : each unit is modeled independtly of the others
- Dependent : different models for a same phone unit according to the left-right context
- triphones : only nearest left and right phonemes are considered
 - =>due to coarticulation
 - =>Problem : corpora never big enough to estimate robust models

Many possibilities but we'll talk only of...

... Hidden Markov Models with Gaussian Distributions

Automata

- For sequence processing
- Complex sequential patterns decomposed into piecewise stationary segments
- Each segment : deterministic or stochastic function
- Can describe grammar, lexicon, phone models...
- Example : Hidden Markov Models (HMMs)
 - 2 concurrent stochastic processes :
 - Sequence of HMM states (sequential structure of the data)
 - State output processes (local characteristics of the data)
 - Example : left-right HMM phone model with gaussian mixture output distributions
Different problems

Detection

 \rightarrow Binary decision tests

Clustering

→ Maximum A Posteriori

 \rightarrow Change point detection

 \rightarrow State sequence search

Hidden Markov Models (HMMs)

Intro to <u>HMMs</u>

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html

Hidden Markov Models (HMMs)

A HMM is defined by :

- N, number of states in the model, $S=\{S_1, S_2, ..., S_N\}$
- M, number of output (emission) symbols per state, $V = \{v_1, v_2...v_M\}$
- Propability distribution are defined
 - Transition probabilities A={a_{ij}}.
 - Emission probabilitiy of symbol k in state j : bjk
 - Initial state probabilites $\pi = \{\pi_i\} \ 1 \ \forall i \ \forall N.$

If the set of emission symbols V is finite, the HMM is called discrete (if V is infinite, then the HMM is continuous).

Left-right HMM

Three fundamental problems of HMMs

Given observations O and HMM λ

- How to calculate $P(O|\lambda)$?
- The solution to this problem called evaluation is the algorithm Forward-Pass

Given observations O and HMM λ

- How to choose the most probable state sequence Q that maximizes $P(Q|O, \lambda)$?
- The solution to this problem called decoding is the algorithm *Viterbi*

Given observations O and HMM $\,\lambda$

- How to adjust (train) the parameters of the model to maximize $P(O|\lambda)$? This is the **training** of the model parameters.
- Algorithm Baum-Welch, algorithm EM (expectationmaximization)

Algorithm Forward pass (1)

Sequence of T observations :

$$Y^{(k)} = y_{k_1}, \ldots, y_{k_r}$$

Partial probabilities (α 's) are calculated iteratively

$$\alpha_1(j) = \pi(j).b_{jk_1}$$

Algorithm Forward pass (2)

Then for t=2...T,:
$$\alpha_{t+1}(j) = \sum_{i=1}^{n} (\alpha_{t}(i)a_{ij}) b_{jk_{t}}$$

- Corresponding to the sum of the probabilities of each path leading to the considered state (j) multiplied by the emission probability in the considered state
- Finally, the sum of all the partial probabilities at time T, gives the probability of the observation given the HMM model

$$Pr(Y^{(k)}) = \sum_{j=1}^{n} \alpha_T(j)$$

Algorithm Viterbi (1)

Calculate most probable state sequence

$$\mathbf{X}_i = (X_{i_1}, X_{i_2}, \dots, X_{i_T})$$

From T observations

$$Y^{(k)} = y_{k_1}, \ldots, y_{k_T}$$

Partial probabilities (δ 's) are calculated iteratively

$$\delta_1(i)=\pi(i)b_{ik_1}$$

Algorithm Viterbi (2)

Then for t=2...T and i=1...n, one calculate $\delta_t(i) = \max_i (\delta_{t-1}(j)a_{ji}b_{ik_t})$

$$\phi_t(i) = argmax_j(\delta_{t-1}(j)a_{ji})$$

- Then, $i_t = argmax(\delta_T(i))$ corresponds to the most probable state at time t=T
- Finally, « backtracking ») is necessary to calculate the most probable path

$$i_t = \phi_{t+1}(i_{t+1})$$

FIN