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 2. Speech and voice technologies  

– DSP reminder 

– The speech signal 

– Speech Technologies 

• Overview 

• Modelling (parameters, models) 

 

 



Digital Signal Processing Reminder 
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Digital / Analogic Signals 



Analog-Digital Conversion 

 Sampling and Quantification 

sampling 

quantification 



Energy of a signal 

 Continuous signal s(t) on [t1,t2] 

 

 

 

 Discrete signal x(n) on [n1,n2] 
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SNR : Signal-to-Noise Ratio 

 For x(t)=s(t)+n(t) 
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Fourier Transform - TF 

 Spectral representation of signals 

 Core mathematical tool in DSP 

 



TF for continuous signals 

 x(t) signal 

 TF is a function of variable   

 defined by : 

 

 

 Inverse transform 
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TF of a periodic signal (cos) 
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Time-frequency representation 



Time-frequency representation 

Spectrogram 
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Case of a sinus 



Case of square signal 



Sawtooth signal 



Beat Signals 



Other examples 



Chirps 



The Speech Signal 



Speech : one modality among 

others ? 

 From the user point of vue 

– As ouput 

• Visual (2D,3D) 

• Sound/Speech 

• … 

– As input 

• Spoken command  

• Gesture 

• …  

 



Speech in HMI : ergonomic 

aspects 

 Communication Mean 
– natural 

– fast and concise 

– Hands free 

– Gaze can be used for other task 

– Helpful for disabled people 

 



But… 

 Critical Situations 
–  degradation of performances 

 Training of the Machine Needed  
– Might be long, constraints  (do you know IBM 

ViaVoice?) 

 Linguistic constraints 
– Vocabulary size 

– Syntactic structure 

– Mode (isolated words, connected words, natural spoken language, 
disfluencies) 

 Human factors 
– micro + headset => acceptability of the user 

– Privacy issues 



Goals 

 Satisfaction of the user 

 Quality 

– System delay 

– Robustness 

• Need to have plan B (or C, or D…) 

 Cost 

– Use of speech must have a limited impact on the 

costs 



Avoid… 

 Full speech interface 

– It is just another modality 

 Complicated systems 

– ergonomy 

 Annoy user 

– Robustness needed 



Speech technologies 

 Speech compression / coding (wireless, 

IP,…) 

 Speech synthesis / recognition for dialog 

systems (information access…) 

 Speaker authentication (voice biometrics) 

 

 

 More details will be given in my last course… 



Speech sounds : phonemes 

 Establish distinctive units of meaning 

 Phonemes are the shortest sound units in speech that allow to 

distinguish different words 

 Examples [p] [b] 

– pas / bas 

– paie / baie 

– pot / beau 



French phonemes 



French phonemes 



Speech signal 

Bonsoir 



Speech signal 

Vous êtes Monsieur Gilbert Dupont n’est-ce pas ? 



Variability 

 First caractersitic of speech signals is 
variability 
– A speaker nevers pronounces two times the exact 

same sound 

– Two speakers do not pronounce the same sound 
the same way 

 However, this sound is perfectly recognized 
by a human listener 



Intra-Speaker variability 

Same sounds, same person, 
 same recording conditions 



Inter-speaker variability 

Same sounds, different persons, 

 same recording conditions 



Variability due to recording 

conditions 
Same sounds, same person, 

 different microphones 
 



Tools for speech analysis 



Formants 
 The spectral peaks of the sound spectrum |P(f)|' of the voice  

 Acoustic resonance of the human vocal tract  

 Vocal triangle for vowels    

F1 

F2 
F3 

f 

spectres 

énergie 



Formants 

Variability of speech and speakers 



Formants : values for french vowels 



Spectrogram 



Spectrogram (large band) - 2 



Prosody 

 Pitch or fundamental frequency 

 Voice energy 

 Syllable / phoneme duration 

Intonation / Voice « melody » 



Fundamental frequency f0 

 Vibration of the vocal cords 

 Depnds on speaker age and sex 

– 100 à 150 Hz for adult male speaker 

– 140 à 240 Hz for adult female speaker 

 

– Can have huge variations for a single speaker 

• Depending on the type of sentence uttered 

• Depending on the emotional / affect of the speaker 



Practical lab (optional) 

 Speech Analysis Tools 

 http://www-

clips.imag.fr/geod/User/laurent.besacier/NEW

-TPs/TP-CL/tp7.html 
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Speech technologies 

Overview 

Modelling (parameters, stochastic 

models HMMs) 



Speech, a source of informations 

Speech 

Linguistic informations 

(what is uttered) 

Extra-linguistic info. 

(speaker, language, speaker 

state) 



Linguistic Informations 

 What is uttered by the speaker…. 

Automatic Speech Recognition (ASR) 



Different levels of difficulty 

 Number of speakers : systems mono-

speakers …until multi-speakers 

 Vocabulary size 

 Transmission channel : «direct mic. », 

téléphone, mobile phone, VoIP 

 



Different levels of difficulty 

 Acoustic Environment : quiet, normal (officeroom), 

noisy (train station, street), extreme (plane cockpit) 

 Speaking style : digits, isolated words, connected 

words, continuous speech (read, spontaneous) 

 1 person or conversation 



Applications 

 Services (vocal servers)  

 Vocal terminals (on site) 

 Transports (vocal commands help, command for 
navigation system, EVV) 

 Language learning 

 Dictation 

 Information retrieval 

 Control / vocal commands 

 

 

 



Where we are… 

 Best systems achieve* 
– ~10-12% WER for English on European Parliament Speeches 

or Broadcast News Data ! 

– ~20% WER for English on broadcast or telephone 

conversations 

 Large Improvements over the years 
See DARPA & NIST evaluations… 

 

 

*sources: TCSTAR & GALE projects 



Where we are… 



Where we are… 

 Improvements over the last 15 years mostly 

due to… 

– Better modeling : discriminant approaches 

(MMI,MPE), tying (mixtures, states) 

– Adaptation techniques (MAP,MLLR,VTLN) 

– Computational power : for multipass decoding and 

multiengine approaches (ROVER) 

– And last but not least… 



Where we are… 

• More Data !! 
• “There’s no data like more data”, Robert L. 

Mercer 

 

 From LIMSI, Lamel (2002) 

From RT03 (BBN) 
Training (hrs) 141 297 602 843 

WER(%) 17.2 15.4 14.7 14.5 



Where we go… 

 Evolution of the domain 
– ‘Simple’ Transcription      Rich Transcription 

– Controlled Audio Stream      Continuous Audio Stream 

– One sensor       Multiple sensors 

– Monolingual   Multilingual  

– Audio only   Multimodal 

 Increasing difficulty of the tasks 

 

Dictation 

Broadcast news 

Transcription 

Meetings 

Smart rooms 



Human versus machine 



Limits and open issues 

 Rich Transcription 
• Mark speaker turns, disfluencies, … 

 Continuous Audio Flaw 
• Need for sentence breaks, punctuation, … 

 Multiple sensors   

 Multilingual 
• Portability to new languages, non native speakers 

 Multimodal 
• Multiple data streams, asynchronism 



Statistical modelling 
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Sound object (or 
class) hypothesis 

Sequence of acoustic observations 

• Signal frames 

• Filterbank coefficients 

• Cepstral coefficients 

• Time-frequency principal 

components 

• ... 

• Sound type (speech / music / ... 
• speaker / language / channel 
• phone / syllable / word 
• Sound event (jingle) 
• Past or future of a break (ex: 

speaker change) 
• ... 

 
 Generic Approach 



Speech parameters 

 Acoustic parameters extracted from speech 

– LPC (Linear Predictive Coefficients) 

– MFCC (Mel Frequency Cepstral Coefficients) 

– FilterBanks  

 

 



Speech parameters 

 Mostly for automatic speech recognition and 
speech compression 
– Spectral analysis 

– Cepstral analysis 

– Linear prediction 

 Also used 
– Prosodic information (fundamental frequency, 

energy features, duration) 



Acoustic parameters 

 Filterbank coefficients : signal energy in different frequency 

bands 

 Cepstral coefficients 

Speech Pre-accentuation 

& windowing 
FFT Log | | 

Inverse 

FFT  

Cepstral  

coeff. 

 

Time  

Domain 
Frequency 

domain 

cepstral 

domain 



Acoustic parameters 

 LPC (Linear Predictive Coding) 
– A sample is predicted as a weighted sum of preceding 

samples 

 

 

– p is the model order 

–   = linear prediction coefficients 

– different methods to predict this coeff. (levinson-durbin algo.) 
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Acoustic parameters 

 Fundamental frequency (pitch or f0) : 
– analyseurs temporels 

 

 

 

 

– Problem with pitch : large variability, fine estimation is 
difficult... 

Speech Law pass filter Zero crossing  

detection 

T0=1/f0 



Statistical modelling 
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Sound object (or 
class) hypothesis 

Sequence of acoustic observations 

• Signal frames 

• Filterbank coefficients 

• Cepstral coefficients 

• Time-frequency principal 

components 

• ... 

• Sound type (speech / music / ... 
• speaker / language / channel 
• phone / syllable / word 
• Sound event (jingle) 
• Past or future of a break (ex: 

speaker change) 
• ... 

 
 Generic Approach 



Bayes 

 x : observation (signal) 

 ci : class to be recognized 

 

 

 Automatic Speech Recognition (ASR) 
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Acoustic model 

Language model 



Bayes 

 x : observation (signal) 

 ci : class to be recognized 

 

 

 Automatic Speech Recognition (ASR) 

 

 

 

 Statistical Machine Translation (SMT) 
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Language model 
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Phone (Acoustic) Models  

 Generally, the acoustic units modeled are 

phonemes rather than words 

– Exemple : ~40 phone models for french 

 

 To calculate p(x/w_i) an acoustic model, as 

well as a pronunciation dictionary are needed 



Context Dependent vs. Context 

Independent Models 

  Independent : each unit is modeled 

independtly of the others 

  Dependent : different models for a same 

phone unit according to the left-right context 

 triphones : only nearest left and right 

phonemes are considered 

 

 =>due to coarticulation 

 =>Problem : corpora never big enough to 

estimate robust models 



What are those models ? 

Many possibilities but we’ll talk only 

of… 



What are those models ? 

… Hidden Markov Models with 

Gaussian Distributions 



Gaussians 
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Automata 

 For sequence processing 

 Complex sequential patterns decomposed into piecewise stationary 
segments 

 Each segment : deterministic or stochastic function 

 Can describe grammar, lexicon, phone models… 

 Example : Hidden Markov Models (HMMs) 

– 2 concurrent stochastic processes : 

• Sequence of HMM states (sequential structure of the data) 

• State output processes (local characteristics of the data) 

• Example : left-right HMM phone model with gaussian mixture output 
distributions  

 

 

 



Different problems 

X X

Detection Segmentation 

Clustering 

B

A

C

Decoding 
AB BC C

 Binary decision tests 

 Maximum A Posteriori 

 Change point detection 

 State sequence search 



Hidden Markov Models (HMMs) 

Intro to HMMs 
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html  

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html
http://www.scs.leeds.ac.uk/scs-only/teaching-materials/HiddenMarkovModels/html_dev/hmms/


 

Hidden Markov Models (HMMs) 

 A HMM is defined by : 

– N, number of states in the model,     S={S1,S2,...SN} 

– M, number of output (emission) symbols per state,  V={v1, v2...vM} 

– Propability distribution are defined  

• Transition probabilities A={aij}.  

• Emission probabilitiy of symbol k in state j  : bjk 

• Initial state probabilites ={i} 1  i   N.  

 

 If the set of emission symbols V is finite, the HMM is called discrete (if V is 

infinite, then the HMM is continuous). 



S1 S4 

a11 a22 a33 a44 

a13 a24 

a12 a23 
S2 

a34 

S3 

                  Left-right HMM 

HMM for speech recognition 

 Temporal aspect of speech  

– Use of left-right HMMs (Bakis model).  

 Left-right HMM properties 

– aij = 0 when j < i 

– (i = 0  when  i  1)  and  (i = 1 when i = 1) 

– aNN = 1  

a13 

S1 S2 

S3 

a21 

a23 

a33 

a11 

a32 

a22 

a31 

a12 

          Ergodic HMM 



Three fundamental problems of HMMs 

 Given observations O and HMM   
– How to calculate P(O|) ? 

– The solution to this problem called evaluation is the algorithm 
Forward-Pass  

 Given observations O and HMM   
– How to choose the most probable state sequence  Q that 

maximizes P(Q|O, ) ? 

– The solution to this problem called decoding is the algorithm 
Viterbi 

 Given observations O and HMM  
– How to adjust (train) the parameters of the model to maximize 

P(O| )? This is the training of the model parameters. 

– Algorithm Baum-Welch, algorithm EM (expectation-
maximization) 

 



Algorithm Forward pass (1) 

 Sequence of T observations :     

        

       

 Partial probabilities (   's) are calculated iteratively 



Algorithm Forward pass (2) 

 Then for t=2 .. T, : 

 

 Corresponding to the sum of the probabilities of each path 

leading to the considered state (j) multiplied by the emission 

probability in the considered state 

 Finally, the sum of all the partial probabilities at time T, gives the 

probability of the observation given the HMM model 



Algorithm Viterbi (1) 

 Calculate most probable state sequence   

   

 From T observations 

 

 

 Partial probabilities (   's) are calculated iteratively 



Algorithm Viterbi (2) 

 Then for t=2 .. T and  i=1 .. n, one calculate 

 

 

 

 

 

 Then,            corresponds to the most 
probable state at time t=T 

 Finally, « backtracking ») is necessary to calculate the most 
probable path 

 



FIN 

 


