Introduction to Vectorial representations for NLP

Didier Schwab (Didier.Schwab@imag.fr) LIG-GETALP

Vectors to represent Meaning

- Basically, integer/double vectors may permit to represent meaning
- [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
- [1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0]
- [0,0.24,0,0,1,0,0,0.12,0,0,0.25,0,0,0,0.9,0.8,0,0.6,0]
- [0.1,-0,2,0.3,0,1,-0.8,0.7,0.1,0.5,-0.5,0.8,0.3,0.2,-0.3]
- [843,900,1045,24,234,123,983,813,452,574,276]
- Meaning of
- Words
- Sentences
- Texts
- ...

Types of vectors

- Two types of vectors inspired by two linguistic theories
- Distributional linguistics
- Componential linguistics

Distributional linguistics

- Represents linguistic objects with the associability possibilities they share or not
- Linguistic items with similar distributions have similar meanings
- «You shall know a word by the company it keeps » (John Ruppert Firth, 1957)
- Meaning of a word is represented with all contexts where it can be find in texts.
- Milk : \{cow, milk, white, cheese, mammal,...\}
- Computer\{school, electronic, machine, programmable,...\}
- Distributionnal vectors

Distributional Vectors

- Built from corpora
- Each component corresponds to words in a corpus
- Directly : Saltonian vectors
- Indirectly : Latent Semantic Analysis, word embeddings

Componential Semantics

- Represent linguistic objects with semantic components (primitives, primes [Wierzbicka], constituents [Greimas], attributes, semes, ideas,...)
- Examples :
- man : [+ male], [+ mature]
- woman : [- male], [+ mature]
- boy: [+ male], [- mature]
- girl:[- male] [- mature]
- Child : [+/- male] [- mature]

Componential Vectors (Idea Vectors)

- Each Component corresponds to ideas
- Directly : Semantic Vectors [Chauché] 1992->2005
- Indirectly : Conceptual Vectors [Lafourcade] 1999 \rightarrow ?
- Some experiments about Conceptual vectors
- How to build lexical bases and process semantic analyses?

Text Semantic Analysis

Identification/resolution of a set of semantic phenomena
Computable representations
Thanks to Lexical Functions

$$
\begin{gathered}
\text { «Jack gave me a precious advice.» } \\
\text { «He saw the girl with a telescope.» } \\
\text { «Johntr had a strong fear.» } \\
\text { Magn }
\end{gathered}
$$

«The cat climbed onto the chair. The animal began to sleep.» Gener

Lexical Functions

LF formalise linguistic relations between terms [Mel'čuk]

Syntagmatic LF (collocations)
intensification Magn('fear') = 'numbing', 'strong'
Magn('love') = 'tremendous', 'big'
laudative \quad Bon('advice') = 'precious', 'good'
Bon('choice') = 'fortunate', 'good'
confirmation Ver('argument') = 'valuable','admissible'
$\operatorname{Ver}($ 'fear' $)=$ 'justified'

Semantic Analysis

1) Lexical ambiguity
«The mouse is eating the cheese.» mouse/computer or mouse/animal?
2) Interpretation paths
«The sentence is too long.» 2 probable interpretations, not 4
sentence/phrase sentence/condemnation
long/duration long/length

Semantic Analysis

3) Reference

Anaphora resolution
«The cat climbed onto the seat, then it began to sleep.»
Identity relations
«The cat climbed onto the seat. The animal began to sleep.»
4) Prepositional attachments
«He saw the girl with a telescope.»

Applications

Information Retrieval
Direct effects（equality of values）
《 numbing fear » \equiv＜strong fear »
《 vast majority » \equiv 《 strong majority »
«The cat has gone» \equiv «The tabby has gone»
«This number is not even» \equiv « This number is odd»
Indirect effects（lexical ambiguity，prep attach，references）
\Rightarrow precision＋，recall＋

Machine Translation

Direct effects（lexical transfer）

> « grosse fièvre» $=$ «high fever»
> «grosse pluie » = «heavy rain »
> «L'appareil s'est posé.» \equiv 《The plane has landed. »

Indirects Effects on the overall phenomena

Semantic Lexical Base

Modelling lexical functions

Three problems
Discovery of as many lexical items as possible Acquisition of information about their meanings
Fabrication of lexical objects representing these meanings

Three questions
How to represent meaning?
How to compute it?
How to obtain a generic and evolutive system?

Which hypotheses have we taken?

Hypothesis I

For the lexical objects
Lexical functions (discrete, symbolic connectionnist)
modelling relations between lexical objects

Internal information
symbolic
Morphology (noun, adj, verb, masc, fem, ...)
etymological information, level of language, field, ...
numeric
usage frequency
vectorial
thematic information (conceptual vectors)

Conceptual Vectors

- Thematic representation [Chauché, Lafourcade]
- Lexical item = Ideas = Conceptual Vector
- For example, 873 component (concepts from Larousse thesaurus)
- (1) existence, (2) inexistence, (3) matérialité, ..., (516) liberté, ..., jeux, (873) jouets
- A vector component corresponds to the activation of a concept.
- V taken from a thesaurus hierarchy (Larousse)
- translation of Roget's thesaurus, 873 leaf nodes
- the word 'peace' has non zero values for concept PEACE and other concepts

Our conceptual vectors
Thesaurus

- H : thesaurus hierarchy - K concepts

Thesaurus Larousse $=873$ concepts (leafs)

- $V\left(C_{i}\right):<a_{1}, \ldots, a_{i}, \ldots, a_{873}>$
$a_{j}=1 /\left(2 \wedge D_{u m}(H, i, j)\right)$

Vector construction Concept vectors

- C : mammals
- L4 : zoologie, mammals, birds, fish, ...
- L3 : animals, plants, living beings
- L2 : ... , time, movement, matter, life , ... ,
- L1 : the society, the mankind, the world

Vector construction Concept vectors

mammals

Vector construction Term vectors

- Example: cat (chat)
- Kernel
- manually built : relevent vectors
c:mammal (mammifère), c:stroke (caresser) v (mammal) $+v($ stroke $)$
- Augmented with weights
c:mammal, c:stroke, 0.75^{*} c:zoology, 0.75^{*} c: love ...
$v($ zoology $)+v($ mammal $)+0.75 v($ stroke $)+0.75 v$ (love)...
- Learning phase

Vector construction Term vectors

Conceptual vectors Concept c4: 'PEACE'

Conceptual vectors
Term "peace"

Conceptual Vectors

Conceptual vector of frégate (polysemic : frigate/frigatebird)

Conceptual Vectors

Thematic distance
$D_{A}(x, y)=\operatorname{angle}(x, y)=\arccos (\operatorname{similarity}(x, y))=\arccos \left(\frac{x \cdot y}{|x||y|}\right)$

$$
0 \leq D_{A}(x, y) \leq \frac{\pi}{2} \text { (positive components) }
$$

if 0 then x and y are collinear : same idea
if $\frac{\pi}{2}$: nothing in common

Conceptual Vectors

Thematic distance (examples)

$D_{A}($ 'anteater', ' anteater' $)=0\left(0^{\circ}\right)$
$D_{A}($ 'anteater', ' animal' $)=0.45\left(26^{\circ}\right)$
$D_{A}($ 'anteater', 'train' $)=1.18\left(68^{\circ}\right)$
$D_{A}($ 'anteater', ' mammal' $)=0.36\left(21^{\circ}\right)$
$D_{A}\left(\right.$ ' anteater', ' quadruped') $=0.42\left(24^{\circ}\right)$
$D_{A}\left(\right.$ 'anteater' , 'ant') $=0.26\left(15^{\circ}\right)$
thematic distance \neq ontological distance (is-a) but thematic distance \supset ontological distance

Vector Proximity (Neighbourhoud)

- Function V gives the vectors closest to a lexical item
- Allow the database to be explored continuously
- V(life) = life, alive, birth...
- V (death) = death, to die, to kill...
- V(vie) = vie quotidienne, VIE, s'animer, demi-vie , survivant
- V(ranger) = trier, cataloguer, sélectionner, classer
- V (D_{A}, ' death', 7)=(' death', 0) ('murdered', 0.367) ('killer',0.377) ('age of life', 0.481) ('tyrannicide', 0.516) (' to kill', 0.579) (' dead', 0.582)

Operations

Vectors combinations
Operations \Rightarrow reasonable linguististic interpretations normalised sum \oplus : union of ideas
term to term product \otimes : intersection of ideas week contextualisation : $\gamma(A, B)=A \oplus(A \otimes B)$

Vector operations

- Sum
- $\mathrm{V}=\mathrm{X}+\mathrm{Y} \Rightarrow \mathrm{V}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}+\mathrm{Y}_{\mathrm{i}}$
- Neutral element: 0
- Normalization of sum : $\mathrm{V}_{\mathrm{i}} /|\mathrm{X}+\mathrm{Y}|$
- Average of normalized vectors
- Interpretation : Union of ideas

Vector operations

- Term to term product

$$
V=X \otimes Y \Rightarrow J X_{i} Y_{i}
$$

- Neutral element : 1
- Interpretation : Intersection of ideas

Kind of intersection

Vector operations

weak contextualisation Γ : Product + sum

$$
Z=\Gamma(X, Y)=X+Y+(X \otimes Y)
$$

- Z is X augmented by its mutual information with Y

2D view of weak contextualization

Vector operations

- Subtraction
- $V=X-Y \Rightarrow v_{i}=x_{i}-y_{i}$
- Dot subtraction
- $V=X: Y \Rightarrow v_{i}=\max \left(x_{i}-y_{i}, 0\right)$
- Complementary
- $V=C(X) \Rightarrow V_{i}=\left(1-x_{i} / C\right)^{*} C$
- etc.

Set operations

Hypothesis I

For the lexical objects
Lexical functions (discrete, symbolic connectionnist)
modelling relations between lexical objects

Internal information
symbolic
Morphology (noun, adj, verb, masc, fem, ...)
etymological information, level of language, field, ...
numeric
usage frequency
vectorial
thematic information (conceptual vectors)

Limitation of CV for lexical functions modelisation
paradigmatic

> hyperonymy [Lafourcade et Prince, 2003]
synonymy (relative, subjective) [Lafourcade et Prince, 2001] antonymies (complementar, scalar, dual)
[COLING'2002, JADT'2002, TALN'2002]
syntagmatic
collocations
Mixing high recall of $C V$ to the high precision of relations
Cognitive model adequacy
3 areas in the brain

- area 1 : fabrication and classification of concepts
- area 2 : management of the language "surface" (syntax, lexical associations)
- area 3 : combination of information from the 2 other areas

Hypothesis II

Lexical item, entrance point to the meaning

Terms are monosemic or polysemic
'cashew', 'neuroleptic', 'daucus carota', 'mouse', 'rabbit', 'carot'

Acception : particular meaning of an item which is accepted by usage

The meaning comprehension is not only to select a good acception but also to etablish relations between surface structure and deep structure.

Hypothesis II

mouse/animal
mouse
mouse/computer

Hypothesis II

Hypothesis II

LEXICAL ITEM
ACCEPTIONS

Hypothesis II

mammal. 1

Нуро

Hypothesis III

Objective : to build a database to store lexical objects ACCEPTIONS and LEXICAL ITEMS

For French, on more than 100000 entries, polysemy rate of 61%

Average of 5 definitions, 400000 lexical objects Impossible to manually index

Hypothesis III

How?

- from a reduced kernel of relevant terms (1000-2000) manually indexed
- automatic indexing of others

Utilisation of information extracted from diverse sources
dictionaries (semantic analysis)
synonyms (vectors + morphology)
antonyms (vectors (antonymy function) + morphology)
Web (information site, Google, ...)
Corpora, ...

Upward-Downward Analysis

Hypothesis III

The kernel of lexical objects O is relevant
The learning must be coherent

Relevance (O) + Coherence (L)
Relevance (L) + Coherence (O)
End of 2005: 121000 terms automaticaly indexed

Hypothesis IV

Multi-source Analysis

Hypothesis IV

Metalanguage : refer to, term for, plural of... luftwaffe : «is the commonly used term for the German Air Force.»
men : «plural of man.»
Lexicon coverage
constant evolution
« incompleteness » of dictionaries
'liturgiste' \in Robert \notin Larousse
Solution
Construction of one LEXIE for one definition
LEXIE = atom of our database

Example

botte-1 : \#nf\# Réunion de végétaux de même nature liés ensemble. (Une botte de paille, de radis, de fleurs) . [Hach]
botte-2 : \#nf\# En escrime, coup porté à l'adversaire avec un fleuret ou une épée. (Pousser, porter, parer une botte) (Botte secrète.). [Hach]
botte-3 : \#nf\# Chaussure de cuir, de caoutchouc ou de plastique qui enferme le pied et la jambe, parfois la cuisse. (Des bottes de cavalier) Chaussure d'extérieur basse. (Botte d'hiver, de ski, de marche) . [Hach] botte-4 : \#nf\# (néerl. bote, touffe de lin). Assemblage de végétaux de même nature liées ensemble : (Botte de paille. Botte de radis.) . [Lar] botte-5 : \#nf\# (\#ethym-it\# botta, coup). Coup de pointe donné avec le fleuret ou l'épée . [Lar] botte-6 : \#nf\# (p.-ê. de bot). Chaussure à tige montante qui enferme le pied et la jambe généralement jusqu'au genou : (Bottes de cuir). [Lar]

Collection of lexical informatron Example and conceptual vectors computation

LEXIE 1	botte-1 : \#nf\# Réunion de végétaux ... [Hach]
LEXIE 2	botte-2 : \#nf\# En escrime, coup ... [Hach]
LEXIE 3 botte-3 : \#nf\# Chaussure de cuir ... [Hach]	
LEXIE 5 botte-4 : \#nf\# Assemblage de ... [Lar]	
LEXIE 6	
botte-5 : \#nf\# Coup de pointe ... [Lar]	

Senses
categorisations
function of

- morphology
- etymology
- lexical
- vectorial
botte. 1
botte. 2
botte. 3
[Jalabert, Lafourcade] [Schwab]

Example

\#nf\# Réunion de végétaux ... [Hach]
\#nf\# En escrime, coup ... [Hach]
\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]

Senses
categorisations
function of

- morphology
- etymology
- lexical
- vectorial
botte. 1
botte. 2
botte. 3

Example

\#nf\# Réunion de végétaux ... [Hach]
\#nf\# En escrime, coup ... [Hach]
\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]

Senses
categorisations
function of

- morphology
- etymology
- lexical
- vectorial

[Jalabert, Lafourcade] [Schwab]

Example

\#nf\# Réunion de végétaux ... [Hach]
\#nf\# En escrime, coup ... [Hach]
\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]

Senses
categorisations
function of

- morphology
- etymology
- lexical
- vectorial

[Jalabert, Lafourcade] [Schwab]

Example

\#nf\# Réunion de végétaux ... [Hach]
\#nf\# En escrime, coup ... [Hach]
\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]
categorisations function of

- morphology
- etymology
- lexical
- vectorial
botte. 1

LEXIE 6
Senses [Jalabert, Lafourcade] [Schwab] Example

Example

LEXIE 1	\#nf\# Réunion de végétaux ... [Hach]
LEXIE 2	\#nf\# En escrime, coup ... [Hach]

\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]

Senses [Jalabert, Lafourcade] [Schwab] ExaMple

categorisations

function of

- morphology
- etymology
- lexical
- vectorial

LEXIE 6

Example

\#nf\# Réunion de végétaux ... [Hach]
\#nf\# En escrime, coup ... [Hach]
\#nf\# Chaussure de cuir ... [Hach]
\#nf\# Assemblage de ... [Lar]
\#nf\# Coup de pointe ... [Lar]
\#nf\# Chaussure à tige ... [Lar]
[Jalabert, Lafourcade] [Schwab] EXAMple

ACCEPTION
naming

botte/chaussure
botte/amas
LEXIE 1
LEXIE 2

Continuous Learning

Analysis of newspaper articles, crowsourcing

- New words, new senses
- Named entities
- Entities: Podemos, Engie (former GDR Suez), ...
- People : Peter Dinklage, Nabilla, Emmanuel Macron, ...
\rightarrow Web pages, Wikipedia, wiktionaries

For database coherence

- Base is not coherent during the first cycles
- Vector convergence to a quasi-stable position after a certain number of cycle (experimentally at least 10)
- This number of cycle is function of the learning order and function of definitions.

Hypothesis VI

Double Loop

Double Loop

From biology [Lecerf]
Invariant structural element of organism
Permit action on its environment and is its product
Example : antonymy function
[COLING'2002, JADT'2002, TALN'2002]

Experiment (2004-2005)

115 agents (1 base, up to 10 of each type)
5 machines (PC Linux, Sun Unix)
5 sources (Larousse, Robert, thésaurus Larousse, synonyms, antonyms dictionnaries from Caen)

French data base
121000 LEXICAL ITEMS
276000 ACCEPTIONS 842000 LEXIES

Cycle (around 4 days)

Upward-Downward Analysis

Upload-Download Analysis : Outcome

Lexical Disambiguation: Yes
References: No
Prepositional Attachments: No
Lexical Functions Detection : No
Interpretation path : No

Experiments After 2005 Penang, Malaysia, 2006-2007 Grenoble, France, 2007-2012

Conceptual vectors, a complementary tool to lexical networks

Lexico-semantic Network
From Ross Quillian's work during the 60's
Psycholinguistic experiments about organisation of concepts and words in the mind

Task: lexical disambiguation (\cong Word sense disambiguation), categorisation, ...

Applications: Machine Translation, Automatic Summarization, Information Retrieval, message composition, ...

WordNet

Lexical database for English

Developed since 1985
Under the direction of George Armitage Miller by the Cognitive Science Laboratory of the University of Princeton

Aims to be consistent with the access to the human mental lexicon

WordNet

Organised in sets of synonyms (synsets)

To each synset corresponds a concept

Meanings are described by 3 means:
a definition
a synset
some lexical relations which link synsets

POS
Nouns
Verbs
Adjectives
Adverbs
Totals

Monosemous 101321 6261 16889 3850 128321

Polysemous 15776
5227
5252
751
27006
from http://wordnet.princeton.edu/man/wnstats.7WN

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies
agent, instrument, goal, place,...

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies
agent, instrument, goal, place,...
(still missing)

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies
no connection between ' doctor' -' hospital' ,

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

> no connection between 'doctor' - 'hospital' , 'port' - 'boat' ,... (addition of domains)

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies

Known Weaknesses of WordNet

Creators of Wordnet identify 6 weakness (Harabagiu et al, 1999)

1. lack of uniformity and consistency in the definitions
2. some concepts (word senses) and relations are missing
3. the lack of morphological relations
4. the absence of thematic relations/selectional restrictions
5. limited number of connections between topically related words
6. lack of connections between hierarchies
\Rightarrow Tennis Problem (Fellbaum, 1998)

Structural Limits

"Messi scored a goal"
semantic field of the football? domain? (football? sport? other ?)

How to represent the notion of "semantic field" ?
To introduce such edges would cause 2 problems due to the fuzzy character of this relation :

- how to consider that two meanings are in the same semantic field? (too many or too few relations)
- how to represent a notion with fuzzy characteristics by a discrete representation?

Construction by predefined concepts
How?

- from a reduced kernel of relevant terms
(1000-2000) manually indexed
- automatic indexing of other

Advantages?

- supposed relevance of concepts
- easier "reading" of vectors

Disadvantage?

- variable lexical density

Construction with predefined concepts

The kernel of lexical objects O is relevant
The learning L must be coherent

Relevance (O) + Coherence (L)
Relevance (L) + Coherence (O)

2 experiments : - Montpellier (Larousse) 121000 terms automaticaly indexed [schwab, lafourcade]

- Penang (Sumo) indexation of Wordne† [lim, schwab]

Conceptual Vectors and Wordnet

Construction by emergence
How?

- without hierarchy a priori defined
- vector size a priori fixed
- randomised vectors
- automatic indexing of terms

Advantages?

- choice depends on available resources
- lexical density more constant in space

Disadvantage ?
${ }_{166072019}$ - difficult to "read" a vector

Construction by emergence

The learning must be coherent

Experiment : on Wordnet, indexation of 215.000 synsets (words meaning)

Complementary networks-vectors
Conceptual vectors for Word Sense Disambiguation

- resolve examples through thematic (75% of ambiguity case)
"Messi scored a goal."
"The lawyer pleads at the court." same semantic field
- problem for cases as
"The mouse bit through my LAN cables "

Complementarity networks-vectors

Lexical Function modeling

+ paradigmatics (in part)
- hypernymy [JADT, 2004]
- synonymy [Schwab, 2005]
- antonymy [TALN, 2002; COLING, 2002]
+ syntagmatics (problematic)
(collocations) [Schwab, 2005]
\Rightarrow need lexical networks

Contribution of Vectors to Networks

Continuous field (flexibility) any pair of lexical objects easily comparable

Bring closer words on minority but common ideas

Recall \neq ('hospital' - 'patient', 'tennis' - 'ball')

Vectors allows evaluation of a relation without characterising it (except Syn and Anto)

Experiment

Aims to a larger objective :

- improve an Example Based Machine Translation

System

- semi-automatic creation of a multilingual lexical lexical database

Addition of conceptual vectors to Wordnet

Analysis from:

- definitions under logical form (genus-differentia)
- information from lexical network (lexical functions)

Overview

	Dictionaries	Lexical Networks
Pre-defined Concepts	Montpellier 2000-05 WordNet	WordNet + Sumo Penang 2007-08
Émergence	Penang 2007-08 DBNary Grenoble 2010->2012	JeuxDeMots Mtp 08-? Wordnet Pen 07-08

Distributional linguistics

- Represents linguistic objects with the associability possibilities they share or not
- Linguistic items with similar distributions have similar meanings
- «You shall know a word by the company it keeps » (John Ruppert Firth, 1957)
- Meaning of a word is represented with all contexts where it can be find in texts.
- Milk : \{cow, milk, white, cheese, mammal,...\}
- Computer\{school, electronic, machine, programmable,...\}
- Distributionnal vectors

Distributional Vectors

- Built from corpora
- Each component corresponds to words in a corpus
- Directly : Saltonian vectors
- Indirectly : Latent Semantic Analysis, word embeddings

Saltonian Vectors

- Given a text corpus containing n unique words
- Size of vectors is n
- Classic binary word representation : Zeros everywhere but the index of the word
- [0;0;0;0;...; 0; 0; 1; 0;...; 0; 0]
- Vector of a text : sum of all words
- Vector of a lexical item : sum of all context where it occurs

TF-idf

Term frequency		Document frequency		Normalization	
n (natural)	$\mathrm{tf}_{t, d}$	n (no)	1	n (none)	1
I (logarithm)	$1+\log \left(\mathrm{tf}_{t, d}\right)$	t (idf)	$\log \frac{N}{\mathrm{df}_{t}}$	c (cosine)	1
a (augmented)	$0.5+\frac{0.5 \times \mathrm{tf}_{t, d}}{\max _{\mathrm{t}}\left(\mathrm{tf}_{t, d}\right)}$	p (prob idf)	$\max \left\{0, \log \frac{N-\mathrm{df}_{t}}{\mathrm{df}_{t}}\right\}$	u (pivoted unique)	$1 / u$
b (boolean)	$\begin{cases}1 & \text { if } \mathrm{tf}_{t, d}>0 \\ 0 & \text { otherwise }\end{cases}$			b (byte size)	$\begin{aligned} & 1 / \text { CharLength }^{\alpha} \\ & \alpha<1 \end{aligned}$
L (log ave)	$\frac{1+\log \left(\mathrm{tf}_{t, d}\right)}{1+\log \left(a v e_{t \in d}\left(\mathrm{tf}_{t, d}\right)\right)}$				

Saltionian Vectors

- Problems :
- Learning has to be done from scratch if texts with new words are added (increase of vector size)
- Size of vectors is very large and they contain lots of zeros
- Sizes of databases are huge
- Given a text corpus containing n unique words
- Manually or automatcally define m « good» components
- $m \ll n$ (often $100<m<500$)
- Size of vectors is m
- Choice of m is empirical
- Exemples :
- Matrix reduction : Latent Semantic Indexing [Deerwester et al., 1988]
- Neural word embeddings : Word2Vec [Mikolov et al., 2013]

Word2Vec

- Automatically learn good features
- Two-layer neural net that processes text
- Input : a text corpus
- Output : a set of vectors
- Very easy to use
- Set of pre-computed vectors
- Code in Java, C,...

Word2Vec : Interesting Results

- Cosine distance
- D('Sweden', 'Sweden') = 0
- D('Sweden', 'Norway') $=0.760124$
- Neighborhood :

Word	Cosine distance

norway	0.760124
denmark	0.715460
finland	0.620022
switzerland	0.588132
belgium	0.585835
netherlands	0.574631
iceland	0.562368
estonia	0.547621
slovenia	0.531408

Word2Vec : Interesting Results

- Trained on 400 million tweets having 5 billion words

Input: running	Cosine similarity	Input: :)	Cosine similarity
runnin	0.758099	:))	0.885355
runing	0.702119	=)	0.836011
Running	0.69014	:D	0.818340
runnning	0.669039	;)	0.814380
sprinting	0.587385	(:	0.809806
runnung	0.578426	:))(0.808298
run	0.576671	:-)	0.798115
walking/running	0.563114	:)))(0.777765
runin	0.556682	;)	0.772422
walking	0.542137	:-))	0.758584

Word2Vec : Interesting Results

- V ('king') $-\mathrm{V}($ ('man') +V ('woman') $\approx \mathrm{V}$ ('queen')
- W('woman')-('man') ? W('aunt')-W('uncle')
- V('Rome') - V('Italy') = V('France') - V('Paris')
- V('Iraq') - V('Violence') = V('Jordan')
- V ('Human') - V ('Animal') = V('Ethics')
- V('President') - V('Power') = V('Prime Minister')
- V('Library') - V('Books') = V('Hall')
- Analogy: V('Stock Market') $\approx \mathrm{V}$ ('Thermometer')

Word2Vec : Interesting Results

[^0]
Word2Vec : Interesting Results

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Pre-training Language Representations

Overview

- Models are pretrained on very large corpora of text
- Capture many aspects of the input text that are universally meaningful.
- Allow downstream models to leverage linguistic information learned from larger datasets.
- The learned parameters are then applied to downstream tasks:
- Feature-based approach
- Fine-tuning approach
- Current state of the art in many NLP tasks.
- Most prominent works:
- ELMo (Peters et al. 2018): best paper award at NAACL 2018.
- BERT (Devlin et al. 2018): best paper award at NAACL 2019.
- XLNet (Yang et al. 2019): published on arXiv in June 2019, current state of the art.

ELMo - Deep Contextualized Word Embeddings

Model architecture

Figure from Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al.)

The model learns to predict next token given the history in both direction:

- Forward: the history contains words before the target token
- Backward: the history contains words after the target token

LSTM: Long short-term memory (Hochreiter and
Schmidhuber, 1997)

ELMo - Deep Contextualized Word Embeddings

Training pipeline

ELMo - Deep Contextualized Word Embeddings

Pre-training \& Fine-tuning

Pre-training

Fine-tuning on specific tasks

Figure recreated based on oral presentation of authors at NAACL 2018.

BERT - Pre-training of Deep Bidirectional Transformers for Language Understanding Model Architecture

The model learns to:

- Predict masked words in sentences
- Predict next sentences

Figure from Pre-training of Deep Bidirectional
Transformers for Language Understanding
(Devlin et al.)
Trm: Transformer (Vaswani et al.)

BERT - Pre-training of Deep Bidirectional Transformers Language Understanding

Pre-training \& Fine-tuning

Pre-training
Learn to predict masked words and next sentences.

Fine-Tuning
Add a single output layer for specific tasks.

Figure from Pre-training of Deep Bidirectional Transformers for Language
Understanding (Devlin et al., 2019)

BERT and relatives

- Pre-trained Language Models

https://github.com/thunlp/PLMpapers

Glue benchmark

- General Language Understanding Evaluation (GLUE)
- https://gluebenchmark.com
- [Wang et al, 2019]
- A benchmark of nine sentence- or sentence-pair language understanding tasks built on established existing datasets and selected to cover a diverse range of dataset sizes, text genres, and degrees of difficulty,
- A diagnostic dataset designed to evaluate and analyze model performance with respect to a wide range of linguistic phenomena found in natural language, and
- A public leaderboard for tracking performance on the benchmark and a dashboard for visualizing the performance of models on the diagnostic set.

Glue benchmark
 －Leaderboard（16／10／2019－9：30 UTC）－Rank 1－24

Rank	Name	Model		URL	Score	CoLA	SST－2	MRPC	STS－B	Qap	MNLI－m	MNLI－mm	CNLI	RTE	WNLI	AX
1	ALBERT－Team Google Language	ALBERT（Ensemble）		\checkmark	89.4	69.1	97.1	93．4／91．2	92．5／92．0	74．2／90．5	91.3	91.0	99.2	89.2	91.8	50.2
＋ 2	王玮	ALICE v2 large ensemble（Alibaba DAMO NLP）		¢	89.0	69.2	97.1	93．6／91．5	92．7／92．3	74．4／90．7	90.7	90.2	99.2	87.3	89.7	47.8
3	Microsoft D365 AI \＆UMD	FreeLB－RoBERTa（ensemble）		\checkmark	88.8	68.0	96.8	93．1／90．8	92．4／92．2	74．8／90．3	91.1	90.7	98.8	88.7	89.0	50.1
4	Facebook AI	RoBERTa		$\underline{\square}$	88.5	67.8	96.7	92．3／89．8	92．2／91．9	74．3／90．2	90.8	90.2	98.9	88.2	89.0	48.7
5	XLNet Team	XLNet－Large（ensemble）		$\stackrel{\square}{2}$	88.4	67.8	96.8	93．0／90．7	91．6／91．1	74．2／90．3	90.2	89.8	98.6	86.3	90.4	47.5
＋ 6	Microsoft D365 AI \＆MSR AI	MT－DNN－ensemble		$\underline{\square}$	87.6	68.4	96.5	92．7／90．3	91．1／90．7	73．7／89．9	87.9	87.4	96.0	86.3	89.0	42.8
7	GLUE Human Baselines	GLUE Human Baselines		\square	87.1	66.4	97.8	86．3／80．8	92．7／92．6	59．5／80．4	92.0	92.8	91.2	93.6	95.9	－
8	Stanford Hazy Research	Snorkel MeTaL		\square	83.2	63.8	96.2	91．5／88．5	90．1／89．7	73．1／89．9	87.6	87.2	93.9	80.9	65.1	39.9
9	XLM Systems	XLM（English only）		\cdots	83.1	62.9	95.6	90．7／87．1	88．8／88．2	73．2／89．8	89.1	88.5	94.0	76.0	71.9	44.7
10	Zhuosheng Zhang	SemBERT		\square	82.9	62.3	94.6	91．2／88．3	87．8／86．7	72．8／89．8	87.6	86.3	94.6	84.5	65.1	42.4
11	Danqi Chen	SpanBERT（single－task training）		$\underline{\square}$	82.8	64.3	94.8	90．9／87．9	89．9／89．1	71．9／89．5	88.1	87.7	94.3	79.0	65.1	45.1
12	Kevin Clark	BERT＋BAM		\square	82.3	61.5	95.2	91．3／88．3	88．6／87．9	72．5／89．7	86.6	85.8	93.1	80.4	65.1	40.7
13	Nitish Shirish Keskar	Span－Extractive BERT on STILTs		－	82.3	63.2	94.5	90．6／87．6	89．4／89．2	72．2／89．4	86.5	85.8	92.5	79.8	65.1	28.3
14	Jason Phang	BERT on STILTs		¢	82.0	62.1	94.3	90．2／86．6	88．7／88．3	71．9／89．4	86.4	85.6	92.7	80.1	65.1	28.3
15	廖亿	RGLM－Base（Huawei Noah＇s Ark Lab）			81.3	56.9	94.2	90．7／87．7	89．7／89．1	72．2／89．4	86.1	85.4	92.1	78.5	65.1	40.0
＋ 16	Jacob Devlin	BERT：24－layers， 16 －heads，1024－hidden		\square	80.5	60.5	94.9	89．3／85．4	87．6／86．5	72．1／89．3	86.7	85.9	92.7	70.1	65.1	39.6
17	Neil Houlsby	BERT＋Single－task Adapters		¢	80.2	59.2	94.3	88．7／84．3	87．3／86．1	71．5／89．4	85.4	85.0	92.4	71.6	65.1	9.2
18	Zhuohan Li	Macaron Net－base		5	79.7	57.6	94.0	88．4／84．4	87．5／86．3	70．8／89．0	85.4	84.5	91.6	70.5	65.1	38.7
19	蘇大鈞	SesameBERT－Base			78.6	52.7	94.2	88．9／84．8	86．5／85．5	70．8／88．8	83.7	83.6	91.0	67.6	65.1	35.8
＋ 20	MobileBERT Team	MobileBERT			78.5	51.1	92.6	88．8／84．5	86．2／84．8	70．5／88．3	84.3	83.4	91.6	70.4	65.1	34.3
21	Linyuan Gong	StackingBERT－Base		$\underline{\square}$	78.4	56.2	93.9	88．2／83．9	84．2／82．5	70．4／88．7	84.4	84.2	90.1	67.0	65.1	36.6
22	Huawei Noah＇s Ark Lab	TinyBERT（4－layers； 7.5 x smaller and 9．4x faster than	BERT－base）	T	75.4	43.3	92.6	86．4／81．2	81．2／79．9	71．3／89．2	82.5	81.8	87.7	62.9	65.1	33.7
23	shijing si	bert＋pos6			74.9	52.9	93.9	88．8／84．6	83．8／85．5	71．4／89．2	84.4	83.3	90.4	66.9	34.9	0.0
24	GLUE Baselines	BiLSTM＋ELMo＋Attn	Click on a su	mission	see more	information	0.4	84．4／78．0	74．2／72．3	63．1／84．3	74.1	74.5	79.8	58.9	65.1	21.7

Glue benchmark

－Leaderboard（16／10／2019－9：30 UTC）－Rank 16 －

＋ 16	Jacob Devlin	BERT：24－layers， 16 －heads，1024－hidden	\square	80.5	60.5	94.9	89．3／85．4	87．6／86．5	72．1／89．3	86.7	85.9	92.7	70.1	65.1	39.6
17	Neil Houlsby	BERT＋Single－task Adapters	\cdots	80.2	59.2	94.3	88．7／84．3	87．3／86．1	71．5／89．4	85.4	85.0	92.4	71.6	65.1	9.2
18	Zhuohan Li	Macaron Net－base	－	79.7	57.6	94.0	88．4／84．4	87．5／86．3	70．8／89．0	85.4	84.5	91.6	70.5	65.1	38.7
19	蘇大鈞	SesameBERT－Base		78.6	52.7	94.2	88．9／84．8	86．5／85．5	70．8／88．8	83.7	83.6	91.0	67.6	65.1	35.8
＋ 20	MobileBERT Team	MobileBERT		78.5	51.1	92.6	88．8／84．5	86．2／84．8	70．5／88．3	84.3	83.4	91.6	70.4	65.1	34.3
21	Linyuan Gong	StackingBERT－Base	－	78.4	56.2	93.9	88．2／83．9	84．2／82．5	70．4／88．7	84.4	84.2	90.1	67.0	65.1	36.6
22	Huawei Noah＇s Ark Lab	TinyBERT（4－layers； 7.5 x smaller and 9.4 x faster than BERT－base）	¢	75.4	43.3	92.6	86．4／81．2	81．2／79．9	71．3／89．2	82.5	81.8	87.7	62.9	65.1	33.7
23	shijing si	bert＋pos6		74.9	52.9	93.9	88．8／84．6	83．8／85．5	71．4／89．2	84.4	83.3	90.4	66.9	34.9	0.0
24	GLUE Baselines	BiLSTM＋ELMo＋Attn	¢	70.0	33.6	90.4	84．4／78．0	74．2／72．3	63．1／84．3	74.1	74.5	79.8	58.9	65.1	21.7
		BiLSTM＋ELMo	T	67.7	32.1	89.3	84．7／78．0	70．3／67．8	61．1／82．6	67.2	67.9	75.5	57.4	65.1	21.3
		Single Task BiLSTM + ELMo＋Attn	¢	66.5	35.0	90.2	80．2／68．8	55．5／52．5	66．1／86．5	76.9	76.7	76.7	50.3	65.1	27.9
		Single Task BiLSTM + ELMo	¢	66.4	35.0	90.2	80．8／69．0	64．0／60．2	65．6／85．7	72.9	73.4	71.7	50.1	65.1	19.5
		GenSen	¢	66.1	7.7	83.1	83．0／76．6	79．3／79．2	59．8／82．9	71.4	71.3	78.6	59.2	65.1	20.6
		BiLSTM＋Attn	¢	65.6	18.6	83.0	83．9／76．2	72．8／70．5	60．1／82．4	67.6	68.3	74.3	58.4	65.1	17.8
		BiLSTM	T	64.2	11.6	82.8	81．8／74．3	70．3／67．8	62．5／84．2	65.6	66.1	74.6	57.4	65.1	20.3
		InferSent	\square	63.9	4.5	85.1	81．2／74．1	75．9／75．3	59．1／81．7	66.1	65.7	72.7	58.0	65.1	18.3
		Single Task BiLSTM	\square	63.7	15.7	85.9	79．4／69．3	66．0／62．8	61．4／81．7	70.3	70.8	75.7	52.8	62.3	21.0
		Single Task BiLSTM + CoVe	－	63.6	14.5	88.5	81．4／73．4	67．2／64．1	59．4／83．3	64.5	64.8	75.4	53.5	61.6	20.6
		BiLSTM + CoVe + Attn	－	63.1	8.3	80.7	80．0／71．8	69．8／68．4	60．5／83．4	68.1	68.6	72.9	56.0	65.1	18.3
		Single Task BiLSTM + CoVe + Attn	\cdots	63.1	14.5	88.5	79．7／68．6	57．2／53．6	60．1／84．1	71.6	71.5	74.5	52.7	64.4	23.8
		BiLSTM + CoVe	－	62.9	18.5	81.9	78．7／71．5	64．4／62．7	60．6／84．9	65.4	65.7	70.8	52.7	65.1	17.6
		Single Task BiLSTM + Attn	T	62.8	15.7	85.9	80．3／68．5	59．3／55．8	62．9／83．5	74.2	73.8	77.2	51.9	55.5	24.9
		DisSent	T	61.9	4.9	83.7	81．7／74．1	66．1／64．8	59．5／82．6	58.7	59.1	73.9	56.4	65.1	15.9
		Skip－Thought	T	61.3	0.0	81.8	80．8／71．7	71．8／69．7	56．4／82．2	62.9	62.8	72.9	53.1	65.1	12.2
		CBOW		58.6	0.0	80.0	81．5／73．4	61．2／58．7	51．4／79．1	56.0	56.4	72.1	54.1	62.3	9.2

[^0]: 16/07/2019

