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Abstract

Although server technology provides a means to support a
wide range of online services and applications, their ad-hoc
configuration poses significant challenges to the performance,
availability and economical costs of applications. In this pa-
per, we examine the impact of server configuration on the cen-
tral tradeoff between service performance and availability.
First, we present a server model as a nonlinear continuous-
time model using fluid approximations. Second, we develop
admission control of server systems for an optimal configu-
ration. We provide two control laws for two different QoS
objectives. AM -C is an availability-maximizing admission
control that achieves the highest service availability given a
fixed performance constraint; and PM -C is a performance-
maximizing admission control that meets a desired availabil-
ity target with the highest performance. We evaluate our
fluid model and control techniques on the TPC-C industry-
standard benchmark. Our experiments show that the pro-
posed techniques improve performance by up to 30 % while
guaranteeing availability constraints.

Keywords: Modeling, Control, Server systems, Admission
control, QoS

1. Introduction

A large variety of Internet services exists, ranging from
web servers to e-mail servers [27], streaming media ser-
vices [3], e-commerce servers [2], and database systems [23].
These services are usually based on the classical client-server
architecture, where multiple clients concurrently access an
online service provided by a server (e.g. reading web pages,
sending emails or buying the content of a shopping cart). Such
server systems face varying workloads as shown in several
studies [5, 8, 4]. For instance, an e-mail server is likely to
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face a heavier workload in the morning than in the rest of
the day, since people usually consult their e-mails when ar-
riving at work. In its extreme form, a heavy workload may
induce server thrashing and service unavailability, with un-
derlying economical costs. These costs are estimated at up
to US$ 2.0 million/hour for Telecom and Financial compa-
nies [12, 22].

A classical technique used to prevent servers from thrash-
ing when the workload increases is admission control [11].
It consists in limiting client concurrency on servers – also
known as the multi-programming level (MPL) configuration
parameter of servers. Obviously, servers’ MPL configuration
has a direct impact on server performance, availability and
quality-of-service (QoS). Existing approaches to admission
control either rely on ad-hoc tuning and heuristics without op-
timality guarantees [6, 21, 20], or apply linear control theory
which does unfortunately not capture the intrinsic nonlinear
behavior of server systems [25, 7], or follow a queuing the-
ory approach where the system can be accurately modeled
but at the expense of a hard model calibration process which
makes it unwieldy to use [28, 30, 24]. We believe that mod-
eling server systems is necessary to provide guarantees on the
QoS. However, we argue that for the effective deployment of
server modeling, the models must accurately capture the dy-
namics and the nonlinear behavior of server systems while
being simple to deploy on existing systems.

In this paper, we apply a nonlinear continuous-time control
theory based on fluid approximations, in order to model and
control the QoS of server systems. The main contribution of
the paper is twofold:

• The design and implementation of a nonlinear
continuous-time model of server systems that is
simple to use since it involves very few external param-
eters, and which still accurately captures the dynamics
of server systems as fluid flows.

• The design and implementation of nonlinear admission
control for server systems. Two variants of control laws



are proposed: AM -C is an availability-maximizing op-
timal server admission control that achieves the high-
est service availability given a fixed performance con-
straint, and PM -C is a performance-maximizing opti-
mal server admission control that meets a desired avail-
ability target with the highest performance.

The paper presents our experiments on the TPC-C appli-
cation, an industry-standard benchmark, running on the Post-
greSQL database server. The results of the experiments show
that the proposed techniques provide significant benefits on
the performance and the availability of the controlled system
compared to a non-controlled system.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of the background. Sections 3 and
4 present our contributions in terms of respectively a fluid
model for server systems, and feedback admission control
laws for servers. Section 5 describes the results of our exper-
imental evaluation, and Section 6 presents the related work.
Finally, Section 7 draws our conclusions.

2 Background

2.1 Server systems

We consider server systems such as database servers and
web servers that follow the client-server architecture where
servers provide clients with some online service, such as on-
line bookstore, or e-banking. Clients and servers are hosted
on different computers connected through a communication
network. Basically, a client remotely connects to the server,
sends it a request, the server processes the request and builds
a response that is returned to the client before the connection
is closed. Multiple clients may concurrently access the same
server.

Server workload is characterized, on the one hand, by
the number of clients that try to concurrently access a server
(i.e. workload amount), and on the other hand, by the nature
of requests made by clients (i.e. workload mix), e.g. read-only
requests mix vs. read-write requests mix. Workload amount is
denoted as N while workload mix is denoted as M . Further-
more, server workload may vary over time. This corresponds
to different client behaviors at different times. For instance,
an e-mail service usually faces a higher workload amount in
the morning than in the rest of the day.

Server admission control is a classical technique to pre-
vent a server from thrashing when the number of concur-
rent clients grows [11]. It consists in fixing a limit for the
maximum number of clients allowed to concurrently access a
server – the Multi-Programming Level (MPL) configuration
parameter of a server. Above this limit, incoming client re-
quests are rejected. Thus, a client request arriving at a server

either terminates successfully with a response to the client,
or is rejected because of the server’s MPL limit. Therefore,
due to the MPL limit, among the N clients that try to con-
currently access a server, only Ne clients actually access the
server, withNe ≤MPL. Servers’MPL has a direct impact
on the quality-of-service (QoS), performance and availability
of servers as discussed below.

2.2 Service performance and availability

Several criteria may be considered to characterize service
performance and availability [20]. In the following, we con-
sider in particular two metrics that reflect performance and
availability from the user’s perspective [20], namely latency
and abadon rate.

Service performance – Latency. Client request latency is
defined as the time needed by the server to process a request.
The average client request latency is denoted as L. A low
client request latency (or latency, for short) is a desirable be-
havior which reflects a reactive system. Figure 1 describes
the impact of server admission control and MPL value on
client request latency, when the workload amount varies 1 .
Here, three values of MPL are considered, a low value (1),
a medium value (25) and a high value (75). The low MPL
is very restrictive regarding client concurrency on the server
and thus, keeps the server unloaded and implies a low client
request latency. In contrast, with a high MPL, when the
server workload amount increases client request latency in-
creases too.

Service availability – Abandon rate. Client request aban-
don rate is defined as the ratio between requests rejected due
to admission control and the total number of requests received
by a server. It is denoted as α. A low client request aban-
don rate (or abandon rate, for short) is a desirable behavior
that reflects service availability. Figure 2 describes the im-
pact of MPL on client request abandon rate 1. A low MPL
is very restrictive regarding client concurrency on the server,
and obviously implies a higher abandon rate compared to a
high MPL which accepts more clients.

S ervice performance and service availability are part of the
SLA (Service Level Agreement). The SLA specifies the ser-
vice level objectives (SLOs) such as the maximum latency
Lmax and the maximum abandon rate αmax to be guaranteed
by the server.

3 Fluid Model for Server Systems

We propose a fluid model which renders the dynamics of
server systems and captures characteristics that reflect the

1Details on the underlying experimental testbed are given in Sec-
tion 5.1.



Figure 1. Impact of MPL on performance

Figure 2. Impact of MPL on availability

state of servers in terms of performance and availability.
Roughly speaking, fluid approximation consists in looking at
all the state variables of the system - that are most integers -
as real variables in R. This enables to write the infinitesimal
variation of characteristic state variables of the system with
respect to time. Those variations can be seen as fluid flows,
e.g. client request flows in the present case; and a request
queue on the server is similar to a fluid tank [1]. The model is
therefore built as a set of differential equations - as for most
physical systems in mechanics, physics, electricity, etc. - that
describe the time evolution of state variables. In the present
case, we identify three state variables that describe and have
an impact on server performance and availability, namely the
current number of concurrent client requests in the server Ne,
the server throughput To and the client request abandon rate
α. State variables are usually influenced by themselves and
by input variables. The inputs of the proposed model are: the
server workload amount N and workload mix M exogenous
inputs, and the server MPL tunable parameter that can be
used to control the admission to the server. In addition to input
and state variables, the model has output variables such as the
average latency L to process a client request on the server. In
the following, we describe the proposed fluid model through
the formulas of its state and output variables.

Among the N concurrent clients that try to connect to a
server, admission control authorizes Ne concurrent clients
to actually enter the server, with 0 ≤ Ne ≤ N and
0 ≤ Ne ≤ MPL. Let cr(t, t + dt) be the number of

client connections created on the server between t and t+ dt,
and cl(t, t + dt) be the number of client connections closed
on the server between t and t + dt. Thus, a balance on Ne
between t and t+ dt gives

Ne(t+ dt) = Ne(t) + cr(t, t+ dt)− cl(t, t+ dt) (1)

Let Ti be the incoming throughput of the server, measured
as the number of client connection demands per second. It
comes that the number of connections created between t and
t+ dt is

cr(t, t+ dt) = (1− α(t+ dt)) · Ti(t+ dt) · dt (2)

where α is the abandon rate of the server.
Similarly, let To be the outgoing throughput of the server,

measured as the number of client requests a server is able to
handle per second. Thus, the number of connections closed
between t and t+ dt is

cl(t, t+ dt) = To(t+ dt) · dt (3)

Deriving from (1), (2) and (3), we have Ṅe, the derivative
of Ne

Ṅe(t) = (1− α(t)) · Ti(t)− To(t) (4)

Moreover, we assume that the system reaches a steady
state in a reasonably short period of time ∆; this is partic-
ularly reflected in state variables outgoing throughput To and
abandon rate α. During this short period of time, the work-
load is relatively stable, which is consistent with studies such
as [4]. Thus, the dynamics of To and α can be approximated
by first order systems through their derivatives as follows

Ṫo(t) = − 1
∆

(
To(t)− T̄o

)
α̇(t) = − 1

∆
(α(t)− ᾱ)

where T̄o and ᾱ are the steady state values of respectively the
outgoing throughput and the abandon rate of the server. The
next step naturally consists in finding the expression of T̄o
and ᾱ. A balance on the number of served client requests (or
outgoing requests) No gives

No(t+ dt) = No(t) + sr(t, t+ dt)

where sr(t, t + dt) is the number of served request between
t and t + dt. Since there are Ne concurrent clients on the
server and the average client request latency is L, the number
of served requests during dt will be sr(t, t + dt) = dt

LNe.
Thus, we get Ṅo = Ne

L , that is T̄o = Ne
L which is an expres-

sion of Little’s law [17].
By definition, ᾱ is equal to zero if Ne is smaller than

MPL, and ᾱ is equal to 1− To
Ti

ifNe = MPL (see Figure 3,



Figure 3. Accuracy of modeled abandon rate

naive model ). However, the stochastic nature of the client re-
quest arrival may lead to situations where the measured aver-
age Ne is smaller than MPL but where punctually, the num-
ber of clients that try to access the server is actually higher
than MPL, and thus, some clients are rejected. This is illus-
trated in Figure 3 which compares the actual measured aban-
don rate with the naive estimation of the abandon rate, show-
ing a mismatch between the two 2 . In order to take this behav-

ior into account, we choose to write ᾱ = Ne
MPL ·

(
1− To

Ti

)
.

This renders that the probability to reject a client connection
is higher when the average Ne is close to MPL. Figure 3
shows that this improved method provides a more accurate
estimation of the abandon rate. Finally, it follows that

Ṫo(t) = − 1
∆

(
To(t)−

Ne(t)
L(t)

)
(5)

α̇(t) = − 1
∆

(
α(t)− Ne(t)

MPL(t)
·
(

1− To(t)
Ti(t)

))
(6)

Now that we have defined the model state variables, the
last step consists in expressing the model output variable la-
tency L. Latency obviously depends on the global load of the
server, i.e. the workload mixM and the number of concurrent
clients on the server Ne. Figure 4 describes the evolution of
latency L as a function of Ne, for a given workload mix 2.
One can see that a second degree polynomial in Ne is a good
approximation of the latency L. Thus:

L(Ne,M, t) = a(M, t)N2
e + b(M, t)Ne + c(M, t) (7)

The parameter c is positive as it represents the zero-load la-
tency. a and b are also positive since they model the process-
ing time of requests.

In summary, the proposed fluid model is given by equa-
tions (4) to (7) that reflect the dynamics of the state and out-
puts of server systems in terms of performance and availabil-
ity. Section 4 then describes the proposed control techniques

2Details on the underlying experimental testbed are given in Sec-
tion 5.1.

Figure 4. Latency as a function of Ne

that build upon the fluid model in order to guaranty service
performance and availability level objectives.

4 Control of Server Systems

In the following, we study the tradeoff between the per-
formance and the availability of server systems, and derive
the optimal admission control of server systems based on the
proposed fluid model, that is the optimal number of con-
current clients admitted to the server with respect to this
tradeoff. In particular, we provide two variants of control
laws, namely AM -C and PM -C . AM -C is an availability-
maximizing optimal server admission control that achieves
the highest service availability given a fixed performance con-
straint. Symmetrically, PM -C is a performance-maximizing
optimal server admission control that meets a desired avail-
ability target with the highest performance. In the present
case, service availability is measured as the client request ac-
ceptation rate (i.e. 1 - α), and service performance is mea-
sured as the average client request latency (i.e. L).

4.1 AM-C availability-maximizing control

AM -C aims at guarantying a tradeoff between server per-
formance and availability with the following properties:

(P1) the average client request latency does not exceed a max-
imum latency Lmax, and

(P2) the abandon rate α is made as small as possible.

To that end, a feedback control law is proposed to automat-
ically adjust the MPL server admission control parameter in
order to satisfy this tradeoff. The basic idea behind this law is
to admit clients in such a way that the average client request
latency L is close (equal) to Lmax. By construction, this max-
imizes the number of admitted clients Ne, which induces a
minimized abandon rate α.



A first approach could consist in solving Eq. (7) in such a
way that L = Lmax. Althrough accurately reflecting the sys-
tem, such an approach is unwieldy since it requires the knowl-
edge of accurate values of parameter a, b and c in equation 7,
through an online identification of these parameters since the
workload may change over time.

We propose another approach which avoids this online
identification of model’s parameters. It is obtained via a sim-
ple input-output linearization technique in which the consid-
ered output is latencyL [14]. Roughly speaking, the approach
aims at determining how to control the MPL value in such a
way that

L̇ = − γ
L

(L− Lmax) (8)

As soon as γ
L

> 0, this will ensure the convergence
of L to its maximum Lmax. From Eq. (7), we have
L̇ = (2aNe + b) Ṅe. And since To and α reach a steady
state in a reasonably short period of time, To(t) = T̄o and
α(t) = ᾱ Therefore, with Eq. (4) we have

L̇ = (2aNe + b)
(

1− Ne
MPL

) (
Ti − T̄o

)
(9)

As a result from Eq. (8) and (9), MPL should be con-
trolled as follows

MPL =
Ne

1 + γ
L

(2aNe+b)(Ti−T̄o)
(L− Lmax)

To free ourselves from a and b, we choose to use
γ′
L

= γ
L

(2aNe+b)(Ti−T̄o)
, which produces

MPL =
Ne

1 + γ′
L

(L− Lmax)
(10)

where γ′
L
> 0 is a tuning parameter. It follows that with

Eq. (8) and control described in (10), the dynamic evolution
of L is given by:

L̇ = −
(
γ′
L

(2aNe + b) (Ti − T̄o)
)

(L− Lmax)

Here again, L will converge to Lmax.
In summary, it is interesting to notice that the feedback

control law given in (10) will reflect one of the following situ-
ations. If the current latency L is higher than Lmax, property
(P1) is not guaranteed and the control law will produce an
MPL as a decreased value of the current number of admitted
concurrent clientsNe (since (1+γ′

L
(L−Lmax)) > 1), which

aims at meeting (P1). Symmetrically, ifL is lower thanLmax,
property (P1) holds but property (P2) may not hold, and the
control law will produce an MPL as an increased value of
Ne (since (1 + γ′

L
(L−Lmax)) < 1), which aims at meeting

(P2). Finally, if L is equal to Lmax, both properties (P1) and
(P2) hold.

4.2 PM-C performance-maximizing con-
trol

Similarly, PM -C aims at guarantying the following trade-
off between server performance and availability where:

(P3) the client request abandon rate does not exceed a given
maximum abandon rate αmax,

(P4) with the lowest average client request latency..

In this context, (P4) will be ensured given (P3) iff
the MPL converges to the smallest value that guarantees
α ≤ αmax. Once again, we use an input-output linearization
approach, taking α as the output, to solve the problem

α̇ = − γα(α− αmax) (11)

with γ
α
> 0. Furthermore, since the workload remains rela-

tively stable during a short period of time, as stated previously,
Ṅe = 0. Then, from Eq. (4) and (6), we get

α = 1− To
Ti

α̇(t) = − 1
∆
α(t)(1− Ne(t)

MPL(t)
) (12)

Thus, from Eq. (11) and (12) and with the following control
applied to MPL, α will converge to αmax

MPL =
αNe

α+ γ′
α

(α− αmax)
(13)

where γ′
α

= γ
α

∆.
In summary, the proposed admission control techniques re-

quire a unique external parameter, that is γ. This parameter
has an impact on both the convergence time of the control
(i.e. the number of iterations to converge to the optimal MPL)
and the stability of the system. Indeed, with a low value of
γ, the convergence time toward the optimal MPL would be
long. Whereas if γ is too high, this could induce system os-
cillations. A difficult part resides in choosing the right value
of this parameter, which partly depends on the time necessary
for the considered system QoS criteria (e.g. the abandon rate
in case of PM -C ) to reach its steady state.

5 Evaluation

This section first describes the environment that underlies
our experiments, before presenting the results of the evalua-
tion of the proposed fluid model and feedback controllers.

5.1 Experimental setup

Testbed application. The evaluation of the proposed fluid
model and feedback controllers has been conducted using



the TPC-C benchmark [29]. TPC-C is an industry stan-
dard benchmark from the Transaction Processing Council
that models a realistic database server application as a ware-
house system where clients request transactions on ware-
houses stored on a database server. TPC-C comes with a
client emulator which emulates a set of concurrent clients that
remotely send requests to the database server. The TPC-C
client emulator allows to specify the number of concurrent
clients to launch (i.e. the workload amount N ). It also speci-
fies the client think time, that is the interarrival time between
two consecutive client requests. We extended the client emu-
lator in order to be able, on the one hand, to vary the workload
amountN over time, and on the other hand, to vary the work-
load mixM over time. For the latter extension, we considered
two mixes of workload, one consisting of read-only requests,
and another consisting of read-write requests.

Software and hardware environment. Our experiments
have been conducted on a set of two computers connected
via a 100 Mb/s Ethernet LAN, one computer dedicated to
the database server and another to the client emulator. The
database server is PostgreSQL 8.2.6 [23]. The proposed
model and controllers were deployed as follows. An on-
line monitoring of the system allows to maintain the state
of the model and well-known Kalman filtering techniques
were applied [13]. A a proxy-based approach was followed
to implement the AM -C and PM -C controllers where a
proxy stands in front of the database server to implement
online feedback admission control. In the following experi-
ments, AM -C and PM -C were initialized with respectively
γ = 0.1 and γ = 0.3. Both client and server machines run
Linux Fedora 7. The server machine is a 3 GHz processor
with 2GB RAM, while the clients’ computer is a 2 GHz pro-
cessor with 512MB RAM.

5.2 Model validation

We perform measurements to validate the accuracy of the
proposed fluid model and its ability to render the dynamics of
the system. In particular, we evaluate the ability of the model
to reflect the variation of the state of the system when input
variables such as the server MPL and the workload amount
N vary. The variation of the state of the system is described
by the state variables Ne for the number of concurrent clients
admitted in the server, To for the outgoing throughput of the
server, and α for the client request abandon rate. Thus, for
the same set of input variables, the state reified by the model
is compared with the actual state of the real system.

Figure 5 illustrates the case of a dynamic open loop sys-
tem where both the workload amountN and the serverMPL
vary over time (see Figure 5(a)). Figures 5(b), 5(c) and 5(d)
present the evolution over time of respectively the number
Ne of concurrent clients admitted in the server, the outgoing
throughput To and the abandon rateα, for both the real system

(a) Varying MPL and workload amount

(b) Admitted concurrent clients

(c) Throughput

(d) Abandon rate

Figure 5. System behavior with varying MPL
and workload amount – Real system (+)
vs. modeled system (solid line)



(+) and the modeled system (solid line). Results show that the
model is able to render the behavior of the real system.

5.3 Control evaluation

This section presents the results of the evaluation of the im-
plemented feedback controllers presented in Section 4 when
applied to the PostgreSQL database server that hosts the TPC-
C database. The results of the experiments conducted with the
AM -C availability-maximizing controller are first presented
in Section 5.3.1, and the results of the PM -C performance-
maximizing controller are then described in Section 5.3.2.

5.3.1 AM -C availability-maximizing control

In this section, we evaluate the proposed AM -C availability-
maximizing feedback controller presented in Section 4.1.
Here, we consider a performance constraint limiting the max-
imum average client request latency to 8 s. The role of AM -
C is thus to guaranty that performance constraint while max-
imizing service availability, through online feedback control
of the server MPL. We use two scenarii to evaluate this con-
troller, each one illustrating a variation of one of the two ex-
ogeneous input variables of the system, i.e. the first scenario
considers a changing workload mix, and the second scenario
handles a varying workload amount N .

Figure 6 describes the first scenario where the workload
mix varies from M1 to M2 and then back to M1 (c.f. Fig-
ure 6(a)), while the workload amount N is of 80 clients. The
workload mix M1 consists of read-write requests while the
workload mixM2 generates read-only requests. Figures 6(b),
6(c) and 6(d) present the variation over time of respectively
the server MPL, the average client request latency and the
client request abandon rate, comparing the non-controlled
base system with a closed loop-based controlled system. No-
tice that the sudden change of MPL after the 20th and 40th
minutes correspond to workload mix changes, which also has
an impact on the latency and abandon rate.

Results demonstrate that the AM -C controller is able to
dynamically adjust MPL in order to guarantee the latency
performance constraint while keeping the service availability
to its maximum, with an abandon rate minimized to 0% with
M1 and to 9% in average with M2. Whereas, in the base
system where concurrency on the server is not controlled and
potentially unlimited, the QoS is not guaranteed and perfor-
mance gets worse with a latency overhead of up to 30 %.

Figure 7 presents another dynamics of the system, that
is the variation of the server workload amount over time
(c.f. Figure 7(a)) when the workload mix remains at M1.
Figures 7(b), 7(c) and 7(d) present the variation over time
of respectively the server MPL, the average client request
latency and the client request abandon rate, comparing the
non-controlled base system with the controlled system. No-
tice that, due to TPC-C client think time, the number of ac-
tive clients at any given time may be different from (lower

(a) Workload mix

(b) MPL of controlled system

(c) Latency

(d) Abandon rate

Figure 6. System behavior upon workload
mix variation – AM -C -based controlled sys-
tem vs. non-controlled system



(a) Workload amount

(b) MPL of controlled system

(c) Latency

(d) Abandon rate

(e) Admitted concurrent clients (Ne) vs. MPL

Figure 7. System behavior upon workload
amount variation – AM -C -based controlled
system vs. non-controlled system

than) the actual load generated by TPC-C client emulator at
that time. Results show that the controlled MPL is able to
adjust its value to the optimal value so that the performance
constraint is guaranteed. Whereas in the case of the non-
controlled system, the latency grows up to 14.4 s, with an
overhead of up to 80 % compared to the controlled system.

In the controlled system, the abandon rate is mainained be-
low 5% with up to 75 clients (i.e. during the first half of the
experiment). Then, the abandon rate increases with the in-
crease of concurrent clients in the system, to attain its highest
value when the number of clients is maximum, in order to
keep latency below the target maximum latency. Notice that
at the end of the experiment (between the 18th and 25th min-
utes), it seems justifiable to have a high abandon rate since la-
tency attains its maximum authorized value (c.f. Figure 7(b))
and client request rejection is necessary at that time to guar-
anty the latency constraint. However, during the first part of
the experiment where latency is lower than the authorized
maximum latency, having an abandon rate which is higher
that 0% is questionable. This is explained in Figure 7(e)
by the stochastic nature of the workload where MPL is al-
ways higher than the average Ne but where punctually, there
may be a client amount that is higher than MPL and thus,
a non-null abandon rate is observed at that time (as depicted
by circles in Figure 7(e)). To face this issue, an improved
AM -C availability-maximizing control law consists in tak-
ing into account system underload situations an thus, mini-
mize abanon rate further (i.e. increase MPL) as long as the
latency constraint is guaranteed. Due to space limitation, we
are not able to present results for this scenario.

5.3.2 PM -C performance-maximizing control

In this section, we evaluate the proposed PM -
C performance-maximizing feedback controller presented
in Section 4.2. Here, we consider an availability constraint
limiting the maximum client request abandon rate to 10%.
The role of PM -C is thus to guaranty this availability
constraint while maximizing service performance, through
online feedback control of the server MPL.

Figure 8 presents the variation of system behavior and dy-
namic control when the exogeneous input variable of work-
load mix M changes 1. In Figure 8(a), the workload mix
varies from M1 to M2 and then back to M1 when the work-
load amount N is of 80 clients. The workload mix M1 con-
sists of read-write requests while the workload mix M2 gen-
erates read-only requests. Figures 8(b), 8(c) and 8(d) present
the variation over time of respectively the server MPL, the
client request abandon rate and the average client request la-
tency, comparing the non-controlled base system with a con-
trolled system. Here again, we notice a sudden change in the
MPL when the workload mix suddenly changes, with an im-
pact on the latency and abandon rate.

1Due to space limitation, results with a varying amout of workload N
are not presented.



Results demonstrate that the PM -C controller is able to
dynamically adjust MPL in order to guaranty the abandon
rate constraint while keeping service performance to its max-
imum, with an average latency minimized to 4 s withM1 and
to 8 s with M2. Compared to a non-controlled system, this
improves system latency by up to 20 %.

6 Related Work

System configuration is a crucial issue for the performance
and availability of server systems [18, 19]. Much related
work has been done in the area of system QoS management,
investigating techniques such as admission control, service
differentiation, service degradation and request scheduling.
Due to space limitation, we briefly overview the work related
to admission control for server system management. While
the improvement of server performance and availability is
usually achieved by system administrators using ad-hoc tun-
ing [6, 21], new approaches tend to appear to ease the manage-
ment of such systems. Menascé et. al. propose a heuristic for
the management of the QoS of servers through the determina-
tion of the multi-programming level (MPL) of servers using
the hill-climbing optimization technique [20]. Althrough per-
forming well in a variety of applications, hill-climbing does
not guarantee optimality. In [9], a similar technique is ap-
plied; however the MPL is determined offline and thus, does
not adapt to changing workloads. Other solutions to MPL
identification were proposed specifically to some server tech-
nologies, such as transactional servers [26]. Other approaches
aim at modeling the system in order to characterize its capac-
ity. In [10], a simulation-based study is conducted and an
analytic model is proposed to adjust server MPL according
to changing workloads. However, this model is restricted to
performance functions with a parabola shape and thus, does
not apply to criteria such as request latency and abandon
rate that usually underly service level objectives (SLOs) as
perceived by clients. Other works aiming at applying con-
trol theory to server systems appeared in the last decade. A
first approach consists in applying well-known linear con-
trol theory on servers modeled as SISO (single-input single-
output) or MIMO (multiple-inputs multiple-outputs) black-
boxes [25, 7]. Nevertheless, due to the intrinsic non-linear
behavior of these systems, linear control theory does not pro-
vide much success. Other approaches are based on non-linear
models derived from queuing theory [28, 30] with a theoret-
ical proposal in [15, 16, 24]. The resulting models interest-
ingly predict the performance of the system, but this is ob-
tained at the expense of a hard calibration of model parame-
ters in order to provide accurate results.

The proposed AM/PM -C system differs from the previ-
ous works in many respects. It applies control theory based
on fluid approximation, which results in a simpler non-linear
model with very few external parameters. Fluid approxima-
tion is successfully used to model and control various systems
in other areas such as car flow control and population models.

(a) Workload mix

(b) MPL of controlled system

(c) Abandon rate

(d) Latency

Figure 8. System behavior upon workload
mix variation – PM -C -based controlled sys-
tem vs. non-controlled system



In the present work, we apply it to model and control server
systems, and show how this allows to provide combined guar-
antees on service performance and service availability.

7 Conclusion
This paper presents the design, implementation and evalu-

ation of a nonlinear continuous-time model based on the fluid
flow control theory, upon which admission control of servers
is derived for optimal configuration of servers. Two vari-
ants of control are proposed for two different QoS objectives.
AM -C is an availability-maximizing optimal server admis-
sion control that achieves the highest service availability given
a fixed performance constraint. PM -C is a performance-
maximizing optimal server admission control that meets a de-
sired availability target with the highest performance. Our
experiments show that the proposed techniques improve per-
formance by up to 30 % while guaranteeing availability con-
straints.

While this paper concentrates on QoS metrics such as
client request latency and abandon rate, we believe that both
the proposed modeling and control techniques may apply to
other metrics, such as server throughput. Although the pro-
posed modeling and admission control laws were applied to a
database server, we believe that they could be easily applied
to any sever system where admission control holds (e.g. web
servers, application servers, etc.). Furthermore, we are inter-
ested in how these modeling and control techniques can be
applied to distributed systems.
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