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Abstract— Servers technology is a mean to support different
Internet services and applications ranging from web servers,
to email systems, streaming media services, enterprise servers,
and database servers. However, the ad-hoc configuration of
servers poses significant challenges to the performance and
economical costs of applications. This paper precisely addresses
this issue. Firstly, we present the design of a server model
as a non-linear continuous-time model. A fluid flow approach
allows us to partly free ourselves from accurate stochastic
considerations. Secondly, a utility function for characterizing
the impact of server configuration on performance and cost
is presented. Thirdly, a utility-aware capacity planning algo-
rithm is developed to efficiently control the configuration of
servers. Model and control algorithm were implemented and
applied to the standard PostgreSQL database server running
the TPC-C warehouse application. The experiments show that
the proposed method provides significant benefits for database
servers management.

I. INTRODUCTION

A large variety of Internet services exists, ranging from
web servers to e-mail servers [1], [2], [3], streaming media
services [4], enterprise servers [5], [6], and database sys-
tems [7], [8]. These services are usually based on the client-
server architecture, where a server provides some online
service (such as reading web pages, sending emails or buying
the content of a shopping cart), and clients concurrently
access that service.

In addition to this concurrent access, the workload of a
server (i.e. the number of concurrent clients and the nature
of their requests) may vary over time, from a light one to
a heavy one and vice versa. For instance, an e-mail server
is likely to face a heavier workload in the morning than in
the rest of the day, since people usually consult their e-mails
when arriving at work. In its extreme form, a heavy workload
may induce server thrashing and service unavailability, with
underlying economical costs. For instance, the downtime cost
for companies in the Telecom and Financial companies is
estimated at up to US$ 2.0 million/hour [9], [10], [11]. A
classically used technique to prevent a server from thrashing
when the workload increases is admission control [12]. It
consists in fixing a limit for the maximum number of client
allowed to concurrently access a server – known as the
Multi-Programming Level (MPL) configuration parameter of
a server.
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Obviously, servers’ MPL configuration and control has a
direct impact on servers performance and quality-of-service
(QoS). While the MPL is usually manually configured by
human administrators in an ad-hoc way in real server sys-
tems, some algorithms for adaptive adjustment of MPL were
proposed [13]. However, they are restricted to a performance
model with a parabola shape which is not the case of
performance criteria such as client request latency and client
request rejection rate [14]. Other work aiming at applying
control theory to server systems appeared in the last decade.
A first approach applies well-known linear control theory
on servers modeled as SISO or MIMO black-boxes [15],
[16]. However, due to the deep nonlinear behavior of real
server systems, linear control theory is obviously insufficient
for these systems [17]. Other approaches are based on
nonlinear models derived from queuing theory [18], [19]
with a theoreticalproposal [17], [20], [21]. These approaches
are hardly applicable because the statistical properties of the
connections and of the server need to be known.

In this paper, a nonlinear continuous-time model based on
a fluid flow approach is proposed. To the author knowledge,
this seems to be the first available with such a range of
validity. In order to validate the model, it is validated with
a real database server system and used for control purposes.

The main scientific contributions of this paper are the
following:

• Design and implementation of a nonlinear continuous
time model of server systems in Section III,

• Design and implementation of a first nonlinear control
law for the capacity planning of server systems in
Section IV,

• Experimental validation of the proposed model and
control law in a real system consisting of the Post-
greSQL database server running the TPC-C warehouse
application [7], [22] in Section V.

II. CONTEXT AND PRELIMINARY DEFINITIONS

Server systems such as database servers and web servers
follow the client-server architecture where a client connects
to a server which provides him some online service, e.g. on-
line bookstore, e-banking, etc. Clients and servers are hosted
on different computers connected through a communication
network. Basically, a client remotely connects to the server,
sends it a request, the server processes the request and builds
a response that is returned to the client before the connection
is closed. Multiple client requests may concurrently access
the same server.
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a) Server workload: is characterized, on one hand, by
the number of client requests that try to concurrently access
a server (i.e. workload amount), and on the other hand, by
the nature of those requests (i.e. workload class), e.g. read-
only requests or read-write requests. The former is denoted
as N while the latter is denoted as C. Furthermore, server
workload may vary over time. This corresponds to different
client behaviors at different times. For instance, an e-mail
service faces a higher workload in the morning than in the
rest of the day.

b) Think time: of a client is the elapsed duration
between the reception of a reply and the sending of another
connection request. It corresponds to the time spent by a
client in reading a page and “thinking” before the next
request. The think time depends on the server workload’s
nature, and the average think time is denoted as LTT .

c) Admission control: is a classical technique to prevent
a server from thrashing when the number of concurrent client
requests grows [12]. It consists in fixing a limit for the
maximum number of client requests allowed to concurrently
access a server – the Multi-Programming Level (MPL) con-
figuration parameter of a server. Above this limit, incoming
client requests are rejected. Thus, a client request arriving
at a server either terminates successfully with a response to
the client, or is rejected because of the server’s MPL limit.
Therefore, due to the MPL limit, among the N clients that
try to concurrently access a server, only Ne clients really
access the server (Ne ≤MPL).

Servers’ MPL value has a direct impact on the perfor-
mance and quality-of-service (QoS) of servers. Here, several
performance metrics may be considered [23], among which:

d) Server throughput: is defined as the the number of
served requests per second. It is denoted as To. A high server
throughput (or throughput, for short) is a desirable behavior
which reflects the speed of the server. A high MPL usually
implies a high throughput when the server is not overloaded.

e) Client request latency: is defined as the time needed
by the server to process a request. It corresponds to the time
duration between the instant when a client request arrives
and the instant when the response is sent back. The average
client request latency is denoted as L. A low client request
latency (or latency, for short) is a desirable behavior which
reflects a reactive system. A low MPL usually implies a
low latency.

f) Client request rejection rate: is defined as the ratio
of requests rejected due to admission control compared to the
total number of requests received by a server. It is denoted
as α. A low client request rejection rate (or rejection rate, for
short) is a desirable behavior that reflects service availability.
A high MPL usually implies a low rejection rate.

g) SLA – Service Level Agreement –: is a contract
negotiated between clients and their service provider like
a server system [14]. It specifies service level objectives
(SLOs) for performance guarantied by the service, like the
maximum latency Lmax, the minimum throughput Tomin

and the maximum rejection rate αmax to be guaranteed by
the server.

III. SERVER MODEL

The choice of the control inputs, the system outputs and
the state variable outputs is crucial for the design of a
model. As the MPL is a tunable parameter of a server and
has a meaningful effect on its performance, it is natural to
take it as control input of the system. We assume that the
state of the system can be described by three variables: the
current number of concurrent requests in the server Ne, the
throughput To and the rejection rate α. The server workload
amount N can be seen as an exogenous input. Obviously,
the outputs will depend on the chosen SLOs.

A balance on Ne between t and t + dt gives:

Ne(t + dt) = Ne(t) + created connections
− closed connections

According to the assumptions, the number of connections
closed between t et dt+ t is To(t) ·dt. Let Ti be the number
of connection demands per second. Ti obviously depends on
the load, but also on the state of the server. Indeed, since
clients wait for a reply before making again a connection
demand, shorter is the latency, higher is Ti. It comes that
the number of connections created between t and t + dt is
(1− α(t)) · Ti(N, t) · dt. Finally, it follows:

Ṅe = (1− α(t)) · Ti(N, t)− To(t) (1)

The next step will consist in writing Ti as a function of
N . Ti can be considered as the ratio between the number of
clients and the average interarrival time of the requests. Since
only the accepted connections are submitted to the server’s
latency, the average interarrival time is (1− α(t)) L(t) +
LTT . Thus we get

Ti(N, t) =
N(t)

(1− α(t)) L(t) + LTT

Now we assume that:

1) The dynamics of To and α with respect to N are a
pure delay that corresponds to the average latency L.

2) The average latency L is much smaller than the dy-
namic of Ne and than the load variations.

The first assumption states that for a given load, To and
α reach their steady state values when the first request is
served. Instead of focusing on the statistical properties of
the throughput, its average is considered here. In practice, the
second assumption is natural since the average latency is very
small w.r.t. the variations induced by connection changes.
Under these assumptions, the dynamics of To and α can be
approximated by first order systems:

Ṫo(t) = − 1
L(t)

(
To(t)− T̄o

)

α̇(t) = − 1
L(t)

(α(t)− ᾱ)

where T̄o and ᾱ are the steady state values corresponding to
a constant demand of connections.
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The next step naturally consists in finding the expressions
of T̄o and ᾱ. In steady state, a balance on the served request
number No gives:

No(t + dt) = No(t) + served request during dt

Since the Ne is the current number of concurrent requests
and the average latency is L, the number of served request
during dt will be dt

L Ne. Then we get Ṅo = Ne

L , that is
T̄o = Ne

L which is an expression of Little’s law [24]. By
definition, ᾱ is equal to 1 − To

Ti
if Ne = MPL, otherwise

it is equal to zero. The problem is that the stochastic nature
of the requests arrival may provoke a rejection even if the
average Ne measured is smaller than the MPL. Thus we
choose to write ᾱ = Ne

MPL ·
(
1− To

Ti

)
. It renders that the

probability to reject a connection is higher when the average
Ne is close to the MPL. Therefore, it finally follows:

Ṫo(t) = − 1
L(t)

(
To(t)− Ne(t)

L(t)

)
(2)

α̇(t) = − 1
L(t)

(
α(t)− Ne(t)

nmax(t)
·
(

1− To(t)
Ti(t)

))
(3)
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Fig. 1. Latency as a function of Ne

The last step is to express the latency as a function of the
state and the inputs. The latency obviously depends on the
load’s nature C. Write requests are often longer to process
than read-only requests and read-only requests may be more
or less costly in cpu time. It depends also on Ne because
the requests that have to be processed at the same time
share the cpu between them. This effect is amplified by the
context switch mechanism that occurs during the processes
preemption. Seeing the difficulty in designing an accurate
knowledge model for the latency, we limit ourselves to the
design of a behavior model. One can see on Figure 1 that a
second degree polynomial in Ne is a good approximation of
the latency L. Thus:

L = a(C, t)N2
e + b(C, t)Ne + c(C, t) (4)

The parameter c is positive as it represents the zero-load
latency. a and b are also positive since they model the cost
in time of the requests.

Finally, the proposed server’s model is given by equa-
tions (1) to (4). Its validation comes in section V and the

next section is dedicated to a first admission control strategy
based on this server’s model.

IV. SERVER CONTROL

In the following, a first control law is proposed based
on the server’s model given in the previous section. The
control objective, that is the desired QoS, is here a maximum
latency Lmax to be guaranteed (cf. Section II). Besides
this maximum latency, a minimum rejection rate has to be
ensured. In that aim, a feedback control law is proposed
to automatically adjust the MPL in order to satisfy these
control objectives.

One assumes that the whole state of the system (that is
Ne, To and α), the latency L considered as the output of the
system as well as the number of connection demands per
second Ti can be measured in real time. On the contrary,
N is considered as unknown and not measurable. All these
assumptions are in accordance with the experimental context.
Fig. 2 shows the framework of the study.

Server
System

Capacity
Monitor

Planner

Clients

MPL

N

Lmax

Fig. 2. Framework of the study

A first approach could consist in solving
L(MPL, t) = Lmax. This solution implies that the
parameters a, b and c in equation 4 of the model can be
perfectly online identified, since the workload may change
over time. Therefore, an another solution avoiding this
identification of the model’s parameters was preferred. It is
obtained by a simple input-output linearization approach.
Its stability is straightforward to establish.

Let us consider that the dynamic of the load’s variations
is much smaller than the average latency. It follows:

L(Ne) = aN2
e + bNe + c

α(t) = ᾱ

To(t) = T̄o

Let us take the latency L as output. It follows that L̇ =
(2aNe + b) Ṅe. From (1) and (3) one has

L̇ = (2aNe + b)
(

1− Ne

MPL

)(
Ti − T̄o

)

Therefore, taking

MPL =
Ne

1 + γ L−Lmax

(Ti−T̄o)(2aNe+b)

will ensure that L̇ = −γ (L− Lmax) and therefore, as soon
as γ > 0, the exponential convergence of L to its maximum
Lmax corresponding to the desired QoS. Unfortunately, this
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requires the knowledge of a and b. Therefore, it seems better
to take:

MPL =
Ne

1 + γ′ L−Lmax

Ti−Ne
y

(5)

where γ′ > 0 is some tuning parameter. It follows that with
control (5), the time evolution of L is given by:

L̇ = −γ′ (2aNe + b) (L− Lmax)

and therefore again, L will exponentially converge to Lmax

since 2aNe + b > 0.

V. EVALUATION

A. Experimental Setup

The experimental setup is composed of two computers,
one for the database server and one for the clients emulator.
The server runs on a PC 3 GHz with 2GB RAM, while the
clients’ computer is a PC 2 GHz with 512MB RAM. Op-
erating system is Linux Fedora 7 for both. PostGresql-8.2.6
was taken as database server [7]. To evaluate the server’s
performance the TPC-C benchmark [22] was used, which
emulates a warehouse application using five transaction types
(with read and write requests). Both client and server are
largely used in the computer science community.

B. Model Identification and Validation

The load of a server is strongly time-varying and the
mechanisms used by the server to process the requests are
dependent on this load. A write request will need a hard drive
access, a read only request may already be in the hard drive
cache and another one may be very costly for the cpu. The
complexity of those mechanisms and the impredictability of
the load urged us to design a very general model with fewer
parameters as possible. In order to show the effectiveness of
the server’s model, an off-line identification of the parameters
is processed and then, on a different scenario, the real server
and the model are compared. It implies that:

• we are able to measure the number of clients trying to
interact with the server.

• the load’s nature will be the same for both identification
and validation experiments.

To identify the parameters a, b and c a nonlinear optimization
algorithm was used with an experimental input-output data
set. To obtain this data set, the maximum multiprogramming
level of the server was increased from 3 to 100 with a
workload of 100 clients. The cost function to minimize is
the sum of the squares of the difference between the real
latency and the estimate one. The LTT parameter is given
by the benchmark. The obtained parameters of the server
are a = 0.0015, b = 0.2210, c = 0.0554 and LTT = 12s.
Results are presented in 3(a), 3(b), 3(c) and 3(d). Figure 3(a)
shows the scenario used in open loop according to the time
in hours: the dashed line is N and the solid line is the MPL.
Figures 3(b), 3(c) and 3(d) show respectively the evolution
of Ne, To and α according to the time for the real system
(+) and for the model (solid line). The model renders well
the behavior of the real system. We can observe a trashing
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Fig. 3. Evolution of the state and the inputs in open loop for the real
system (+) and for the model (solid line).
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Fig. 4. Evolution of the state and the inputs in open loop for the real
system and for the model.

phenomenon on these figures since To is decreasing whereas
Ne is increasing. This effect could not be seen without an
overlinear term with respect to Ne in equation (4). The
floor we observe on Ne and To from the fourth hour of
the experiment shows that not all the clients have a request
in process at the same time. It is a direct impact of the think
time.

We present on figures 4(a), 4(b), 4(c) and 4(d) experi-
mental validations obtained by generating several random
numbers of clients and random maximum MPLs. Figure 4(a)
shows the scenario used in open loop according to the time
in hours: the dashed line is N and the solid line is the
MPL. This scenario is more dynamic than the previous one
since sudden changes of the MPL appear. Figures 4(b), 4(c)
and 4(d) respectively show the evolution of the MPL, the
throughput and the rejection rate according to the time for
the real system (+) and for the model (solid line). The model
well describes the behavior of the system. The maximum
prediction errors between the model and the real system is
21% for Ne 13% for To and 28% for the rejection rate.
These errors can be explained by the growth of the database
provided by the benchmark during an experiment. Indeed the
database is 10 % bigger at the end of the experiment than
at the beginning. Thus there are more and more hard drive
requests, that slows down the system. Even if only one type
of requests is used, the system is practically always evolving,
and an online identification of the parameters is absolutely
necessary to be able to render accurately the system behavior.

C. Control Evaluation

The main difficulty in implementing a controller for server
capacity planner in a real system lies in the fact that the
default MPL of the server is not dynamically tunable. For
our experiments, we followed a proxy-based approach which
uses a connection pool in front of the server to control the
number of authorized connections in that pool. The number
of authorized connections is updated every 6 minutes by the
control input calculated with the online measurements. The
maximum latency Lmax was set to 8 seconds. The results
presented in this section show the efficiency of the controllers
designed in section IV. We see on Figure 5(a) the exogenous
inputs of the system. The number of clients N was fixed to
100. The workload class 1 is made of read-write requests
and the class 2 of read-only requests. Figure 5(c) shows the
latency according to the time. We see that it converges to 8
seconds, and that the rising time to 90% is approximatively
half an hour. Fig 5(b) shows the MPL calculated with (5).

VI. CONCLUSION AND PERSPECTIVES

It clearly appears that server systems need a dynamical
tuning to avoid trashing and to ensure service level ob-
jectives. A general continuous time model of a server was
presented here. It is able to render both dynamical and static
behavior of a real one. Even if the model’s parameters have
to be updated online to get an accurate approximation of
the server’s behavior, we proposed a simple control law
that allows to respect service level objectives that do not
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Fig. 5. Evolution of the latency (dashed line) and the inputs for Lmax = 8s
(solid line).

rely on this parameters. The example presented in section V
only considers a latency constraint but one can imagine that
several QoS constraints could be considered. For instance the
rejection rate is an important QoS factor, because it is useless
to ensure a small latency if nobody can connect to the server.
In a future work, we will consider optimizing the MPL of
a server so that several QoS constraints can be respected.
Moreover, the application of server control on more complex
systems distributed Internet services as in [25], [26] will be
studied.
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