
PPiicckklliinngg tthhrreeaaddss ssttaattee iinn tthhee JJaavvaa ssyysstteemm

Sara Bouchenak

Third European Research Seminar on Advances in Distributed Systems
(ERSADS'99), Madeira Island - Portugal. April 23rd-28th 1999

2

Pickling threads state in the Java system
S. Bouchenak

SIRAC Project (IMAG-INRIA)
INRIA, 655 av. de l’Europe, 38330 Montbonnot Saint-Martin, France

Internet: Sahra.Bouchenak-Khelladi@inria.fr

Abstract
Java provides a serialization mechanism which

allows the capture and restoration of objects’ state
and therefore the migration of objects between
machines. It also allows classes to be dynamically
loaded and therefore to be moved between nodes.

However, Java does not provide a mechanism
for capturing and restoring a thread state. The stack
of a Java thread is not accessible. Such a
mechanism would allow a thread to be
checkpointed or migrated between different nodes.

In this paper, we report on our experience which
consisted in extending the Java virtual machine in
order to allow the capture and restoration of a
thread state. We describe the principles of the
implementation of this extension and provide
preliminary results of its evaluation.

1 Introduction
One of the most important aspects of Java,

regarding distribution, is mobility. Java provides a
serialization mechanism which allows objects state
to be captured in one JVM (Java Virtual Machine)
and restored in any other JVM. Java also provides a
dynamic class loading facility, allowing code to be
dynamically moved between nodes. All these
features led to the development of mobile agent
systems, whose main advantage is to provide agent
migration between machines.

However, one mechanism is missing. Java does
not provide any facility for accessing the state of a
thread (essentially its stack). If one wants to capture
the state of an application, Java only grants access
to the application’s objects and classes, the stack of
the thread remaining inaccessible. This explains
why most of current mobile agent systems only
implement weak migration: the state of an agent
does not include the state of its thread, and on
arrival on a node, the agent always restarts from the

beginning.

Such a capture/restoration mechanism has many
applications, the main application being naturally
thread migration between machines. Thread
migration can be used to balance the load between
nodes [Nichols87], to reduce network traffic by
moving clients closer to the accessed servers
[Douglis92] or to implement mobile agents
[Chess95]. This mechanism also allows threads to
be made persistent in order to implement a
checkpointing service [Osman97].

In this paper, we report on our experience which
consisted in extending the JVM with a service for
thread state capture/restoration. This service allows
a thread state to be captured and later to be restored
as the initial state of a new thread. We evaluated
this prototype using different applications,
including a mobile agent platform and a
checkpointing mechanism.

The rest of the paper is structured as follows.
Section 2 presents the overall design choices.
Section 3 describes the implementation principles.
We present preliminary performance results in
section 4 and we conclude the paper in section 5.

2 Overall design choices
In this section, we present our motivation for

implementing this mechanism within the JVM
(compared to other approaches) and describe the
Java thread state structure.

2.1 Motivations and related work

There are mainly three ways to address the
problem of capturing/restoring the state of Java
threads.

In the first approach, which we call explicit
management, the programmer has to explicitly
manage backups in his programs. Managing a
backup consists in storing in a safe memory area the

3

data on the stack which will be lost when the
application state is captured. In Java, this memory
area is a Java object. When the application state is
restored, this backup object is explicitly used by the
application code in order to restart the application at
the point it was interrupted. For instance, in
applications using mobile agents platforms which
implement weak migration (e.g. Aglets [IBM96] or
Odyssey [GenMagic98]), the programmer usually
has to manage his own program counter; the first
statement of the program is a “switch” which
branches to the point where the program must
continue.

In the two other approaches, which we call
implicit, a generic mechanism is provided. The
mechanism is independent from the application
code and is able to capture the application state,
including its thread state. These two other
approaches differ by their implementations.

The first consists in pre-processing the source
code of the application in order to insert statements
which back up the thread state (essentially local
variables) in a backup object. The main motivation
of this approach is not to modify the JVM. When an
application requires a snapshot of the thread state, it
just has to use the backup object produced by the
code inserted by the pre-processor in the application
code. In order to restore the thread state, data stored
in the backup object are used to re-initialize the
thread in the same state as at snapshot time. This
restoration operation updates variables on the stack
according to the thread state in the back up object.
The drawback of this solution is two-fold: it induces
a significant overhead on application performance
(due to inserted code) and thread state restoration
requires a partial re-execution of the application.
This solution has been implemented in the Wasp
project [Fünfrocken98].

Another approach consists in extending the JVM
in order to make threads’ state accessible from Java
programs. This extension must provide a facility for
extracting the thread state and storing it in a Java
object (which can be later stored in a file or sent to
another machine). This extension must also provide
a facility for building a new thread initialized with a
previously captured state. This solution has been
used in the implementation of the Sumatra mobile
agent platform [Ranganathan97]. This is the
approach we followed for two reasons:

§ It reduces the overhead on applications
performance and reduces also the cost of the
mechanism.

§ Since this mechanism has many applications,
we believe that it is a basic functionality which
must be integrated within the JVM.

Unlike the Sumatra mobile agent platform
which supplies a mobility mechanism, our
implementation provides a generic service intended
for other uses than mobility like checkpointing.

2.2 The Java thread state

The JVM can support the concurrent execution
of several threads [Lindholm96]. The context (or
state) of a Java thread is composed of the three
following data structures: the Java stack associated
to the thread, the heap and the method area
respectively consisting of the objects and the classes
used by the thread.

A new frame (method block) is pushed on the
Java stack each time a method is invoked and
popped from the stack each time a method returns.
A method frame notably includes the method local
variables and registers such as the top of the stack
or the program counter.

3 Implementation principles of
our mechanism

This section describes the implementation
principles of our thread state capture/ restoration
mechanism. This mechanism was integrated into the
Java virtual machine by extending the JDK 1.1.3
[Sun].

3.1 Principles of our capture/restoration
mechanism

The capture/restoration mechanism is designed
to interrupt a thread during its execution and
extract its current state and to integrate the
previously extracted state into the context of a new
thread; the execution of this thread is resumed at the
point it was interrupted.

The extraction operation amounts to build a data
structure containing the current state of the thread.
This data structure must contain all information
necessary to restore a thread state (its Java stack,
heap and method area). To build such data
structure, the Java stack associated with the thread

4

must be captured and scanned to identify the Java
objects references and the Java classes references.
These references are used to capture the heap and
the method area associated with the thread.

The second service provided by our mechanism
is the integration operation. This operation aims at
creating a new thread which is initialized with the
thread state previously saved in a data structure.
The new thread is initialized with a Java stack, a
heap and a method area identical to those associated
with the thread whose state was captured.

3.2 Implementation design

Our extension provides a Java class called
MobileThread [Bouchenak98], integrated into the
java.lang. package. This class is a sub-class of the
Thread class; it characterizes Java threads whose
state can be captured and restored. In addition, we
provide the ExecutionEnvironment class, added to
the java.lang. package. This class defines the data
structure which hosts a threads state.

The MobileThread class provides an instance
variable called ExecEnv and three methods
respectively called extractExecEnv,
transferExecEnv and integrateExecEnv.

The ExecEnv variable is an
ExecutionEnvironment object which is initialized
when the state of the associated thread is captured.

The extractExecEnv method allows the capture
of the current state of a MobileThread thread.
Firstly, the thread execution is interrupted and the
current thread state is captured and stored in the
ExecEnv variable of the thread. Then, the thread
execution can be either resumed or definitively
stopped. Finally, the transferExecEnv method is
called (this is an upcall as explained below).

The transferExecEnv method describes how and
where an extracted thread state is transferred. This
method is abstract (its interface is defined but not its
implementation) because its implementation
depends on applications needs. If an application
uses our mechanism for thread migration, the
transferExecEnv method has to send the extracted
thread state to a remote node. If the application uses
our mechanism to build persistent threads, the
transferExecEnv method has to store the extracted
thread state in a non volatile storage. Therefore, the
transferExecEnv method must be implemented by
the application programmer.

The integrateExecEnv method restores a thread
state by creating a new thread and initializing its
context with an ExecutionEnvironment object.
Finally, the execution of this newly created thread is
resumed: it restarts at the point where it was
interrupted.

4 Experimentation and
evaluation

Some preliminary experiments were performed
with our extended Java virtual machine. These
experiments use our thread state capture/restoration
mechanism to implement thread migration which
can be used for load balancing and remote thread
cloning, thread checkpointing which can be used for
fault tolerance [Kim97]. The source code of these
experiments can be found in [Bouchenak98].

Some measurements were done to evaluate our
thread state capture/restoration mechanism and
compare it to the mechanism implemented by the
Wasp project [Fünfrocken98]. These measurements
aimed at evaluating the capture/restoration cost and
the overhead of this mechanism on applications
performances.

The cost of a capture/restoration mechanism
highly depends on the Java stack size of the thread.
Thus, we measured the variation of this cost
according to the stack size (by varying the number
of frames on the stack). A comparison between our
mechanism and the Wasp’s one shows that Wasp’s
mechanism is much more sensitive to the size of the
captured stack. The difference between the
performances of the two mechanisms is due to the
fact that our mechanism was integrated into the
Java virtual machine (a native implementation)
while the Wasp’s mechanism was implemented on
top of the virtual machine.

Our extension of the Java virtual machine does
not involve any overhead on applications that do
not use the capture/restoration mechanism. But
using this mechanism induces performance
overhead on application execution for both
implementations (the Wasp’s and the ours). Our
overhead is significant but still much less than the
one induced by the Wasp’s mechanism because this
last mechanism injects Java code in the application
code while our mechanism was implemented by
extending the Java interpreter for mobile threads
(this implementation was principally native).

5

5 Conclusion
Our implementation aimed at adding to the JVM

a mechanism that allows thread state capture and
restoration. We have extended the Java virtual
machine in order to make threads state accessible
by Java programs; this approach provides a generic
mechanism intended for other uses than mobility
and allows a more efficient implementation.

We evaluated the functionality of our prototype
by using it to experiment thread migration and
thread persistency. On the other hand, the
preliminary measurements show that the costs of
our mechanism are reasonable compared to those of
its pair (the Wasp’s mechanism).

At the present time, this work is going on.
Complementary measurements are in progress in
order to compare our mechanism with other
implementations and to experiment this mechanism
with “real” applications.

Bibliography

 [Bouchenak98] S.Bouchenak-Khelladi.
Mécanismes pour la Migration de Processus –
Extension de la Machine Virtuelle Java. Rapport
de Magistère d’Informatique, Université Joseph
Fourier, Grenoble, France, 1998.
URL:http:// sirac.inrialpes.fr/~bouchena

 [Chess95] D. Chess, C. Harrison et A.
Kershenbaum. Mobile Agents: Are They a Good
Idea ?. IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, New York,
march 1995.
URL:http://www.cs.dartmouth.edu/?agent/paper
s/chapter.ps.Z.

[Douglis92] F. Douglis et B. Marsh. The
Workstation as a Waystation : Integrating
Mobility into Computing Environments. The 3rd

Workshop on Workstation Operating System
(IEEE), april 1992.

[Fünfrocken98] S. Fünfrocken. Transparent
Migration of Java-based Mobile Agents
(Capturing and Reestablishing the State of Java
Programs) . Proceedings of Second International
Workshop Mobile Agents 98 (MA’98),
Stuttgart, Allemagne, september 1998.

[GenMagic98] General Magic. Odyssey Web
Site. URL : http://www.genmagic.com/agents/

[IBM96] IBM Tokyo Research Labs.
Aglets Workbench : Programming Mobile
Agents in Java. 1996.
URL : http://www.trl.ibm.co.jp/aglets

[Kim97] J. Kim, H. Lee et S. Lee.
Replicated Process Allocation for Load
Distributed in Fault-Tolerant Multicomputers.
IEEE Transactions on Computers, pages 499-
505, april 1997.

[Lindholm96] T. Lindholm et F. Yellin. Java
Virtual Machine Specification. Addison Wesley,
1996.

[Nichols87] D.A. Nichols. Using Idle
Workstations in a Shared Computing
Environment. Proceedings of the 11th ACM
Symposium on Operating Systems Principles,
pages 5-12, ACM 8-11, november 1987.

[Osman97] T. Osman et A. Bargiela. Process
Checkpointing in an Open Distributed
Environment. Proceeding of European
Simulation Multiconference, ESM’97, June
1997.

[Ranganathan97] M. Ranganathan, A. Acharya, S.
D. Sharma et J. Saltz. Network-aware Mobile
Programs. Proceedings of the USENIX Annual
Technical Conference, Anaheim, California,
1997.
URL :http://www.javasoft.com/products/jdk/1.1/
docs/

[Sun] Sun Microsystems. JDK 1.1
Documentation , Sun Microsystems.
URL : http://java.sun.com/products

