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Abstract: In the Java world, a standardised interface exists for  
Message-Oriented Middleware (MOM): Java Messaging Service or JMS.  
Like other middleware, some JMS implementations use clustering techniques 
to provide some level of performance and fault tolerance. In this paper, we 
analyse the efficiency of various clustering policies in a real-life cluster and  
the key parameters impacting the performances of MOMs. We show that the 
resource efficiency of the clustering methods can be very poor due to local 
instabilities and/or global load variations. To solve these issues, we describe  
the rules that control these parameters for optimal performances and propose  
a solution based on autonomic computing to (1) dynamically adapt the load 
distribution among the servers (load-balancing aspect) and (2) dynamically 
adapt the replication level (provisioning aspect). We present an evaluation  
that shows the impact of these rules on the performances and behaviour of the 
dynamic provisioning of replicated queues. 
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1 Introduction 

Message-Oriented Middleware (MOM) is a well-recognised technology that enables 
loosely coupled software interactions. MOM-based applications cooperate using 
asynchronous and reliable communications. Messages are the only way for software  
to synchronise and exchange data. These communication properties are supported by 
message queues, which are staging areas containing messages that have been sent and  
are waiting to be read. 

With the emergence of the internet, MOMs are used intensively in the context  
of server-side applications. It is well known that internet applications have to deal  
with unpredictable loads. This leverages the interest of highly scalable and highly 
available MOMs. 

This work illustrates the key parameters that influence the performances of a message 
queue and describes a solution to increase these performance autonomously while 
minimising the amount of required resources. We show that a classic queue clustering 
and load balancing strategy can provide a linear speedup. However, this strategy is 
sometimes rather inefficient and may waste precious resources. The impact of clustering 
is strongly influenced by the allocation of client connections to message queues. 

Our solution to tackle this problem is based on a novel replication strategy for 
message queues controlled by a specific load balancing mechanism and combined with a 
dynamic resource management system. On the one hand, our load balancing mechanism 
improves the distribution of client connections in the message queues according to  
the state of each replicated queue (thus, avoiding a lazy or an overloaded queue).  
On the other hand, the resource manager dynamically adjusts the number of machines 
and queues based on the current system load. Furthermore, a typical management policy 
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deploys a fixed number of queues on a fixed set of machines. This solution may waste 
resources if the number of queues is overestimated compared to the system load, but may 
also lead to performance problems if underestimated. The unpredictable shape of internet 
load underlines the need for the dynamic and autonomic adjustments of queue replicas. 

This paper targets the improvement of a load-balancing mechanism for replicated 
queues, as well as the dynamic provisioning of these queues. The benefit is an increase of 
message queue performances while using the minimal set of required resources. To fulfil 
these goals, we provide an autonomic system that fairly routes client connections among 
the queues and dynamically creates or destroys queues to face the load variation. 

This paper is organised as follows: Sections 2 presents the notion of a replicated 
queue. Sections 3 and 4 present a model and analyse different cases that may occur with 
single queues and with replicated queues. Sections 5 and 6 present the control rules and 
control loop. Section 7 shows a performance evaluation. Finally, Section 8 presents the 
related work and Section 9 draws our conclusion and outlines future work. 

2 Replicated queues 

A replicated queue is made of a set of identical queues that know each other. When a 
queue inside a replicated queue is overloaded, the queue is authorised to distribute some 
messages it cannot process to the other queues in the cluster. In the same vein, if a queue 
becomes empty and lazy, it is authorised to request messages from the other queues. 
Thus, all queues in a replicated queue may equilibrate the level of pending messages  
with each other, depending on the respective number of client requests. To summarise,  
a replicated queue ensures that no queue is underloaded while some of the others are 
overloaded and tend to equilibrate the number of pending messages waiting in the 
replicated queue. 

Figure 1 illustrates a replicated queue that is composed of two queues. A producer 
sends a large amount of messages through its local queue (q0). A consumer also connects 
to the queue (q0), but only consumes a small amount of messages. The queue (q0) 
becomes quickly overloaded and pushes messages to another queue in the cluster (q1). 
This latter queue is actually used by a light message consumer which requests messages 
that queue (q1) could indeed not provide by itself. Thus, the consumer on (q1) can then 
retrieve messages at a good rate, while the messages on (q0) are consumed much faster. 

Figure 1 A replicated queue 
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3 Performances of single queues and replicated queues 

We illustrate in this section the behaviour and performances of single queues and 
replicated queues. We show the impact of client connections on the performances. 

3.1 Single queue 

Ni message producers and Mi message consumers are connected to a single queue Qi. 
Messages are injected in the queue at rate pi and retrieved at rate ci. The number of 
pending messages to be consumed in the queue is described by the queue length li ≥ 0, 
which is characterised by: 

∆li = pi – ci. 

A well-balanced rate between the producers and consumers is required for the stability  
of the queue. A queue is stable if the queue length li remains constant. Thus, ∆li = 0  
when the producers and consumers are balanced and work with similar throughputs.  
A queue Qi can also be unstable. It is said to be flooded if the rate of message production 
is higher than the rate of message consumption. If ∆li > 0, then the queue length li 
increases and the queue eventually saturates. Thus, the message production rate of the 
producers will be reduced. However, if ∆li < 0, then the queue is unstable and is said to 
be draining. The message consumption rate is higher than the message production rate. 
This means that the queue length li is heading to 0. In this case, the message consumers’ 
throughputs fall and the consumers may have to wait for messages to consume.  
The message production and consumption throughput are related to the number of 
message producers and consumers. Thus, the ratio between the number of message 
producers and the number of message consumers is a key parameter that heavily 
influences the performances of a single queue. 

Figure 2 A single queue Qi 

 

3.2 Replicated queue 

The aim of a replicated queue is to maximise its throughput while maintaining its 
stability. Replicated queues always try to empty flooded queues and fill draining queues. 
A replicated queue Qc is then composed of a set of single queues Qi(i ∈ [1..k]) used to 
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balance the requests induced by the message producers and message consumers. All the 
queues in a replicated queue run on different servers, work together and can exchange 
messages as a way to share their load. We consider the realistic assumption where MOMs 
do not allow the modification of a client’s connection to a particular single queue in the 
replicated queue once it has been set. Thus, the control logic can only choose the best 
queue for a client when the connection is opened. 

Nc message producers and Mc message consumers have a connection to the replicated 
queue Qc. Each queue Qi is responsible for serving a part of message producers (Ni) and a 
part of message consumers (Mi): 

.c i i

c i i

N N
M M

= ∑⎧
⎨ = ∑⎩

 

We suppose that xi and yi are the fraction of the message producers and consumers that 
are connected to the queue Qi. Then, the distribution of the client’s connections between 
the queues Qi are characterised by: 

1
, .1

i i c i i

i ii i c

N x N x
yM y M

= ⋅ ∑ =⎧ ⎧
⎨ ⎨ ∑ == ⋅⎩ ⎩

 

Three indicators are useful for sensing the health of a replicated queue Qc. These 
indicators are an aggregation of single-queue indicators: (1) pc is the global message 
production level, (2) cc is the global message consumption level and (3) lc is the virtual 
replicated queue length that aggregates the length of all the single queues composing the 
replicated queue Qc: 

, .c i i
c i c c

c i ii

p p
l l p c c c

= ∑⎧= = − ⎨ = ∑⎩
∑  

If ∆lc = 0, then the replicated queue Qc is globally stable while we may observe local 
instabilities if one of its queues is draining or flooded. The length of a replicated queue 
rises and the replicated queue is saturated by messages if ∆lc > 0. On the other hand, the 
message consumers wait if the replicated queue is empty. This case occurs if ∆lc < 0, 
which means that the length of the replicated queue is decreasing. We see that the 
behaviour of a replicated queue follows the same laws as single queues. 

In the following, we detail some interesting performance behaviours based on the 
assumption that the replicated queue Qc is globally stable. We make the assumptions that: 

• all the machines are identical in terms of processing power 

• the message production rate is the same for all the producers and the message 
consumption rate is the same for all the consumers 

• all messages have similar characteristics (size, etc.). 

The first case is an example of optimal client distribution which occurs for a queue Qc 
when clients are fairly distributed among the k queues Qi. In this context, we have: 
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Under these assumptions, the replicated queue behaviour shows a quasi-linear speedup. 
This is the best performance scenario that we can expect. The reason is that there  
are no internal queue-to-queue message exchanges because the replicated queue is  
well-balanced (there is no unstable queue inside the replicated queue). 

Another scenario consists of the worst client distribution. This is the case if a single 
queue has all its connections related to the message producers or message consumers.  
In Figure 3, this worst case implies that the queue Q1 is requested for all message  
production, whereas Q2 is only requested by consumers. The produced messages must  
be transmitted by Q1 to Q2 that, in turn, delivers messages to the message consumers. 
This worst case scenario is characterised as follows: 

211 2

1 2 1 2

01 0
, , , .0 1 0

c

c

NN Nx x
y y M M M

=== = ⎧⎧⎧ ⎧
⎨ ⎨ ⎨ ⎨= = = =⎩ ⎩ ⎩ ⎩

 

Figure 3 A clustered queue Qc 

 

The third scenario is related to local instabilities. This case can be observed when some 
queues Qi of Qc are unbalanced. For instance, a local instability can be observed in the 
scenario depicted in Figure 3, where Qc is composed of two standard queues Q1 and Q2. 
Let us suppose we have the following connection repartition which implies that Q1  
is flooded and enqueues messages, while Q2 is draining and has its consumer clients 
waiting. Despite the local instability, Qc enforces its global stability by transferring some 
messages internally from Q1 to Q2: 
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In general, this case occurs when the ratio between the number of producers and the 
number of consumers connected to a single queue Qi is not balanced: 

.i ix y≠  

The last scenario occurs if the repartition of connections is non-uniform. For instance, in 
Figure 3, this occurs if more clients are connected to Q1 than to Q2. 

Assuming that queue Q1 serves two-thirds of the load while queue Q2 serves  
one-third, Q1 may be overloaded while Q2 is idle. The load is unfairly balanced within the 
queues, whereas the replicated queue is globally and locally stable. This scenario induces 
reduced performances: 

1 2

1 2

2 3 1 3
, .2 3 1 3

x x
y y

= =⎧ ⎧
⎨ ⎨= =⎩ ⎩

 

Notice that these scenarios may all happen since the number of clients connected to the 
system evolves in an uncontrolled manner. For instance, the queue can be flooded for a 
period; we then assume that it will get inverted and drain afterwards, thus providing 
global stability over time. 

4 Replicated queue management 

In this section, we provide some details about replicated queue management. Dynamic 
provisioning depends on the load of the replicated queue. The ratio between its current 
number of clients and its capacity represents the load of a single queue (Li). The capacity 
Ci of a single queue Qi is represented by the optimal number of clients connected to the 
queue (i.e., the number of clients that maximises the queue performances): 

,i i
i

i

N M
L

C

+
=  

where:  

Li < 1 : queue Qi is not loaded enough, resources are being wasted and the queue 
may accept additional connections to reach an optimal throughput 

Li > 1 : queue Qi saturates, the queue is crippled by a heavy load and the message 
throughput is non-optimal and eventually leads to thrashing 

Li = 1 : queue Qi is fairly loaded and delivers its optimal message throughput. 

Queue replication management is derived by the queue parameters that were presented 
previously. The behaviour of a replicated queue Qc is dictated by its aggregated capacity 
Cc and its global load Lc. The load of a replicated queue follows the same law as  
single queues. However, the aggregated capacity Cc = 1

k
i iC=∑ of a replicated queue can  

be managed by controlling the number k of the single queues that compose a  
replicated queue: 
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where: 

If Lc < 1 = the replicated queue is lazy: each single queue inside the cluster will 
be underloaded if the client’s connection distribution is optimal. In 
the case of a non-optimal connection distribution, despite the 
replicated queue being lazy in a whole, a single queue may be 
heavily loaded. Some single queues may be garbaged from the 
replicated queue if the load is below a given threshold. 

When Lc > 1 = the replicated queue is overloaded: a number of single queues in the 
replicated queue are overloaded, even if the allocation of a client’s 
connection corresponds to a fair sharing profile. In this case, one or 
more single queues will be added in the replicated queue. 

5 A self-optimising replicated queue 

In this section, we present the design of an autonomic ability which targets the 
optimisation of a replicated queue. The optimisation takes place in two steps: (1) the 
optimal load-balancing of a replicated queue and (2) the dynamic provisioning of queues 
in a replicated queue. 

The first part allows the overall improvement of the replicated queue performance, 
while the second part optimises the queue resource usage inside the replicated queue. 
Thus, the idea is then to create an autonomic system that: 

• fairly distribute a client’s connections to the pool of server hosts in the  
replicated queue 

• dynamically adds and removes queues in a replicated queue, depending on the load; 
that would allow us to use the adequate number of queues at any time. 

The implementation of these optimisations relies on the model of replicated queue 
performance, which has been presented in the previous sections. 

5.1 Control rules 

The global clients’ distribution D of the replicated queue Qc is captured by the fractions 
of the message producers xi and consumers yi. The optimal clients’ distribution Dopt is 
realised when all queues are stable (∀i xi = yi) and the load is fairly balanced over all 
queues (∀i, j xi = xj, yi = yj). This implies that the optimal distribution is reached when  
xi = yi =1/k: 

1 1 1 1
, .

1 1
opt

k k

x y k k
D D

x y k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

Local instabilities are characterised by a mismatch between the fraction of the message 
producers xi and consumers yi on a standard queue. The purpose of this rule is the 
stability of all standard queues to minimise internal queue-to-queue message transfers: 
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(R1) xi > yi : Qi is flooding with more message production than consumption and 
should then seek more consumers and/or fewer producers. 

(R2) xi < yi : Qi is draining with more message consumption than production and 
should then seek more producers and/or fewer consumers. 

Load balancing rules control the load applied to a single standard queue. The goal is then 
to enforce a fair load balancing over all queues: 

(R3) Li > 1 : Qi is overloaded and should avoid accepting new clients, as it may 
degrade its performance. 

(R4) Li < 1 : Qi is underloaded and should request more clients to optimise  
resource usage. 

Global provisioning rules control the load applied to the whole replicated queue.  
These rules target the optimal size of the replicated queue, while the load applied to the 
system evolves: 

(R5) Lc > 1 : the queue cluster is overloaded and requires an increased capacity to 
handle all its clients in an optimal way. 

(R6) Lc < 1 : the queue cluster is underloaded and could accept a decrease in capacity. 

5.2 Algorithm 

This section presents an algorithm for the self-optimisation of replicated queues. As a 
first step, we do not allow the modification of the underlying middleware. This constraint 
restricts the control mechanisms that we can use to implement autonomic behaviour. 

5.2.1 System events and controls 

Without modification, the underlying Java Messaging Service (JMS) middleware does 
not provide facilities such as session migration that would allow us to migrate clients 
from one queue to another. However, replicated queues allow the control of the queue 
that will handle a new message producer (respectively consumer). This control translated 
in model terms means that some xi (respectively yi) will be increased and we have the 
choice for i. 

On the contrary, a message producer (respectively consumer) that leaves the system 
induces an unavoidable and uncontrolled decrease in some xi (respectively yi). 

Thus, a replicated queue generates four types of events that we can use to control and 
optimise the system: 

1 join(Producer)  

2 leave(Producer, Qi)  

3 join(Consumer) 

4 leave(Consumer, Qi). 
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We implement algorithms controlling the distribution of clients and the provisioning of 
the replicated queue as handlers to these events. The handlers implementing the control 
rules are depicted in Algorithms 1 and 2. 

Algorithm 1 Client joining algorithm 

on join(ClientType ∈ {Producer, Consumer}, Qc)  

if (Lc ≥ 1) and not Islnhibited() then 

  // The replicated queue is overloaded 

  // An additional queue is required 

  Qk + 1 ← NewQueue() 

  AddQueue(Qc, Qk + 1) 

  // Inhibits provisioning to allow stabilisation 

  StartInhibition(InhibitionDelay) 

end if 

Qi = ElectQueue(Qc, ClientType) 

return CreateSession(ClientType, Qi) 

Algorithm 2 Client leaving algorithm 

on leave(ClientType ∈ {Producer, Consumer}, Qi ∈ Qc)  

if (IsMarked(Qi, “to be removed”) and IsEmpty(Qi) then 

  RemoveQueue(Qc, Qi) 

  DestroyQueue(Qi) 

  // Inhibits provisioning to allow stabilisation 

  StartInhibition(InhibitionDelay) 

end if  

if (Lc < 1) and not Islnhibited() then 

  Qi = ElectRemovableQueue(Qc) 

  if Qi ≠ null then 

    Mark(Qi, “to be removed”) 

  end if 

end if 

The ElectQueue(ClientType) function chooses the queue that is farthest from the  
targeted client distribution. Thus the elected queue Qi provides the best step towards  
the optimal configuration. When considering a new client that is a message producer 
(respectively consumer), the gap is evaluated with 1/k – xi (respectively with 1/k – yi). 
Thus, Qi satisfies: 

min (when ClientType Producer)
min (when ClientType Consumer).

i j j

i j j

x x
y y

= =⎧
⎨ = =⎩
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The ElectRemovableQueue(Qc) chooses one queue that can be removed from the queue 
cluster. A queue cannot be removed on demand since it may still have clients connected 
to it: a queue can only be removed when its last client decides to leave. Thus, the removal 
of a queue Qi will need two steps: (1) Qi is marked ‘to be removed’ and no more clients 
will be addressed to it and (2) when Qi’s last client leaves, Qi can then be removed from 
the cluster. Moreover, even if Qc is underloaded, queue Qi should not be removed if its 
removal lets Qc be overloaded. Thus, the condition to allow Qi’s removal is: 

Ci ≤ Cc – (Nc + Mc). 

In fact, we complement the replicated queue load Lc defined in the replicated  
queue model with online load estimations based on the consumption of system  
resources to reflect the replicated queue load more accurately. Thus, as provisioning 
operations induce local measurement instabilities, we introduce an inhibition delay  
with Startlnhibition(Delay), which forbids new provisioning operations in order to allow 
the system to stabilise. Once the inhibition delay expires, provisioning operations are 
allowed again. 

The following section gives the implementation details about these algorithms. 

6 Implementation details 

6.1 Technical context 

We choose JMS as technical background for our work. It provides an Application 
Programming Interface (API) used to manipulate the following artefacts: 

• ConnectionFactory – an object that a client1 looks up for connection factory in a 
naming service2 and uses to create a connection to the JMS provider. Depending on 
the type of message, the users will use either a queue connection factory or topic 
connection factory (point-to-point or publish subscribe mechanism). 

• Connection – once a connection factory is obtained, a connection to a JMS provider 
can be created. A connection represents a communication link between the 
application and messaging server. 

• Destination – an object that encapsulates the identity of a message destination, which 
is where messages are delivered and consumed. It is either a queue or a topic. 

• MessageConsumer – an object created by a session. It receives messages sent to a 
destination. The consumer can receive messages synchronously (blocking) or 
asynchronously (nonblocking) for both queue and topic-type messaging. 

• MessageProducer – an object created by a session that sends messages to a 
destination. The user can create a sender to a specific destination or a generic sender 
that specifies the destination at the time the message is sent. 

• Message – an object that is sent between the consumers and producers. JMS 
specifies five types of messages (text message, map message, bytes message, stream 
message and object message). 
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• Session – represents a single-threaded context for sending and receiving messages.  
A session is single-threaded so that messages are serialised, meaning that messages 
are received one by one in the order sent. 

For our experiments, we choose Java Open Reliable Asynchronous Messaging (JORAM). 
It is an open source software released under the LGPL license which incorporates a 100% 
pure Java implementation of JMS. JORAM adds interesting extra features to the JMS 
API, such as the replicated queue mechanisms. 

6.2 Anatomy of self-optimisable replicated queues 

Engineering an autonomic system requires implementing one or more control loops  
that regulate the managed system. Control loops are based on an analysis/decision logic 
to trigger a system’s reconfiguration together with a model of the system. This logic 
relies on two connections to the managed system: sensors to watch the state of the system 
and actuators to reconfigure it. In our context, the sensors are used to know the current 
number of message producers and consumers in each queue and detect the global load of 
a replicated queue (i.e., if the queue is overloaded or underloaded). The system’s model is 
used to know where the servers are deployed, where the queues are deployed and what 
their configurations are. The analysis/decision logic is responsible for routing new client 
connections to the most appropriate queues leading to the optimal client distribution  
and dynamically provision a queue in the system, if necessary. The actuators are used to 
allocate/deallocate servers and create or destroy queues in servers. 

6.3 The self-management logic 

As a first step, we consider that clients create only one session by connection.3  
We have extended the ConnectionFactory to provide a Clustered Connection Factory 
(CCF). This CCF will control the client’s connection to the best queue replicate, 
depending on the load of the system. It will also regulate the dynamic provisioning of the 
queues in the system. 

6.3.1 Cluster connection factory 

The CCF is registered in the Java Naming and Directory Interface (JNDI) instead of a 
regular connection factory. This allows the regulation of the connection of producers  
and consumers among servers. The CCF logic is then run when a client requests or 
releases a connection: 

• createConnection(...) – to create the connection with the best server, it requests a 
‘ResourcesManager’, which elects a server according to the current state of the 
system (the servers and the load of each queue in terms of the producers and 
consumers) and actually provisions the system with the server, if necessary.  
This method takes the type of the client as a parameter (Producer or Consumer). 

• closeConnection(...) – closes the connection to the server and notifies the 
ResourceManager so it may size down the replicated queue, if necessary. 



   

 

   

   
 

   

   

 

   

    Improving the performances of JMS-based applications 93    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

6.3.2 ResourceManager 

The Resource/ReplicationManager maintains the system’s model (i.e., the number of 
servers currently used, the number of clients connected to each server, their type).  
This model is updated each time a client (producer or consumer) opens or closes a 
connection from the CCF and when the system is reconfigured. When a connection is 
requested, the ResourceManager elects a server and takes into account the capacities in 
terms of the clients and the current load of the replicated queue. If the replicated queue  
is overloaded, the Resource/ReplicationManager uses the procedures NewQueue() and 
AddQueue() to launch a JORAM server on a free host and create a queue linked to the 
replicated queue on that server. Of course, the cluster manager will update its internal 
image of the global system according to this. 

7 Evaluation 

A series of experiments was run to assess the performance of JORAM. Rather than 
finding an absolute maximum, these experiments were aimed at finding the relevant 
factors impacting the performance of JORAM queues. The focus was on assessing the 
usefulness of using queue clusters instead of single queues. 

7.1 Environment  

The experiments presented below were run on a cluster of Mac Mini computers with the 
following specifications: 

• Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM DDR2  
(667 MHz frontal bus) 

• Java J2SDK1.4.2_13, JORAM4.3.21 

• Ethernet Gigabit network. 

In each experiment, the measurements were taken with Java Management Extensions 
(JMX) probes located on a computer outside the cluster. Each JORAM queue ran a  
JMX server which was accessed by one of the JMX probes. The monitored attributes  
on the queue were NbMsgsDeliverSinceCreation, which is the number of messages read  
by the consumers on the queue since its creation and MessageCounter, which is the 
number of messages presently waiting in the queue. The JMX probes read these attributes 
every second. 

In the following experiments, each JORAM queue was located on a distinct node. 
The queues were running in a persistent configuration. The producers and consumers 
were transactional with a commit between each message. The Java Virtual Machine 
hosting each queue was able to use 1536 Mb of memory. The Garbage Collector was 
disabled to prevent random hits on performance. The size of the JMS messages used was 
1 Kb. The network was not considered to be a meaningful factor in these experiments. 

To obtain meaningful results, each experiment was run three times. The charts  
were constructed using the average of the three tests. The average throughput was  
calculated excluding the first 5 and last 5 s as a way to account only for the stable part of 
the process. 
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7.2 The number of waiting messages factor  

This experiment aims to show the impact of the number of messages waiting in the queue 
on the performance. In a first step, the producers write 1500 messages in a single queue, 
while in a second step, the consumers read these messages from the queue until it is 
empty. Figure 4 shows this experiment. We observe that the number of messages waiting 
in the queue has a strong direct impact on the performance: the message processing rate 
of the queue decreases as the queue length grows. 

Figure 4 The impact of the waiting messages on the performance (see online version for colours) 

 

Moreover, we observe that the performance of the queue is noticeably higher for  
message production than for message consumption. Indeed, the next experiments figure 
out the optimal ratio between the message producers and message consumers to assign  
to a single queue in order to ensure its stability. In these experiments, a single message 
producer injects 15 000 messages into the queue and one or more message consumers 
read the messages. Figure 5 presents the results when the queue is assigned a single 
message producer and a single message consumer. In this configuration, the queue is 
strongly unstable with about two times more message production than consumption.  
This leads to a growing queue length, hence, reduced performance. Figure 6 presents the 
results when the queue is loaded with one message producer and two message consumers. 
In this scenario, the queue is stable with equivalent message production and consumption 
rates. The queue length remains low and, thus, the performance are stable. An experiment 
with one message producer and three message consumers shows a very similar queue 
behaviour. From these experiments, we deduce that the optimal clients ratio is one 
message producer for two message consumers. 
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Figure 5 The behaviour of a single queue with one message producer and one message consumer 
(see online version for colours) 

 

Figure 6 The behaviour of a single queue with one message producer and two message 
consumers (see online version for colours) 
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7.3 Single queue limit  

In order to assess the interest of having a cluster queue instead of a single queue,  
we need to measure the highest throughput that a single queue can reach with the 
previously described parameters. We made multiple measurements with a varying 
number of producers and consumers accessing a single queue. As explained before,  
for a given number of producers, the ratio to obtain the best throughput was always  
one producer for two consumers. These measurements are summed up in Figure 7.  
These results account for the strong interest in dynamic provisioning and optimisation of 
the load-balancing of clustered queues in order to always provide the best clustered queue 
size and client distribution for best performance. 

Figure 7 Capacity of a standard single queue (see online version for colours) 

 

7.4 Load-balancing optimisation 

The following presents an evaluation of the queue cluster load-balancing optimisation 
that fairly distributes client connections among the queues. For this evaluation,  
we expose a queue cluster composed of two queues to four message producers and eight 
message consumers. A single message producer emits 10 000 messages, while a message 
consumer reads 5000 messages. This configuration ensures that the queue cluster is 
stable. Figure 8 presents the results of this experiment when the queue cluster is driven 
with the standard JORAM load-balancing strategy, while Figure 9 presents these results 
when the cluster is driven by our optimised load balancer. When using the original  
load-balancing strategy, we observe a noticeable instability with a higher message 
production rate compared to the message consumption rate (see Figure 8). This behaviour 
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is the consequence of a bad distribution of the clients over the internal queues of the 
cluster, which generates local instabilities that are hardly compensated by the internal 
queue-to-queue message exchange mechanism. This directly threatens the queue cluster 
performance, which is then suboptimal with less than 0.3 messages/ms. In comparison, 
when using our dynamic load-balancing optimisation, the queue cluster presents a very 
stable and balanced behaviour. Indeed, the message production rate and message 
consumption rate both reach 0.35 messages/ms. 

Figure 8 The standard JORAM queue cluster load-balancing strategy (see online version  
for colours) 

 

Figure 9 Optimised queue cluster load-balancing (see online version for colours) 
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7.5 Dynamic provisioning 

We now consider the evaluation of the dynamic provisioning algorithm, which 
dynamically adapts the number of queues inside a queue cluster depending on the  
load. The workload applied to the queue cluster consists of five message producers and  
ten message consumers. As in the previous experiment, a message producer generates  
10 000 messages, while a message consumer gets 5000 messages. To generate an 
increasing workload, the clients are created gradually, one at a time, and new client 
creations are separated with a delay of 10 s. The queue cluster is kept stable by creating 
clients to respect a ratio of two message consumers for one message producer. The queue 
cluster initially contains one single standard queue. Figure 10 shows the behaviour of the 
queue cluster under a static provisioning policy, while Figure 11 presents its behaviour 
under dynamic provisioning. When statically provisioning, the queue cluster contains  
one single queue during the entire experimentation, no matter how many clients are 
connected to it. The queue cluster stabilises quickly after the second step at around 50 s, 
with message production and consumption rates of about 1.9 messages/ms until the end 
of the experiment. When the queue cluster is dynamically provisioned, the queue cluster 
behaves as in the previous experiment, as long as the capacity of the single queue is 
sufficient in absorbing the workload. Then, at around 120 s, as the workload exceeds the 
capacity of a single queue, the cluster is provisioned with a second queue, to which new 
clients are directed. As expected, the performance of the queue cluster doubles, jumping 
from 1.9 messages/ms to 3.7 messages/ms. 

Figure 10 The static provisioning of a clustered queue (see online version for colours) 
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Figure 11 The dynamically provisioned clustered queue (see online version for colours) 

 

7.6 Conclusion for the measurements 

These measurements show some interesting points. In a single queue, the critical factor 
impacting the performance is the number of messages waiting in the queue. Increasing 
the number of producers and consumers on a single queue leads to an increase in 
performance which is not linear. Furthermore, a ceiling throughput is reached when the 
number of clients corresponds to the capacity of the queue. 

In a cluster queue, the balance of the cluster and the stability of the internal queues 
are extremely important. Even a slight instability between the queues strongly decreases 
the overall throughput. The instability seems to lead to an increase in the number of 
messages waiting in the queues. In contrast with a single queue, adding queues in a stable 
and well-balanced cluster leads to a linear increase in performance. 

8 Related work 

The related work for this paper comes from the context of resources management for 
internet services. Past work on the resource management of internet services falls into 
different categories. 

A first category that has focused on studying the resource management of internet 
services has considered the management of a dynamically extensible set of resources, 
where the infrastructure can dynamically grow or shrink (Appleby et al., 2001; Norris  
et al., 2004; Soundararajan and Amza, 2005; Soundararajan et al., 2006; Urgaonkar and 
Shenoy, 2004; 2005). 
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Oceano provides an adaptive hosting environment with a dynamic partitioning of the 
resources among the running applications (Appleby et al., 2001). This dynamism allows 
the system to react to load peaks by increasing the partition size of the concerned 
application and shifting unused resources from underloaded applications to the others. 
The main issue in this work seems to be the node allocation delay. That explains why the 
platform assumes that some application parts cannot be dynamically (and are, thus, 
statically) allocated and configured (e.g., the database tier). OnCall is similar to Oceano, 
but it specifically targets the fast handling of load spikes thanks to an approach based on 
virtual machines which can be promptly activated when required (Norris et al., 2004).  
In case of load spikes, extra nodes are allocated to applications willing to pay more, 
based on a free market of nodes. Contrary to Oceano, this project does not assume any 
statically allocated resources and looks more generic with respect to the managed 
applications, though this aspect has not been demonstrated. 

In Soundararajan and Amza (2005) and Soundararajan et al. (2006), the authors 
proposed a self-optimised dynamic provisioning algorithm that specifically targets a 
cluster of databases. Regarding load spikes, the system always provisions a set of unused 
nodes with database instances kept within a given range of freshness with respect to  
the active database instances. This contributes to the improvement of the latency of 
provisioning operations. Furthermore, oscillations are explicitly prevented as a result of 
an allocation mechanism of database replica which takes replicas allocation latency  
into account. 

Cataclysm is a hosting platform for internet services which features dynamic 
provisioning through a dynamic partitioning of nodes between the running applications 
and an adaptive size-based admission control mechanism which takes advantage of a 
request classifier to optimally degrade the service quality in case of overloads  
(Urgaonkar and Shenoy, 2004; 2005). The provisioning algorithm is based on a basic 
model of clustered network services. Cataclysm has been specially designed to absorb 
extreme overloads: the size-based admission controller prevents the system from 
thrashing as a result of accepting too many requests, additionally taking advantage  
of a request classifier to maximise the revenue during overloads, while the dynamic 
provisioning algorithm adds extra resources in case of overloads. The provisioning 
algorithm relies on a coarse-grained modelling of simple internet services. The strength 
of Cataclysm is the cooperation of admission control and dynamic provisioning as 
components of an integrated resource management system. It assumes simple internet 
services structures where the database back-end is statically provisioned. 

Besides the abovementioned heuristics-based approaches, another category of  
work on the resource management of internet services has studied mathematical 
characterisation and analytical modelling of the systems (Urgaonkar et al., 2005; 2007; 
Chandra et al., 2003; Zhang et al., 2007; Stewart and Shen, 2005). 

For instance, in Urgaonkar et al. (2007; 2005), the authors proposed a model for 
multitier internet applications. This model captures the structure and behaviour of internet 
applications built as cooperative entities (i.e., entities in series) thanks to a network of 
queues. Transitions between the queues standing for two connected tiers are probabilistic. 
Indeed, this allows the model to capture request processing paths (including caching 
mechanisms) through appropriate values for these transition probabilities. Replication 
and load balancing, concurrency limits and requests classification and differentiation are  
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taken into account as enhancements over the baseline model. The effectiveness of the 
model in achieving accurate capacity planning is demonstrated in a dynamic provisioning 
scenario in which the parameters of the model are determined by mean-value analysis. 

Finally, another category of work (Henjes et al., 2006; Menth and Henjes, 2006; 
Chen and Greenfield, 2004) studied JMS performances. Regarding JMS performance, 
Henjes et al. (2006) provided an analysis of the throughput performance of JMS  
using Websphere-MQ. Menth and Henjes (2006) analysed a specific performance 
problem: the message waiting time for the Fiorano-MQ Server. Chen and Greenfield 
(2004) described a QoS evaluation of JMS and examined the impact of JMS attributes  
on performance. 

9 Conclusion and future work 

Providing a scalable and efficient MOM is an important topic for today’s computing 
environments. This paper analysed the performance of a MOM and proposed a  
self-optimisation algorithm to improve the efficiency of the MOM infrastructure. 

This optimisation takes place in two parts: (1) the optimisation of the clustered queue 
load-balancing and (2) the dynamic provisioning of a queue in the clustered queue.  
The first part allows the overall improvement of the clustered queue performance, while 
the second part optimises the resource usage inside the clustered queue. 

We described (1) the key parameters impacting the performance of MOM and  
(2) the rules that control these parameters for optimal performances. This paper also 
presented an evaluation that shows the impact of these parameters on the performances 
and behaviour of a dynamically provisioned clustered queue. 

Currently, the control loop has a very basic actuator to drive a client connection to a 
specific queue. The advantage of this actuator is its simplicity. However, the control 
loops cannot reconfigure the client connection during a session. Part of our future work  
is about providing a more powerful actuator. This actuator will provide the control loop 
with the ability to migrate a client connection when necessary. This will require a 
mechanism to move the session data to another queue. 
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Notes 

1 A producer or a consumer. 

2 JNDI. 

3 We assimilate the creation of sessions and the creation of connections. 


