

 Int. J. Autonomic Computing, Vol. 1, No. 1, 2009 81

 Copyright © 2009 Inderscience Enterprises Ltd.

Improving the performances of JMS-based
applications

Christophe Taton* and Nöel De Palma
Institut National Polytechnique de Grenoble
Grenoble, France
E-mail: christophe.taton@inrialpes.fr
E-mail: noel.depalma@inrialpes.fr
*Corresponding author

Sara Bouchenak
Université Grenoble I
Grenoble, France
E-mail: sara.bouchenak@inrialpes.fr

Daniel Hagimont
Institut National Polytechnique de Toulouse
Toulouse, France
E-mail: Daniel.Hagimont@enseeiht.fr

Abstract: In the Java world, a standardised interface exists for
Message-Oriented Middleware (MOM): Java Messaging Service or JMS.
Like other middleware, some JMS implementations use clustering techniques
to provide some level of performance and fault tolerance. In this paper, we
analyse the efficiency of various clustering policies in a real-life cluster and
the key parameters impacting the performances of MOMs. We show that the
resource efficiency of the clustering methods can be very poor due to local
instabilities and/or global load variations. To solve these issues, we describe
the rules that control these parameters for optimal performances and propose
a solution based on autonomic computing to (1) dynamically adapt the load
distribution among the servers (load-balancing aspect) and (2) dynamically
adapt the replication level (provisioning aspect). We present an evaluation
that shows the impact of these rules on the performances and behaviour of the
dynamic provisioning of replicated queues.

Keywords: message-oriented middleware; MOM; Java messaging service;
JMS; autonomic management; self-optimisation; performance optimisation.

Reference to this paper should be made as follows: Taton, C.,
De Palma, N., Bouchenak, S. and Hagimont, D. (2009) ‘Improving the
performances of JMS-based applications’, Int. J. Autonomic Computing,
Vol. 1, No. 1, pp.81–102.

Biographical notes: Christophe Taton has been a PhD student at the
Sardes Project, INRIA, France since 2005. His research topic mainly focuses
on self-optimising techniques for autonomic systems, and more precisely on
dynamic provisioning as one self-optimising technique to address performance
and energy issues.

 82 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

Noël De Palma obtained his PhD in 2001 in the area of component deployment
and reconfiguration. He has been an Associate Professor since 2002 at the
INPG University in Grenoble, France, where he teaches distributed systems.
He is also a permanent member of the Sardes Project (INRIA Rhône-Alpes).
He has worked on autonomic computing since 2003 and he is an architect of
the Jade autonomic system.

Sara Bouchenak is an Associate Professor of Computer Science at the
University of Grenoble I, France, which she joined in 2004. She conducts
research on distributed systems as a member of the Sardes research group
at INRIA. She received a Master’s of Science in Computer Science from
the University of Grenoble I in 1998, and a PhD in Computer Science from
the Institut National Polytechnique de Grenoble, France, in 2001. She was a
postdoctoral researcher at EPFL, Switzerland, in 2003. She is a member of
EuroSys, the European Chapter of ACM-SIGOPS.

Daniel Hagimont is a Professor at Polytechnic National Institute of Toulouse,
France and a member of the IRIT laboratory, where he leads a group working
on operating systems, distributed systems and middleware. He received a
PhD from Polytechnic National Institute of Grenoble, France in 1993. After a
postdoctorate at the University of British Columbia, Vancouver, Canada in
1994, he joined INRIA Grenoble in 1995. He took his position of Professor in
Toulouse in 2005.

1 Introduction

Message-Oriented Middleware (MOM) is a well-recognised technology that enables
loosely coupled software interactions. MOM-based applications cooperate using
asynchronous and reliable communications. Messages are the only way for software
to synchronise and exchange data. These communication properties are supported by
message queues, which are staging areas containing messages that have been sent and
are waiting to be read.

With the emergence of the internet, MOMs are used intensively in the context
of server-side applications. It is well known that internet applications have to deal
with unpredictable loads. This leverages the interest of highly scalable and highly
available MOMs.

This work illustrates the key parameters that influence the performances of a message
queue and describes a solution to increase these performance autonomously while
minimising the amount of required resources. We show that a classic queue clustering
and load balancing strategy can provide a linear speedup. However, this strategy is
sometimes rather inefficient and may waste precious resources. The impact of clustering
is strongly influenced by the allocation of client connections to message queues.

Our solution to tackle this problem is based on a novel replication strategy for
message queues controlled by a specific load balancing mechanism and combined with a
dynamic resource management system. On the one hand, our load balancing mechanism
improves the distribution of client connections in the message queues according to
the state of each replicated queue (thus, avoiding a lazy or an overloaded queue).
On the other hand, the resource manager dynamically adjusts the number of machines
and queues based on the current system load. Furthermore, a typical management policy

 Improving the performances of JMS-based applications 83

deploys a fixed number of queues on a fixed set of machines. This solution may waste
resources if the number of queues is overestimated compared to the system load, but may
also lead to performance problems if underestimated. The unpredictable shape of internet
load underlines the need for the dynamic and autonomic adjustments of queue replicas.

This paper targets the improvement of a load-balancing mechanism for replicated
queues, as well as the dynamic provisioning of these queues. The benefit is an increase of
message queue performances while using the minimal set of required resources. To fulfil
these goals, we provide an autonomic system that fairly routes client connections among
the queues and dynamically creates or destroys queues to face the load variation.

This paper is organised as follows: Sections 2 presents the notion of a replicated
queue. Sections 3 and 4 present a model and analyse different cases that may occur with
single queues and with replicated queues. Sections 5 and 6 present the control rules and
control loop. Section 7 shows a performance evaluation. Finally, Section 8 presents the
related work and Section 9 draws our conclusion and outlines future work.

2 Replicated queues

A replicated queue is made of a set of identical queues that know each other. When a
queue inside a replicated queue is overloaded, the queue is authorised to distribute some
messages it cannot process to the other queues in the cluster. In the same vein, if a queue
becomes empty and lazy, it is authorised to request messages from the other queues.
Thus, all queues in a replicated queue may equilibrate the level of pending messages
with each other, depending on the respective number of client requests. To summarise,
a replicated queue ensures that no queue is underloaded while some of the others are
overloaded and tend to equilibrate the number of pending messages waiting in the
replicated queue.

Figure 1 illustrates a replicated queue that is composed of two queues. A producer
sends a large amount of messages through its local queue (q0). A consumer also connects
to the queue (q0), but only consumes a small amount of messages. The queue (q0)
becomes quickly overloaded and pushes messages to another queue in the cluster (q1).
This latter queue is actually used by a light message consumer which requests messages
that queue (q1) could indeed not provide by itself. Thus, the consumer on (q1) can then
retrieve messages at a good rate, while the messages on (q0) are consumed much faster.

Figure 1 A replicated queue

 84 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

3 Performances of single queues and replicated queues

We illustrate in this section the behaviour and performances of single queues and
replicated queues. We show the impact of client connections on the performances.

3.1 Single queue

Ni message producers and Mi message consumers are connected to a single queue Qi.
Messages are injected in the queue at rate pi and retrieved at rate ci. The number of
pending messages to be consumed in the queue is described by the queue length li ≥ 0,
which is characterised by:

∆li = pi – ci.

A well-balanced rate between the producers and consumers is required for the stability
of the queue. A queue is stable if the queue length li remains constant. Thus, ∆li = 0
when the producers and consumers are balanced and work with similar throughputs.
A queue Qi can also be unstable. It is said to be flooded if the rate of message production
is higher than the rate of message consumption. If ∆li > 0, then the queue length li
increases and the queue eventually saturates. Thus, the message production rate of the
producers will be reduced. However, if ∆li < 0, then the queue is unstable and is said to
be draining. The message consumption rate is higher than the message production rate.
This means that the queue length li is heading to 0. In this case, the message consumers’
throughputs fall and the consumers may have to wait for messages to consume.
The message production and consumption throughput are related to the number of
message producers and consumers. Thus, the ratio between the number of message
producers and the number of message consumers is a key parameter that heavily
influences the performances of a single queue.

Figure 2 A single queue Qi

3.2 Replicated queue

The aim of a replicated queue is to maximise its throughput while maintaining its
stability. Replicated queues always try to empty flooded queues and fill draining queues.
A replicated queue Qc is then composed of a set of single queues Qi(i ∈ [1..k]) used to

 Improving the performances of JMS-based applications 85

balance the requests induced by the message producers and message consumers. All the
queues in a replicated queue run on different servers, work together and can exchange
messages as a way to share their load. We consider the realistic assumption where MOMs
do not allow the modification of a client’s connection to a particular single queue in the
replicated queue once it has been set. Thus, the control logic can only choose the best
queue for a client when the connection is opened.

Nc message producers and Mc message consumers have a connection to the replicated
queue Qc. Each queue Qi is responsible for serving a part of message producers (Ni) and a
part of message consumers (Mi):

.c i i

c i i

N N
M M

= ∑⎧
⎨ = ∑⎩

We suppose that xi and yi are the fraction of the message producers and consumers that
are connected to the queue Qi. Then, the distribution of the client’s connections between
the queues Qi are characterised by:

1
, .1

i i c i i

i ii i c

N x N x
yM y M

= ⋅ ∑ =⎧ ⎧
⎨ ⎨ ∑ == ⋅⎩ ⎩

Three indicators are useful for sensing the health of a replicated queue Qc. These
indicators are an aggregation of single-queue indicators: (1) pc is the global message
production level, (2) cc is the global message consumption level and (3) lc is the virtual
replicated queue length that aggregates the length of all the single queues composing the
replicated queue Qc:

, .c i i
c i c c

c i ii

p p
l l p c c c

= ∑⎧= = − ⎨ = ∑⎩
∑

If ∆lc = 0, then the replicated queue Qc is globally stable while we may observe local
instabilities if one of its queues is draining or flooded. The length of a replicated queue
rises and the replicated queue is saturated by messages if ∆lc > 0. On the other hand, the
message consumers wait if the replicated queue is empty. This case occurs if ∆lc < 0,
which means that the length of the replicated queue is decreasing. We see that the
behaviour of a replicated queue follows the same laws as single queues.

In the following, we detail some interesting performance behaviours based on the
assumption that the replicated queue Qc is globally stable. We make the assumptions that:

• all the machines are identical in terms of processing power

• the message production rate is the same for all the producers and the message
consumption rate is the same for all the consumers

• all messages have similar characteristics (size, etc.).

The first case is an example of optimal client distribution which occurs for a queue Qc
when clients are fairly distributed among the k queues Qi. In this context, we have:

1
, .1

c

c

N
i i k

M
i i k

x k N
y k M

= ⎧⎧ =
⎨ ⎨= =⎩ ⎩

 86 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

Under these assumptions, the replicated queue behaviour shows a quasi-linear speedup.
This is the best performance scenario that we can expect. The reason is that there
are no internal queue-to-queue message exchanges because the replicated queue is
well-balanced (there is no unstable queue inside the replicated queue).

Another scenario consists of the worst client distribution. This is the case if a single
queue has all its connections related to the message producers or message consumers.
In Figure 3, this worst case implies that the queue Q1 is requested for all message
production, whereas Q2 is only requested by consumers. The produced messages must
be transmitted by Q1 to Q2 that, in turn, delivers messages to the message consumers.
This worst case scenario is characterised as follows:

211 2

1 2 1 2

01 0
, , , .0 1 0

c

c

NN Nx x
y y M M M

=== = ⎧⎧⎧ ⎧
⎨ ⎨ ⎨ ⎨= = = =⎩ ⎩ ⎩ ⎩

Figure 3 A clustered queue Qc

The third scenario is related to local instabilities. This case can be observed when some
queues Qi of Qc are unbalanced. For instance, a local instability can be observed in the
scenario depicted in Figure 3, where Qc is composed of two standard queues Q1 and Q2.
Let us suppose we have the following connection repartition which implies that Q1
is flooded and enqueues messages, while Q2 is draining and has its consumer clients
waiting. Despite the local instability, Qc enforces its global stability by transferring some
messages internally from Q1 to Q2:

1 2

1 2

2 3 1 3
, .1 3 2 3

x x
y y

= =⎧ ⎧
⎨ ⎨= =⎩ ⎩

 Improving the performances of JMS-based applications 87

In general, this case occurs when the ratio between the number of producers and the
number of consumers connected to a single queue Qi is not balanced:

.i ix y≠

The last scenario occurs if the repartition of connections is non-uniform. For instance, in
Figure 3, this occurs if more clients are connected to Q1 than to Q2.

Assuming that queue Q1 serves two-thirds of the load while queue Q2 serves
one-third, Q1 may be overloaded while Q2 is idle. The load is unfairly balanced within the
queues, whereas the replicated queue is globally and locally stable. This scenario induces
reduced performances:

1 2

1 2

2 3 1 3
, .2 3 1 3

x x
y y

= =⎧ ⎧
⎨ ⎨= =⎩ ⎩

Notice that these scenarios may all happen since the number of clients connected to the
system evolves in an uncontrolled manner. For instance, the queue can be flooded for a
period; we then assume that it will get inverted and drain afterwards, thus providing
global stability over time.

4 Replicated queue management

In this section, we provide some details about replicated queue management. Dynamic
provisioning depends on the load of the replicated queue. The ratio between its current
number of clients and its capacity represents the load of a single queue (Li). The capacity
Ci of a single queue Qi is represented by the optimal number of clients connected to the
queue (i.e., the number of clients that maximises the queue performances):

,i i
i

i

N M
L

C

+
=

where:

Li < 1 : queue Qi is not loaded enough, resources are being wasted and the queue
may accept additional connections to reach an optimal throughput

Li > 1 : queue Qi saturates, the queue is crippled by a heavy load and the message
throughput is non-optimal and eventually leads to thrashing

Li = 1 : queue Qi is fairly loaded and delivers its optimal message throughput.

Queue replication management is derived by the queue parameters that were presented
previously. The behaviour of a replicated queue Qc is dictated by its aggregated capacity
Cc and its global load Lc. The load of a replicated queue follows the same law as
single queues. However, the aggregated capacity Cc = 1

k
i iC=∑ of a replicated queue can

be managed by controlling the number k of the single queues that compose a
replicated queue:

, ,c c i i i
c i c

i c i i

N M L C
C C L

C C

+ ∑ ⋅
= = =

∑∑

 88 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

where:

If Lc < 1 = the replicated queue is lazy: each single queue inside the cluster will
be underloaded if the client’s connection distribution is optimal. In
the case of a non-optimal connection distribution, despite the
replicated queue being lazy in a whole, a single queue may be
heavily loaded. Some single queues may be garbaged from the
replicated queue if the load is below a given threshold.

When Lc > 1 = the replicated queue is overloaded: a number of single queues in the
replicated queue are overloaded, even if the allocation of a client’s
connection corresponds to a fair sharing profile. In this case, one or
more single queues will be added in the replicated queue.

5 A self-optimising replicated queue

In this section, we present the design of an autonomic ability which targets the
optimisation of a replicated queue. The optimisation takes place in two steps: (1) the
optimal load-balancing of a replicated queue and (2) the dynamic provisioning of queues
in a replicated queue.

The first part allows the overall improvement of the replicated queue performance,
while the second part optimises the queue resource usage inside the replicated queue.
Thus, the idea is then to create an autonomic system that:

• fairly distribute a client’s connections to the pool of server hosts in the
replicated queue

• dynamically adds and removes queues in a replicated queue, depending on the load;
that would allow us to use the adequate number of queues at any time.

The implementation of these optimisations relies on the model of replicated queue
performance, which has been presented in the previous sections.

5.1 Control rules

The global clients’ distribution D of the replicated queue Qc is captured by the fractions
of the message producers xi and consumers yi. The optimal clients’ distribution Dopt is
realised when all queues are stable (∀i xi = yi) and the load is fairly balanced over all
queues (∀i, j xi = xj, yi = yj). This implies that the optimal distribution is reached when
xi = yi =1/k:

1 1 1 1
, .

1 1
opt

k k

x y k k
D D

x y k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

Local instabilities are characterised by a mismatch between the fraction of the message
producers xi and consumers yi on a standard queue. The purpose of this rule is the
stability of all standard queues to minimise internal queue-to-queue message transfers:

 Improving the performances of JMS-based applications 89

(R1) xi > yi : Qi is flooding with more message production than consumption and
should then seek more consumers and/or fewer producers.

(R2) xi < yi : Qi is draining with more message consumption than production and
should then seek more producers and/or fewer consumers.

Load balancing rules control the load applied to a single standard queue. The goal is then
to enforce a fair load balancing over all queues:

(R3) Li > 1 : Qi is overloaded and should avoid accepting new clients, as it may
degrade its performance.

(R4) Li < 1 : Qi is underloaded and should request more clients to optimise
resource usage.

Global provisioning rules control the load applied to the whole replicated queue.
These rules target the optimal size of the replicated queue, while the load applied to the
system evolves:

(R5) Lc > 1 : the queue cluster is overloaded and requires an increased capacity to
handle all its clients in an optimal way.

(R6) Lc < 1 : the queue cluster is underloaded and could accept a decrease in capacity.

5.2 Algorithm

This section presents an algorithm for the self-optimisation of replicated queues. As a
first step, we do not allow the modification of the underlying middleware. This constraint
restricts the control mechanisms that we can use to implement autonomic behaviour.

5.2.1 System events and controls

Without modification, the underlying Java Messaging Service (JMS) middleware does
not provide facilities such as session migration that would allow us to migrate clients
from one queue to another. However, replicated queues allow the control of the queue
that will handle a new message producer (respectively consumer). This control translated
in model terms means that some xi (respectively yi) will be increased and we have the
choice for i.

On the contrary, a message producer (respectively consumer) that leaves the system
induces an unavoidable and uncontrolled decrease in some xi (respectively yi).

Thus, a replicated queue generates four types of events that we can use to control and
optimise the system:

1 join(Producer)

2 leave(Producer, Qi)

3 join(Consumer)

4 leave(Consumer, Qi).

 90 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

We implement algorithms controlling the distribution of clients and the provisioning of
the replicated queue as handlers to these events. The handlers implementing the control
rules are depicted in Algorithms 1 and 2.

Algorithm 1 Client joining algorithm

on join(ClientType ∈ {Producer, Consumer}, Qc)

if (Lc ≥ 1) and not Islnhibited() then

 // The replicated queue is overloaded

 // An additional queue is required

 Qk + 1 ← NewQueue()

 AddQueue(Qc, Qk + 1)

 // Inhibits provisioning to allow stabilisation

 StartInhibition(InhibitionDelay)

end if

Qi = ElectQueue(Qc, ClientType)

return CreateSession(ClientType, Qi)

Algorithm 2 Client leaving algorithm

on leave(ClientType ∈ {Producer, Consumer}, Qi ∈ Qc)

if (IsMarked(Qi, “to be removed”) and IsEmpty(Qi) then

 RemoveQueue(Qc, Qi)

 DestroyQueue(Qi)

 // Inhibits provisioning to allow stabilisation

 StartInhibition(InhibitionDelay)

end if

if (Lc < 1) and not Islnhibited() then

 Qi = ElectRemovableQueue(Qc)

 if Qi ≠ null then

 Mark(Qi, “to be removed”)

 end if

end if

The ElectQueue(ClientType) function chooses the queue that is farthest from the
targeted client distribution. Thus the elected queue Qi provides the best step towards
the optimal configuration. When considering a new client that is a message producer
(respectively consumer), the gap is evaluated with 1/k – xi (respectively with 1/k – yi).
Thus, Qi satisfies:

min (when ClientType Producer)
min (when ClientType Consumer).

i j j

i j j

x x
y y

= =⎧
⎨ = =⎩

 Improving the performances of JMS-based applications 91

The ElectRemovableQueue(Qc) chooses one queue that can be removed from the queue
cluster. A queue cannot be removed on demand since it may still have clients connected
to it: a queue can only be removed when its last client decides to leave. Thus, the removal
of a queue Qi will need two steps: (1) Qi is marked ‘to be removed’ and no more clients
will be addressed to it and (2) when Qi’s last client leaves, Qi can then be removed from
the cluster. Moreover, even if Qc is underloaded, queue Qi should not be removed if its
removal lets Qc be overloaded. Thus, the condition to allow Qi’s removal is:

Ci ≤ Cc – (Nc + Mc).

In fact, we complement the replicated queue load Lc defined in the replicated
queue model with online load estimations based on the consumption of system
resources to reflect the replicated queue load more accurately. Thus, as provisioning
operations induce local measurement instabilities, we introduce an inhibition delay
with Startlnhibition(Delay), which forbids new provisioning operations in order to allow
the system to stabilise. Once the inhibition delay expires, provisioning operations are
allowed again.

The following section gives the implementation details about these algorithms.

6 Implementation details

6.1 Technical context

We choose JMS as technical background for our work. It provides an Application
Programming Interface (API) used to manipulate the following artefacts:

• ConnectionFactory – an object that a client1 looks up for connection factory in a
naming service2 and uses to create a connection to the JMS provider. Depending on
the type of message, the users will use either a queue connection factory or topic
connection factory (point-to-point or publish subscribe mechanism).

• Connection – once a connection factory is obtained, a connection to a JMS provider
can be created. A connection represents a communication link between the
application and messaging server.

• Destination – an object that encapsulates the identity of a message destination, which
is where messages are delivered and consumed. It is either a queue or a topic.

• MessageConsumer – an object created by a session. It receives messages sent to a
destination. The consumer can receive messages synchronously (blocking) or
asynchronously (nonblocking) for both queue and topic-type messaging.

• MessageProducer – an object created by a session that sends messages to a
destination. The user can create a sender to a specific destination or a generic sender
that specifies the destination at the time the message is sent.

• Message – an object that is sent between the consumers and producers. JMS
specifies five types of messages (text message, map message, bytes message, stream
message and object message).

 92 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

• Session – represents a single-threaded context for sending and receiving messages.
A session is single-threaded so that messages are serialised, meaning that messages
are received one by one in the order sent.

For our experiments, we choose Java Open Reliable Asynchronous Messaging (JORAM).
It is an open source software released under the LGPL license which incorporates a 100%
pure Java implementation of JMS. JORAM adds interesting extra features to the JMS
API, such as the replicated queue mechanisms.

6.2 Anatomy of self-optimisable replicated queues

Engineering an autonomic system requires implementing one or more control loops
that regulate the managed system. Control loops are based on an analysis/decision logic
to trigger a system’s reconfiguration together with a model of the system. This logic
relies on two connections to the managed system: sensors to watch the state of the system
and actuators to reconfigure it. In our context, the sensors are used to know the current
number of message producers and consumers in each queue and detect the global load of
a replicated queue (i.e., if the queue is overloaded or underloaded). The system’s model is
used to know where the servers are deployed, where the queues are deployed and what
their configurations are. The analysis/decision logic is responsible for routing new client
connections to the most appropriate queues leading to the optimal client distribution
and dynamically provision a queue in the system, if necessary. The actuators are used to
allocate/deallocate servers and create or destroy queues in servers.

6.3 The self-management logic

As a first step, we consider that clients create only one session by connection.3
We have extended the ConnectionFactory to provide a Clustered Connection Factory
(CCF). This CCF will control the client’s connection to the best queue replicate,
depending on the load of the system. It will also regulate the dynamic provisioning of the
queues in the system.

6.3.1 Cluster connection factory

The CCF is registered in the Java Naming and Directory Interface (JNDI) instead of a
regular connection factory. This allows the regulation of the connection of producers
and consumers among servers. The CCF logic is then run when a client requests or
releases a connection:

• createConnection(...) – to create the connection with the best server, it requests a
‘ResourcesManager’, which elects a server according to the current state of the
system (the servers and the load of each queue in terms of the producers and
consumers) and actually provisions the system with the server, if necessary.
This method takes the type of the client as a parameter (Producer or Consumer).

• closeConnection(...) – closes the connection to the server and notifies the
ResourceManager so it may size down the replicated queue, if necessary.

 Improving the performances of JMS-based applications 93

6.3.2 ResourceManager

The Resource/ReplicationManager maintains the system’s model (i.e., the number of
servers currently used, the number of clients connected to each server, their type).
This model is updated each time a client (producer or consumer) opens or closes a
connection from the CCF and when the system is reconfigured. When a connection is
requested, the ResourceManager elects a server and takes into account the capacities in
terms of the clients and the current load of the replicated queue. If the replicated queue
is overloaded, the Resource/ReplicationManager uses the procedures NewQueue() and
AddQueue() to launch a JORAM server on a free host and create a queue linked to the
replicated queue on that server. Of course, the cluster manager will update its internal
image of the global system according to this.

7 Evaluation

A series of experiments was run to assess the performance of JORAM. Rather than
finding an absolute maximum, these experiments were aimed at finding the relevant
factors impacting the performance of JORAM queues. The focus was on assessing the
usefulness of using queue clusters instead of single queues.

7.1 Environment

The experiments presented below were run on a cluster of Mac Mini computers with the
following specifications:

• Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM DDR2
(667 MHz frontal bus)

• Java J2SDK1.4.2_13, JORAM4.3.21

• Ethernet Gigabit network.

In each experiment, the measurements were taken with Java Management Extensions
(JMX) probes located on a computer outside the cluster. Each JORAM queue ran a
JMX server which was accessed by one of the JMX probes. The monitored attributes
on the queue were NbMsgsDeliverSinceCreation, which is the number of messages read
by the consumers on the queue since its creation and MessageCounter, which is the
number of messages presently waiting in the queue. The JMX probes read these attributes
every second.

In the following experiments, each JORAM queue was located on a distinct node.
The queues were running in a persistent configuration. The producers and consumers
were transactional with a commit between each message. The Java Virtual Machine
hosting each queue was able to use 1536 Mb of memory. The Garbage Collector was
disabled to prevent random hits on performance. The size of the JMS messages used was
1 Kb. The network was not considered to be a meaningful factor in these experiments.

To obtain meaningful results, each experiment was run three times. The charts
were constructed using the average of the three tests. The average throughput was
calculated excluding the first 5 and last 5 s as a way to account only for the stable part of
the process.

 94 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

7.2 The number of waiting messages factor

This experiment aims to show the impact of the number of messages waiting in the queue
on the performance. In a first step, the producers write 1500 messages in a single queue,
while in a second step, the consumers read these messages from the queue until it is
empty. Figure 4 shows this experiment. We observe that the number of messages waiting
in the queue has a strong direct impact on the performance: the message processing rate
of the queue decreases as the queue length grows.

Figure 4 The impact of the waiting messages on the performance (see online version for colours)

Moreover, we observe that the performance of the queue is noticeably higher for
message production than for message consumption. Indeed, the next experiments figure
out the optimal ratio between the message producers and message consumers to assign
to a single queue in order to ensure its stability. In these experiments, a single message
producer injects 15 000 messages into the queue and one or more message consumers
read the messages. Figure 5 presents the results when the queue is assigned a single
message producer and a single message consumer. In this configuration, the queue is
strongly unstable with about two times more message production than consumption.
This leads to a growing queue length, hence, reduced performance. Figure 6 presents the
results when the queue is loaded with one message producer and two message consumers.
In this scenario, the queue is stable with equivalent message production and consumption
rates. The queue length remains low and, thus, the performance are stable. An experiment
with one message producer and three message consumers shows a very similar queue
behaviour. From these experiments, we deduce that the optimal clients ratio is one
message producer for two message consumers.

 Improving the performances of JMS-based applications 95

Figure 5 The behaviour of a single queue with one message producer and one message consumer
(see online version for colours)

Figure 6 The behaviour of a single queue with one message producer and two message
consumers (see online version for colours)

 96 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

7.3 Single queue limit

In order to assess the interest of having a cluster queue instead of a single queue,
we need to measure the highest throughput that a single queue can reach with the
previously described parameters. We made multiple measurements with a varying
number of producers and consumers accessing a single queue. As explained before,
for a given number of producers, the ratio to obtain the best throughput was always
one producer for two consumers. These measurements are summed up in Figure 7.
These results account for the strong interest in dynamic provisioning and optimisation of
the load-balancing of clustered queues in order to always provide the best clustered queue
size and client distribution for best performance.

Figure 7 Capacity of a standard single queue (see online version for colours)

7.4 Load-balancing optimisation

The following presents an evaluation of the queue cluster load-balancing optimisation
that fairly distributes client connections among the queues. For this evaluation,
we expose a queue cluster composed of two queues to four message producers and eight
message consumers. A single message producer emits 10 000 messages, while a message
consumer reads 5000 messages. This configuration ensures that the queue cluster is
stable. Figure 8 presents the results of this experiment when the queue cluster is driven
with the standard JORAM load-balancing strategy, while Figure 9 presents these results
when the cluster is driven by our optimised load balancer. When using the original
load-balancing strategy, we observe a noticeable instability with a higher message
production rate compared to the message consumption rate (see Figure 8). This behaviour

 Improving the performances of JMS-based applications 97

is the consequence of a bad distribution of the clients over the internal queues of the
cluster, which generates local instabilities that are hardly compensated by the internal
queue-to-queue message exchange mechanism. This directly threatens the queue cluster
performance, which is then suboptimal with less than 0.3 messages/ms. In comparison,
when using our dynamic load-balancing optimisation, the queue cluster presents a very
stable and balanced behaviour. Indeed, the message production rate and message
consumption rate both reach 0.35 messages/ms.

Figure 8 The standard JORAM queue cluster load-balancing strategy (see online version
for colours)

Figure 9 Optimised queue cluster load-balancing (see online version for colours)

 98 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

7.5 Dynamic provisioning

We now consider the evaluation of the dynamic provisioning algorithm, which
dynamically adapts the number of queues inside a queue cluster depending on the
load. The workload applied to the queue cluster consists of five message producers and
ten message consumers. As in the previous experiment, a message producer generates
10 000 messages, while a message consumer gets 5000 messages. To generate an
increasing workload, the clients are created gradually, one at a time, and new client
creations are separated with a delay of 10 s. The queue cluster is kept stable by creating
clients to respect a ratio of two message consumers for one message producer. The queue
cluster initially contains one single standard queue. Figure 10 shows the behaviour of the
queue cluster under a static provisioning policy, while Figure 11 presents its behaviour
under dynamic provisioning. When statically provisioning, the queue cluster contains
one single queue during the entire experimentation, no matter how many clients are
connected to it. The queue cluster stabilises quickly after the second step at around 50 s,
with message production and consumption rates of about 1.9 messages/ms until the end
of the experiment. When the queue cluster is dynamically provisioned, the queue cluster
behaves as in the previous experiment, as long as the capacity of the single queue is
sufficient in absorbing the workload. Then, at around 120 s, as the workload exceeds the
capacity of a single queue, the cluster is provisioned with a second queue, to which new
clients are directed. As expected, the performance of the queue cluster doubles, jumping
from 1.9 messages/ms to 3.7 messages/ms.

Figure 10 The static provisioning of a clustered queue (see online version for colours)

 Improving the performances of JMS-based applications 99

Figure 11 The dynamically provisioned clustered queue (see online version for colours)

7.6 Conclusion for the measurements

These measurements show some interesting points. In a single queue, the critical factor
impacting the performance is the number of messages waiting in the queue. Increasing
the number of producers and consumers on a single queue leads to an increase in
performance which is not linear. Furthermore, a ceiling throughput is reached when the
number of clients corresponds to the capacity of the queue.

In a cluster queue, the balance of the cluster and the stability of the internal queues
are extremely important. Even a slight instability between the queues strongly decreases
the overall throughput. The instability seems to lead to an increase in the number of
messages waiting in the queues. In contrast with a single queue, adding queues in a stable
and well-balanced cluster leads to a linear increase in performance.

8 Related work

The related work for this paper comes from the context of resources management for
internet services. Past work on the resource management of internet services falls into
different categories.

A first category that has focused on studying the resource management of internet
services has considered the management of a dynamically extensible set of resources,
where the infrastructure can dynamically grow or shrink (Appleby et al., 2001; Norris
et al., 2004; Soundararajan and Amza, 2005; Soundararajan et al., 2006; Urgaonkar and
Shenoy, 2004; 2005).

 100 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

Oceano provides an adaptive hosting environment with a dynamic partitioning of the
resources among the running applications (Appleby et al., 2001). This dynamism allows
the system to react to load peaks by increasing the partition size of the concerned
application and shifting unused resources from underloaded applications to the others.
The main issue in this work seems to be the node allocation delay. That explains why the
platform assumes that some application parts cannot be dynamically (and are, thus,
statically) allocated and configured (e.g., the database tier). OnCall is similar to Oceano,
but it specifically targets the fast handling of load spikes thanks to an approach based on
virtual machines which can be promptly activated when required (Norris et al., 2004).
In case of load spikes, extra nodes are allocated to applications willing to pay more,
based on a free market of nodes. Contrary to Oceano, this project does not assume any
statically allocated resources and looks more generic with respect to the managed
applications, though this aspect has not been demonstrated.

In Soundararajan and Amza (2005) and Soundararajan et al. (2006), the authors
proposed a self-optimised dynamic provisioning algorithm that specifically targets a
cluster of databases. Regarding load spikes, the system always provisions a set of unused
nodes with database instances kept within a given range of freshness with respect to
the active database instances. This contributes to the improvement of the latency of
provisioning operations. Furthermore, oscillations are explicitly prevented as a result of
an allocation mechanism of database replica which takes replicas allocation latency
into account.

Cataclysm is a hosting platform for internet services which features dynamic
provisioning through a dynamic partitioning of nodes between the running applications
and an adaptive size-based admission control mechanism which takes advantage of a
request classifier to optimally degrade the service quality in case of overloads
(Urgaonkar and Shenoy, 2004; 2005). The provisioning algorithm is based on a basic
model of clustered network services. Cataclysm has been specially designed to absorb
extreme overloads: the size-based admission controller prevents the system from
thrashing as a result of accepting too many requests, additionally taking advantage
of a request classifier to maximise the revenue during overloads, while the dynamic
provisioning algorithm adds extra resources in case of overloads. The provisioning
algorithm relies on a coarse-grained modelling of simple internet services. The strength
of Cataclysm is the cooperation of admission control and dynamic provisioning as
components of an integrated resource management system. It assumes simple internet
services structures where the database back-end is statically provisioned.

Besides the abovementioned heuristics-based approaches, another category of
work on the resource management of internet services has studied mathematical
characterisation and analytical modelling of the systems (Urgaonkar et al., 2005; 2007;
Chandra et al., 2003; Zhang et al., 2007; Stewart and Shen, 2005).

For instance, in Urgaonkar et al. (2007; 2005), the authors proposed a model for
multitier internet applications. This model captures the structure and behaviour of internet
applications built as cooperative entities (i.e., entities in series) thanks to a network of
queues. Transitions between the queues standing for two connected tiers are probabilistic.
Indeed, this allows the model to capture request processing paths (including caching
mechanisms) through appropriate values for these transition probabilities. Replication
and load balancing, concurrency limits and requests classification and differentiation are

 Improving the performances of JMS-based applications 101

taken into account as enhancements over the baseline model. The effectiveness of the
model in achieving accurate capacity planning is demonstrated in a dynamic provisioning
scenario in which the parameters of the model are determined by mean-value analysis.

Finally, another category of work (Henjes et al., 2006; Menth and Henjes, 2006;
Chen and Greenfield, 2004) studied JMS performances. Regarding JMS performance,
Henjes et al. (2006) provided an analysis of the throughput performance of JMS
using Websphere-MQ. Menth and Henjes (2006) analysed a specific performance
problem: the message waiting time for the Fiorano-MQ Server. Chen and Greenfield
(2004) described a QoS evaluation of JMS and examined the impact of JMS attributes
on performance.

9 Conclusion and future work

Providing a scalable and efficient MOM is an important topic for today’s computing
environments. This paper analysed the performance of a MOM and proposed a
self-optimisation algorithm to improve the efficiency of the MOM infrastructure.

This optimisation takes place in two parts: (1) the optimisation of the clustered queue
load-balancing and (2) the dynamic provisioning of a queue in the clustered queue.
The first part allows the overall improvement of the clustered queue performance, while
the second part optimises the resource usage inside the clustered queue.

We described (1) the key parameters impacting the performance of MOM and
(2) the rules that control these parameters for optimal performances. This paper also
presented an evaluation that shows the impact of these parameters on the performances
and behaviour of a dynamically provisioned clustered queue.

Currently, the control loop has a very basic actuator to drive a client connection to a
specific queue. The advantage of this actuator is its simplicity. However, the control
loops cannot reconfigure the client connection during a session. Part of our future work
is about providing a more powerful actuator. This actuator will provide the control loop
with the ability to migrate a client connection when necessary. This will require a
mechanism to move the session data to another queue.

References

Appleby, K., Fakhouri, S.A., Fong, L.L., Goldszmidt, G.S., Kalantar, M.H., Krishnakumar, S.,
Pazel, D.P., Pershing, J.A. and Rochwerger, B. (2001) ‘Oceano-SLA based management of a
computing utility’, Proceedings of Integrated Network Management, pp.855–868.

Chandra, A., Gong, W. and Shenoy, P. (2003) ‘Dynamic resource allocation for shared data centers
using online measurements’, Proceedings of the Eleventh IEEE/ACM International Workshop
on Quality of Service (IWQoS 2003), Monterey, California, June.

Chen, S. and Greenfield, P. (2004) ‘Qos evaluation of jms: an empirical approach’, HICSS ‘04:
Proceedings of the Proceedings of the 37th Annual Hawaii International Conference on
System Sciences (HICSS ‘04) – Track 9, IEEE Computer Society, Washington DC, USA.

Henjes, R., Menth, M. and Zepfel, C. (2006) ‘Throughput performance of java messaging services
using websphereMQ’, 5th International Workshop on Distributed Event-Based Systems
(DEBS), Lisboa, Portugal, July.

 102 C. Taton, N. De Palma, S. Bouchenak and D. Hagimont

Menth, M. and Henjes, R. (2006) ‘Analysis of the message waiting time for the fioranoMQ JMS
server’, 26th International Conference on Distributed Computing Systems (ICDCS), Lisboa,
Portugal, July.

Norris, J., Coleman, K., Fox, A. and Candea, G. (2004) ‘OnCall: defeating spikes with a
free-market application cluster’, 1st International Conference on Autonomic Computing
(ICAC’04), New York, NY, USA, May, pp.198–205.

Soundararajan, G. and Amza, C. (2005) ‘Autonomic provisioning of backend databases in dynamic
content web servers’, Technical report, Department of Electrical and Computer Engineering,
University of Toronto.

Soundararajan, G., Amza, C. and Goel, A. (2006) ‘Database replication policies for dynamic
content applications’, First EuroSys Conference (EuroSys 2006), Leuven, Belgium, April.

Stewart, C. and Shen, K. (2005) ‘Performance modeling and system management for
multi-component online services’, NSDI ’05: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation, pp.71–84.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M. and Tantawi, A. (2007) ‘Analytic modeling
of multitier internet applications’, ACM Transaction on the Web, Vol. 1, No. 1, p.2.

Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M. and Tantawi, A.N. (2005) ‘An analytical
model for multi-tier internet services and its applications’, Proceedings of the International
Conference on Measurements and Modeling of Computer Systems (SIGMETRICS ‘05), Banff,
Alberta, Canada, June, pp.291–302.

Urgaonkar, B. and Shenoy, P. (2004) ‘Cataclysm: handling extreme overloads in internet services’,
Technical report, Department of Computer Science, University of Massachusetts, November.

Urgaonkar, B. and Shenoy, P.J. (2005) ‘Cataclysm: policing extreme overloads in internet
applications’, Proceedings of the 14th International Conference on World Wide Web,
(WWW’05), Chiba, Japan, May, pp.740–749.

Urgaonkar, B., Shenoy, P., Chandra, A. and Goyal, P. (2005) ‘Dynamic provisioning of multi-tier
internet applications’, Proceedings of the 2nd IEEE International Conference on Autonomic
Computing (ICAC’05), Seattle, June.

Zhang, Q., Cherkasova, L. and Smirni, E. (2007) ‘A regression-based analytic model for dynamic
resource provisioning of multi-tier applications’, ICAC ’07: Proceedings of the Fourth
International Conference on Autonomic Computing, Jacksonville, Florida, USA, June, p.27.

Notes

1 A producer or a consumer.

2 JNDI.

3 We assimilate the creation of sessions and the creation of connections.

