
0018-9162/03/$17.00 © 2003 IEEE January 2003 41

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

The Vision of
Autonomic
Computing

I n mid-October 2001, IBM released a manifesto
observing that the main obstacle to further
progress in the IT industry is a looming soft-
ware complexity crisis.1 The company cited
applications and environments that weigh in

at tens of millions of lines of code and require
skilled IT professionals to install, configure, tune,
and maintain.

The manifesto pointed out that the difficulty of
managing today’s computing systems goes well
beyond the administration of individual software
environments. The need to integrate several het-
erogeneous environments into corporate-wide com-
puting systems, and to extend that beyond company
boundaries into the Internet, introduces new levels
of complexity. Computing systems’ complexity
appears to be approaching the limits of human
capability, yet the march toward increased inter-
connectivity and integration rushes ahead unabated.

This march could turn the dream of pervasive
computing—trillions of computing devices con-
nected to the Internet—into a nightmare. Pro-
gramming language innovations have extended the
size and complexity of systems that architects can
design, but relying solely on further innovations in
programming methods will not get us through the
present complexity crisis.

As systems become more interconnected and
diverse, architects are less able to anticipate and
design interactions among components, leaving
such issues to be dealt with at runtime. Soon sys-
tems will become too massive and complex for even
the most skilled system integrators to install, con-

figure, optimize, maintain, and merge. And there
will be no way to make timely, decisive responses to
the rapid stream of changing and conflicting
demands.

AUTONOMIC OPTION
The only option remaining is autonomic com-

puting—computing systems that can manage them-
selves given high-level objectives from admini-
strators. When IBM’s senior vice president of
research, Paul Horn, introduced this idea to the
National Academy of Engineers at Harvard
University in a March 2001 keynote address, he
deliberately chose a term with a biological conno-
tation. The autonomic nervous system governs our
heart rate and body temperature, thus freeing our
conscious brain from the burden of dealing with
these and many other low-level, yet vital, functions.

The term autonomic computing is emblematic of
a vast and somewhat tangled hierarchy of natural
self-governing systems, many of which consist of
myriad interacting, self-governing components that
in turn comprise large numbers of interacting,
autonomous, self-governing components at the next
level down. The enormous range in scale, starting
with molecular machines within cells and extending
to human markets, societies, and the entire world
socioeconomy, mirrors that of computing systems,
which run from individual devices to the entire
Internet. Thus, we believe it will be profitable to
seek inspiration in the self-governance of social and
economic systems as well as purely biological ones.

Clearly then, autonomic computing is a grand

Systems manage themselves according to an administrator’s goals. New
components integrate as effortlessly as a new cell establishes itself in the
human body. These ideas are not science fiction, but elements of the grand
challenge to create self-managing computing systems.

Jeffrey O.
Kephart
David M.
Chess
IBM Thomas J.
Watson Research
Center

42 Computer

challenge that reaches far beyond a single organi-
zation. Its realization will take a concerted, long-
term, worldwide effort by researchers in a diversity
of fields. A necessary first step is to examine this
vision: what autonomic computing systems might
look like, how they might function, and what
obstacles researchers will face in designing them
and understanding their behavior.

SELF-MANAGEMENT
The essence of autonomic computing systems is

self-management, the intent of which is to free sys-
tem administrators from the details of system oper-
ation and maintenance and to provide users with a
machine that runs at peak performance 24/7.

Like their biological namesakes, autonomic sys-
tems will maintain and adjust their operation in the
face of changing components, workloads, demands,
and external conditions and in the face of hardware
or software failures, both innocent and malicious.
The autonomic system might continually monitor
its own use, and check for component upgrades, for
example. If it deems the advertised features of the

upgrades worthwhile, the system will install them,
reconfigure itself as necessary, and run a regression
test to make sure all is well. When it detects errors,
the system will revert to the older version while its
automatic problem-determination algorithms try to
isolate the source of the error. Figure 1 illustrates
how this process might work for an autonomic
accounting system upgrade.

IBM frequently cites four aspects of self-man-
agement, which Table 1 summarizes. Early auto-
nomic systems may treat these aspects as distinct,
with different product teams creating solutions that
address each one separately. Ultimately, these
aspects will be emergent properties of a general
architecture, and distinctions will blur into a more
general notion of self-maintenance.

The journey toward fully autonomic computing
will take many years, but there are several impor-
tant and valuable milestones along the path. At
first, automated functions will merely collect and
aggregate information to support decisions by
human administrators. Later, they will serve as
advisors, suggesting possible courses of action for
humans to consider. As automation technologies
improve, and our faith in them grows, we will
entrust autonomic systems with making—and act-
ing on—lower-level decisions. Over time, humans
will need to make relatively less frequent predomi-
nantly higher-level decisions, which the system will
carry out automatically via more numerous, lower-
level decisions and actions.

Ultimately, system administrators and end users
will take the benefits of autonomic computing for
granted. Self-managing systems and devices will
seem completely natural and unremarkable, as will
automated software and middleware upgrades.
The detailed migration patterns of applications or
data will be as uninteresting to us as the details of
routing a phone call through the telephone net-
work.

Self-configuration
Installing, configuring, and integrating large,

complex systems is challenging, time-consuming,
and error-prone even for experts. Most large Web
sites and corporate data centers are haphazard
accretions of servers, routers, databases, and other
technologies on different platforms from different
vendors. It can take teams of expert programmers
months to merge two systems or to install a major
e-commerce application such as SAP.

Autonomic systems will configure themselves
automatically in accordance with high-level poli-
cies—representing business-level objectives, for

$167.43
Old

$51.27
$1102.98

$167.43
New

$51.27
$102.98

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

Figure 1. Problem diagnosis in an autonomic system upgrade. The upgrade intro-
duces five software modules (blue), each an autonomic element. Minutes after
installation, regression testers find faulty output in three of the new modules (red
outlines), and the system immediately reverts to its old version. A problem deter-
miner, an autonomic element, obtains information about interelement dependen-
cies (lines between elements) from a dependency analyzer, another autonomic
element that probes the system periodically (not shown). Taking into account its
knowledge of interelement dependencies, the problem determiner analyzes log
files and infers which of the three potentially bad modules is the culprit (red X). It
generates a problem ticket containing diagnostic information and sends it to a
software developer, who debugs the module and makes it available for future
upgrades.

example—that specify what is desired, not how it
is to be accomplished. When a component is intro-
duced, it will incorporate itself seamlessly, and the
rest of the system will adapt to its presence—much
like a new cell in the body or a new person in a pop-
ulation. For example, when a new component is
introduced into an autonomic accounting system,
as in Figure 1, it will automatically learn about and
take into account the composition and configura-
tion of the system. It will register itself and its capa-
bilities so that other components can either use it or
modify their own behavior appropriately.

Self-optimization
Complex middleware, such as WebSphere, or

database systems, such as Oracle or DB2, may have
hundreds of tunable parameters that must be set
correctly for the system to perform optimally, yet
few people know how to tune them. Such systems
are often integrated with other, equally complex
systems. Consequently, performance-tuning one
large subsystem can have unanticipated effects on
the entire system.

Autonomic systems will continually seek ways
to improve their operation, identifying and seizing
opportunities to make themselves more efficient
in performance or cost. Just as muscles become
stronger through exercise, and the brain modifies
its circuitry during learning, autonomic systems
will monitor, experiment with, and tune their own
parameters and will learn to make appropriate
choices about keeping functions or outsourcing
them. They will proactively seek to upgrade their
function by finding, verifying, and applying the lat-
est updates.

Self-healing
IBM and other IT vendors have large depart-

ments devoted to identifying, tracing, and deter-
mining the root cause of failures in complex
computing systems. Serious customer problems

can take teams of programmers several weeks to
diagnose and fix, and sometimes the problem dis-
appears mysteriously without any satisfactory
diagnosis.

Autonomic computing systems will detect, diag-
nose, and repair localized problems resulting from
bugs or failures in software and hardware, perhaps
through a regression tester, as in Figure 1. Using
knowledge about the system configuration, a prob-
lem-diagnosis component (based on a Bayesian
network, for example) would analyze information
from log files, possibly supplemented with data
from additional monitors that it has requested.
The system would then match the diagnosis
against known software patches (or alert a human
programmer if there are none), install the appro-
priate patch, and retest.

Self-protection
Despite the existence of firewalls and intrusion-

detection tools, humans must at present decide how
to protect systems from malicious attacks and inad-
vertent cascading failures.

Autonomic systems will be self-protecting in two
senses. They will defend the system as a whole
against large-scale, correlated problems arising from
malicious attacks or cascading failures that remain
uncorrected by self-healing measures. They also will
anticipate problems based on early reports from
sensors and take steps to avoid or mitigate them.

ARCHITECTURAL CONSIDERATIONS
Autonomic systems will be interactive collections

of autonomic elements—individual system con-
stituents that contain resources and deliver services
to humans and other autonomic elements. Auto-
nomic elements will manage their internal behavior
and their relationships with other autonomic ele-
ments in accordance with policies that humans or
other elements have established. System self-man-
agement will arise at least as much from the myriad

January 2003 43

Table 1. Four aspects of self-management as they are now and would be with autonomic computing.

Concept Current computing Autonomic computing

Self-configuration Corporate data centers have multiple Automated configuration of components and systems
vendors and platforms. Installing, follows high-level policies. Rest of system adjusts
configuring, and integrating systems is automatically and seamlessly.
time consuming and error prone.

Self-optimization Systems have hundreds of manually set, Components and systems continually seek
nonlinear tuning parameters, and their opportunities to improve their own performance and
number increases with each release. efficiency.

Self-healing Problem determination in large, complex System automatically detects, diagnoses, and repairs
systems can take a team of programmers localized software and hardware problems.
weeks.

Self-protection Detection of and recovery from attacks System automatically defends against malicious
and cascading failures is manual. attacks or cascading failures. It uses early warning

to anticipate and prevent systemwide failures.

44 Computer

interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions.

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element.

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure.

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly.

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.

Hard-coded behaviors will give way to behav-
iors expressed as high-level objectives, such as
“maximize this utility function,” or “find a rep-
utable message translation service.” Hardwired
connections among elements will give way to in-
creasingly less direct specifications of an element’s
partners—from specification by physical address
to specification by name and finally to specification
by function, with the partner’s identity being
resolved only when it is needed.

Hard-wired relationships will evolve into flexi-
ble relationships that are established via negotia-
tion. Elements will automatically handle new
modes of failure, such as contract violation by a
supplier, without human intervention.

While service-oriented architectural concepts like
Web and grid services2,3 will play a fundamental
role, a sufficient foundation for autonomic com-
puting requires more. First, as service providers,
autonomic elements will not unquestioningly honor
requests for service, as would typical Web services
or objects in an object-oriented environment. They
will provide a service only if providing it is consis-
tent with their goals. Second, as consumers, auto-
nomic elements will autonomously and proactively
issue requests to other elements to carry out their
objectives.

Finally, autonomic elements will have complex life
cycles, continually carrying on multiple threads of
activity, and continually sensing and responding to
the environment in which they are situated.
Autonomy, proactivity, and goal-directed interac-
tivity with their environment are distinguishing char-
acteristics of software agents. Viewing autonomic
elements as agents and autonomic systems as multi-
agent systems makes it clear that agent-oriented
architectural concepts will be critically important.4

ENGINEERING CHALLENGES
Virtually every aspect of autonomic computing

offers significant engineering challenges. The life
cycle of an individual autonomic element or of a
relationship among autonomic elements reveals
several challenges. Others arise in the context of
the system as a whole, and still more become appar-
ent at the interface between humans and autonomic
systems.

Life cycle of an autonomic element
An autonomic element’s life cycle begins with its

design and implementation; continues with test and
verification; proceeds to installation, configuration,
optimization, upgrading, monitoring, problem
determination, and recovery; and culminates in

uninstallation or replacement. Each of these
stages has special issues and challenges.

Design, test, and verification. Programming an
autonomic element will mean extending Web
services or grid services with programming
tools and techniques that aid in managing
relationships with other autonomic elements.
Because autonomic elements both consume
and provide services, representing needs and
preferences will be just as important as rep-
resenting capabilities. Programmers will need
tools that help them acquire and represent
policies—high-level specifications of goals and con-
straints, typically represented as rules or utility
functions—and map them onto lower-level actions.
They will also need tools to build elements that can
establish, monitor, and enforce agreements.

Testing autonomic elements and verifying that
they behave correctly will be particularly chal-
lenging in large-scale systems because it will be
harder to anticipate their environment, especially
when it extends across multiple administrative
domains or enterprises. Testing networked appli-
cations that require coordinated interactions
among several autonomic elements will be even
more difficult.

It will be virtually impossible to build test sys-
tems that capture the size and complexity of real-
istic systems and workloads. It might be possible
to test newly deployed autonomic elements in situ
by having them perform alongside more established
and trusted elements with similar functionality.

The element’s potential customers may also want
to test and verify its behavior, both before estab-
lishing a service agreement and while the service is
provided. One approach is for the autonomic ele-
ment to attach a testing method to its service
description.

Installation and configuration. Installing and config-
uring autonomic elements will most likely entail a
bootstrapping process that begins when the ele-
ment registers itself in a directory service by pub-
lishing its capabilities and contact information.
The element might also use the directory service
to discover suppliers or brokers that may provide
information or services it needs to complete its ini-
tial configuration. It can also use the service to seek
out potential customers or brokers to which it can
delegate the task of finding customers.

Monitoring and problem determination. Monitoring
will be an essential feature of autonomic elements.
Elements will continually monitor themselves to
ensure that they are meeting their own objectives,
and they will log this information to serve as the

January 2003 45

Autonomic
elements will

provide a service
only if it is

consistent with
their goals.

46 Computer

basis for adaptation, self-optimization, and
reconfiguration. They will also continually
monitor their suppliers to ensure that they
are receiving the agreed-on level of service
and their customers to ensure that they are
not exceeding the agreed-on level of demand.
Special sentinel elements may monitor other
elements and issue alerts to interested par-
ties when they fail.

When coupled with event correlation and
other forms of analysis, monitoring will be
important in supporting problem determina-
tion and recovery when a fault is found or sus-

pected. Applying monitoring, audit, and verification
tests at all the needed points without burdening sys-
tems with excessive bandwidth or processing
demands will be a challenge. Technologies to allow
statistical or sample-based testing in a dynamic envi-
ronment may prove helpful.

The vision of autonomic systems as a complex
supply web makes problem determination both eas-
ier and harder than it is now. An autonomic element
that detects poor performance or failure in a sup-
plier may not attempt a diagnosis; it may simply
work around the problem by finding a new supplier.

In other situations, however, it will be necessary
to determine why one or more elements are fail-
ing, preferably without shutting down and restart-
ing the entire system. This requires theoretically
grounded tools for tracing, simulation, and prob-
lem determination in complex dynamic environ-
ments. Particularly when autonomic elements—or
applications based on interactions among multi-
ple elements—have a large amount of state, recov-
ering gracefully and quickly from failure or
restarting applications after software has been
upgraded or after a function has been relocated to
new machines will be challenging. David Patterson
and colleagues at the University of California,
Berkeley, and Stanford University have made a
promising start in this direction.5

Upgrading. Autonomic elements will need to
upgrade themselves from time to time. They might
subscribe to a service that alerts them to the avail-
ability of relevant upgrades and decide for them-
selves when to apply the upgrade, possibly with
guidance from another element or a human.
Alternatively, the system could create afresh
entirely new elements as part of a system upgrade,
eliminating outmoded elements only after the new
ones establish that they are working properly.

Managing the life cycle. Autonomic elements will
typically be engaged in many activities simultane-
ously: participating in one or more negotiations at

various phases of completion, proactively seeking
inputs from other elements, and so on. They will
need to schedule and prioritize their myriad activ-
ities, and they will need to represent their life cycle
so that they can both reason about it and commu-
nicate it to other elements.

Relationships among autonomic elements
In its most dynamic and elaborate form, the ser-

vice relationship among autonomic elements will
also have a life cycle. Each stage of this life cycle
engenders its own set of engineering challenges and
standardization requirements.

Specification. An autonomic element must have
associated with it a set of output services it can per-
form and a set of input services that it requires,
expressed in a standard format so that other auto-
nomic elements can understand it. Typically, the
element will register with a directory service such
as Universal Description, Discovery, and Inte-
gration6 or an Open Grid Services Architecture
(OGSA) registry,3 providing a description of its
capabilities and details about addresses and the
protocols other elements or people can use to com-
municate with it.

Establishing standard service ontologies and a
standard service description syntax and semantics
that are sufficiently expressive for machines to inter-
pret and reason about is an area of active research.
The US Defense Advanced Research Projects
Agency’s semantic Web effort7 is representative.

Location. An autonomic element must be able to
locate input services that it needs; in turn, other ele-
ments that require its output services must be able
to locate that element.

To locate other elements dynamically, the element
can look them up by name or function in a direc-
tory service, possibly using a search process that
involves sophisticated reasoning about service
ontologies. The element can then contact one or
more potential service providers directly and con-
verse with them to determine if it can provide
exactly the service they require.

In many cases, autonomic elements will also need
to judge the likely reliability or trustworthiness of
potential partners—an area of active research with
many unsolved fundamental problems.

Negotiation. Once an element finds potential
providers of an input service, it must negotiate with
them to obtain that service.

We construe negotiation broadly as any process
by which an agreement is reached. In demand-for-
service negotiation, the element providing a ser-
vice is subservient to the one requesting it, and the

The vision of
autonomic systems
as a complex supply
web makes problem
determination both
easier and harder

than it is now.

provider must furnish the service unless it does not
have sufficient resources to do so. Another simple
form of negotiation is first-come, first-served, in
which the provider satisfies all requests until it runs
into resource limitations. In posted-price negotia-
tion, the provider sets a price in real or artificial
currency for its service, and the requester must take
it or leave it.

More complex forms of negotiation include
bilateral or multilateral negotiations over multiple
attributes, such as price, service level, and priority,
involving multiple rounds of proposals and coun-
terproposals. A third-party arbiter can run an auc-
tion or otherwise assist these more complex
negotiations, especially when they are multilateral.

Negotiation will be a rich source of engineering
and scientific challenges for autonomic computing.
Elements need flexible ways to express multiat-
tribute needs and capabilities, and they need mech-
anisms for deriving these expressions from human
input or from computation. They also need effec-
tive negotiation strategies and protocols that estab-
lish the rules of negotiation and govern the flow of
messages among the negotiators. There must be
languages for expressing service agreements—the
culmination of successful negotiation—in their tran-
sient and final forms.

Efforts to standardize the representation of
agreements are under way, but mechanisms for
negotiating, enforcing, and reasoning about agree-
ments are lacking, as are methods for translating
them into action plans.

Provision. Once two elements reach an agree-
ment, they must provision their internal resources.
Provision may be as simple as noting in an access
list that a particular element can request service in
the future, or it may entail establishing additional
relationships with other elements, which become
subcontractors in providing some part of the
agreed-on service or task.

Operation. Once both sides are properly provi-
sioned, they operate under the negotiated agree-
ment. The service provider’s autonomic manager
oversees the operation of its managed element,
monitoring it to ensure that the agreement is being
honored; the service requester might similarly
monitor the level of service.

If the agreement is violated, one or both elements
would seek an appropriate remedy. The remedy
may be to assess a penalty, renegotiate the agree-
ment, take technical measures to minimize any
harm from the failure, or even terminate the agree-
ment.

Termination. When the agreement has run its

course, the parties agree to terminate it, free-
ing their internal resources for other uses and
terminating agreements for input services
that are no longer needed. The parties may
record pertinent information about the ser-
vice relationship locally, or store it in a data-
base a reputation element maintains.

Systemwide issues
Other important engineering issues that

arise at the system level include security, pri-
vacy, and trust, and the emergence of new
types of services to serve the needs of other
autonomic elements.

Autonomic computing systems will be sub-
ject to all the security, privacy, and trust issues that
traditional computing systems must now address.
Autonomic elements and systems will need to both
establish and abide by security policies, just as
human administrators do today, and they will need
to do so in an understandable and fail-safe manner.

Systems that span multiple administrative
domains—especially those that cross company
boundaries—will face many of the challenges that
now confront electronic commerce. These include
authentication, authorization, encryption, signing,
secure auditing and monitoring, nonrepudiation,
data aggregation and identity masking, and com-
pliance with complex legal requirements that vary
from state to state or country to country.

The autonomic systems infrastructure must let
autonomic elements identify themselves, verify the
identities of other entities with which they com-
municate, verify that a message has not been altered
in transit, and ensure that unauthorized parties do
not read messages and other data. To satisfy pri-
vacy policies and laws, elements must also appro-
priately protect private and personal information
that comes into their possession. Measures that
keep data segregated according to its origin or its
purpose must be extended into the realm of auto-
nomic elements to satisfy policy and legal require-
ments.

Autonomic systems must be robust against new
and insidious forms of attack that use self-man-
agement based on high-level policies to their own
advantage. By altering or otherwise manipulating
high-level policies, an attacker could gain much
greater leverage than is possible in nonautonomic
systems. Preventing such problems may require a
new subfield of computer security that seeks to
thwart fraud and the fraudulent persuasion of
autonomic elements.

On a larger scale, autonomic elements will be

January 2003 47

System-level
engineering issues
include security,

privacy, and trust,
and new types of
services to serve
the needs of other

autonomic
elements.

48 Computer

agents, and autonomic systems will in effect
be multiagent systems built on a Web services
or OGSA infrastructure. Autonomic systems
will be inhabited by middle agents8 that serve
as intermediaries of various types, including
directory services, matchmakers, brokers,
auctioneers, data aggregators, dependency
managers—for detecting, recording, and pub-
licizing information about functional depen-
dencies among autonomic elements—event
correlators, security analysts, time-stampers,
sentinels, and other types of monitors that
assess the health of other elements or of the
system as a whole.

Traditionally, many of these services have been
part of the system infrastructure; in a multiagent,
autonomic world, moving them out of the infra-
structure and representing them as autonomic ele-
ments themselves will be more natural and flexible.

Goal specification
While autonomic systems will assume much of

the burden of system operation and integration, it
will still be up to humans to provide those systems
with policies—the goals and constraints that gov-
ern their actions. The enormous leverage of auto-
nomic systems will greatly reduce human errors,
but it will also greatly magnify the consequences of
any error humans do make in specifying goals.

The indirect effect of policies on system configu-
ration and behavior exacerbates the problem
because tracing and correcting policy errors will be
very difficult. It is thus critical to ensure that the
specified goals represent what is really desired. Two
engineering challenges stem from this mandate:
Ensure that goals are specified correctly in the first
place, and ensure that systems behave reasonably
even when they are not.

In many cases, the set of goals to be specified will
be complex, multidimensional, and conflicting.
Even a goal as superficially simple as “maximize
utility” will require a human to express a compli-
cated multiattribute utility function. A key to reduc-
ing error will be to simplify and clarify the means
by which humans express their goals to comput-
ers. Psychologists and computer scientists will need
to work together to strike the right balance between
overwhelming humans with too many questions or
too much information and underempowering them
with too few options or too little information.

The second challenge—ensuring reasonable sys-
tem behavior in the face of erroneous input—is
another facet of robustness: Autonomic systems
will need to protect themselves from input goals

that are inconsistent, implausible, dangerous, or
unrealizable with the resources at hand. Autonomic
systems will subject such inputs to extra validation,
and when self-protective measures fail, they will
rely on deep-seated notions of what constitutes
acceptable behavior to detect and correct problems.
In some cases, such as resource overload, they will
inform human operators about the nature of the
problem and offer alternative solutions.

SCIENTIFIC CHALLENGES
The success of autonomic computing will hinge

on the extent to which theorists can identify uni-
versal principles that span the multiple levels at
which autonomic systems can exist—from systems
to enterprises to economies.

Behavioral abstractions and models
Defining appropriate abstractions and models

for understanding, controlling, and designing emer-
gent behavior in autonomic systems is a challenge
at the heart of autonomic computing. We need fun-
damental mathematical work aimed at under-
standing how the properties of self-configuration,
self-optimization, self-maintenance, and robustness
arise from or depend on the behaviors, goals, and
adaptivity of individual autonomic elements; the
pattern and type of interactions among them; and
the external influences or demands on the system.

Understanding the mapping from local behavior
to global behavior is a necessary but insufficient con-
dition for controlling and designing autonomic sys-
tems. We must also discover how to exploit the
inverse relationship: How can we derive a set of
behavioral and interaction rules that, if embedded in
individual autonomic elements, will induce a desired
global behavior? The nonlinearity of emergent behav-
ior makes such an inversion highly nontrivial.

One plausible approach couples advanced search
and optimization techniques with parameterized
models of the local-to-global relationship and the
likely set of environmental influences to which the
system will be subjected. Melanie Mitchell and col-
leagues9 at the Santa Fe Institute have pioneered
this approach, using genetic algorithms to evolve
the local transformation rules of simple cellular
automata to achieve desired global behaviors. At
NASA, David Wolpert and colleagues10 have stud-
ied algorithms that, given a high-level global objec-
tive, derive individual goals for individual agents.
When each agent selfishly follows its goals, the
desired global behavior results.

These methods are just a start. We have yet to
understand fundamental limits on what classes of

To satisfy privacy
policies and laws,

elements must
appropriately

protect
information that

comes into
their possession.

global behavior can be achieved, nor do we have
practical methods for designing emergent system
behavior. Moreover, although these methods estab-
lish the rules of a system at design time, autonomic
systems must deal with shifting conditions that can
be known only at runtime. Control theoretic
approaches may prove useful in this capacity; some
autonomic managers may use control systems to
govern the behavior of their associated managed
elements.

The greatest value may be in extending distrib-
uted or hierarchical control theories, which con-
sider interactions among independently or
hierarchically controlled elements, rather than
focusing on an individual controlled element.
Newer paradigms for control may be needed when
there is no clear separation of scope or time scale.

Robustness theory
A related challenge is to develop a theory of

robustness for autonomic systems, including defi-
nitions and analyses of robustness, diversity, redun-
dancy, and optimality and their relationship to one
another. The Santa Fe Institute recently began a
multidisciplinary study on this topic (http://discuss.
santafe.edu/robustness).

Learning and optimization theory
Machine learning by a single agent in relatively sta-

tic environments is well studied, and it is well sup-
ported by strong theoretical results. However, in
more sophisticated autonomic systems, individual
elements will be agents that continually adapt to their
environment—an environment that consists largely
of other agents. Thus, even with stable external con-
ditions, agents are adapting to one another, which
violates the traditional assumptions on which single-
agent learning theories are based.

There are no guarantees of convergence. In fact,
interesting forms of instability have been observed
in such cases.11 Learning in multiagent systems is a
challenging but relatively unexplored problem,
with virtually no major theorems and only a hand-
ful of empirical results.

Just as learning becomes a more challenging prob-
lem in multiagent systems, so does optimization. The
root cause is the same—whether it is because they
are learning or because they are optimizing, agents
are changing their behavior, making it necessary for
other agents to change their behavior, potentially
leading to instabilities. Optimization in such an envi-
ronment must deal with dynamics created by a col-
lective mode of oscillation rather than a drifting
environmental signal. Optimization techniques that

assume a stationary environment have been
observed to fail pathologically in multiagent
systems,12 therefore they must either be
revamped or replaced with new methods.

Negotiation theory
A solid theoretical foundation for negoti-

ation must take into account two perspec-
tives. From the perspective of individual
elements, we must develop and analyze algo-
rithms and negotiation protocols and deter-
mine what bidding or negotiation algorithms
are most effective.

From the perspective of the system as a
whole, we must establish how overall system
behavior depends on the mixture of negotiation
algorithms that various autonomic elements use
and establish the conditions under which multilat-
eral—as opposed to bilateral—negotiations among
elements are necessary or desirable.

Automated statistical modeling
Statistical models of large networked systems will

let autonomic elements or systems detect or predict
overall performance problems from a stream of sen-
sor data from individual devices. At long time
scales—during which the configuration of the sys-
tem changes—we seek methods that automate the
aggregation of statistical variables to reduce the
dimensionality of the problem to a size that is
amenable to adaptive learning and optimization
techniques that operate on shorter time scales.

I s it possible to meet the grand challenge of auto-
nomic computing without magic and without
fully solving the AI problem? We believe it is, but

it will take time and patience. Long before we solve
many of the more challenging problems, less auto-
mated realizations of autonomic systems will be
extremely valuable, and their value will increase
substantially as autonomic computing technology
improves and earns greater trust and acceptance.

A vision this large requires that we pool exper-
tise in many areas of computer science as well as
in disciplines that lie far beyond computing’s tra-
ditional boundaries. We must look to scientists
studying nonlinear dynamics and complexity for
new theories of emergent phenomena and robust-
ness. We must look to economists and e-commerce
researchers for ideas and technologies about nego-
tiation and supply webs. We must look to psy-
chologists and human factors researchers for new
goal-definition and visualization paradigms and

January 2003 49

Optimization
techniques that

assume a
stationary

environment must
either be

revamped or
replaced with
new methods.

50 Computer

for ways to help humans build trust in autonomic
systems. We must look to the legal profession, since
many of the same issues that arise in the context of
e-commerce will be important in autonomic sys-
tems that span organizational or national bound-
aries.

Bridging the language and cultural divides
among the many disciplines needed for this
endeavor and harnessing the diversity to yield suc-
cessful and perhaps universal approaches to auto-
nomic computing will perhaps be the greatest
challenge. It will be interesting to see what new
cross-disciplines develop as we begin to work
together to solve these fundamental problems. �

Acknowledgments
We are indebted to the many people who influ-

enced this article with their ideas and thoughtful
criticisms. Special thanks go to David Chambliss for
contributing valuable thoughts on human-computer
interface issues. We also thank Bill Arnold, David
Bantz, Rob Barrett, Peter Capek, Alan Ganek,
German Goldszmidt, James Hanson, Joseph
Hellerstein, James Kozloski, Herb Lee, Charles
Peck, Ed Snible, and Ian Whalley for their helpful
comments, and the members of an IBM Academy of
Technology team for their extensive written and ver-
bal contributions: Lisa Spainhower and Kazuo
Iwano (co-leaders), William H. Tetzlaff (Technology
Council contact), Robert Abrams, Sam Adams,
Steve Burbeck, Bill Chung, Denise Y. Dyko, Stuart
Feldman, Lorraine Herger, Mark Johnson, James
Kaufman, David Kra, Ed Lassettre, Andreas Maier,
Timothy Marchini, Norm Pass, Colin Powell,
Stephen A. Smithers, Daniel Sturman, Mark N.
Wegman, Steve R. White, and Daniel Yellin.

References
1. IBM, “Autonomic Computing: IBM’s Perspective on

the State of Information Technology”; http://www-1.
ibm.com/industries/government/doc/content/resource/
thought/278606109.html.

2. H. Kreger, “Web Services Conceptual Architecture,”
v. 1.0. 2001; http://www-4.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf.

3. I. Foster et al., “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems
Integration,” Feb. 2002; http://www.globus.org/
research/papers/ogsa.pdf.

4. N.R. Jennings, “On Agent-Based Software Engi-
neering,” Artificial Intelligence, vol. 177, no. 2, 2000,
pp. 277-296.

5. D. Patterson et al., Recovery-Oriented Computing
(ROC): Motivation, Definition, Techniques, and
Case Studies, tech. report CSD-02-1175, Computer
Science Dept., Univ. of Calif., Berkeley, Calif., Mar.
2002.

6. Ariba, IBM, and Microsoft, “UDDI Technical White
Paper,” 2000; http://www.uddi.org/whitepapers.html.

7. T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web,” Scientific American, May 2001, pp.
28-37.

8. H. Wong and K. Sycara, “A Taxonomy of Middle
Agents for the Internet,” Proc. 4th Int’l Conf. Mul-
tiagent Systems, IEEE CS Press, 2000, pp. 465-466.

9. R. Das et al., “Evolving Globally Synchronized Cel-
lular Automata,” Proc. 6th Int’l Conf. Genetic Algo-
rithms, L. Eshelman, ed., Morgan Kaufmann, 1995,
pp. 336-343.

10. D. Wolpert, K. Wheeler, and K. Tumer, Collective
Intelligence for Control of Distributed Dynamical
Systems, tech. report NASA-ARC-IC-99-44, NASA,
Ames, Iowa, 1999.

11. J.O. Kephart and G.J. Tesauro, “Pseudo-Convergent
Q-Learning by Competitive Pricebots,” Proc. 17th
Int’l Conf. Machine Learning, Morgan Kaufmann,
2000, pp. 463-470.

12. J.O. Kephart et al., “Pricing Information Bundles in
a Dynamic Environment,” Proc. 3rd ACM Conf.
Electronic Commerce, 2001, ACM Press, pp. 180-
190.

Jeffrey O. Kephart manages the Agents and Emer-
gent Phenomena group at the IBM Thomas J. Wat-
son Research Center. His research focuses on the
application of analogies from biology and eco-
nomics to massively distributed computing systems,
particularly in the domains of autonomic comput-
ing, e-commerce, and antivirus technology. Kephart
received a BS from Princeton University and a PhD
from Stanford University, both in electrical engi-
neering. Contact him at kephart@us.ibm.com.

David M. Chess is a research staff member at the
IBM Thomas J. Watson Research Center, working
in autonomic computing and computer security.
He received a BA in philosophy from Princeton
University and an MS in computer science from
Pace University. Contact him at chess@us.ibm.com.

