

Sara Bouchenak

Sara.Bouchenak@imag.fr http://sardes.inrialpes.fr/~bouchena/teaching/

- Lectures based on the following slides:
 - http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html
- Authors:
 - Christophe Bisciglia, Aaron Kimball, Sierra Michels-Slettvet

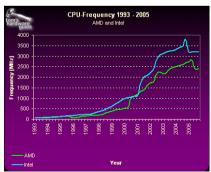
Except where otherwise noted, the contents of this presentation are © Copyright 2007 University of Washington and are licensed under the Creative Commons Attribution 2.5 License.

2

Outline

- Part I: Motivations
 - Introduction
 - · Parallel vs. Distributed Computing
 - History of Distributed Computing
 - Parallelization and Synchronization
- Part II: MapReduce theory and implementation
 - Lisp/ML review (functional programming, map, fold)
 - MapReduce overview
 - Hadoop

Computer Speedup



Moore's Law: "The density of transistors on a chip doubles every 18 months, for the same cost" (1965)

Image: Tom's Hardware and not subject to the Creative Commons license applicable to the rest of this work.

Scope of problems

- What can you do with 1 computer?
- What can you do with 100 computers?
- What can you do with an entire data center?

Distributed problems

• Rendering multiple frames of high-quality animation

Image: DreamWorks Animation and not subject to the Creative Commons license applicable to the rest of this work.

6

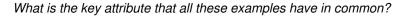
Distributed problems

 Simulating several hundred or thousand characters

Happy Feet ® Kingdom Feature Productions; Lord of the Rings ® New Line Cinema, neither image is subject to the Creative Commons license applicable to the rest of the work.

Distributed problems

- Indexing the web (Google)
- Simulating an Internet-sized network for networking experiments (PlanetLab)
- Speeding up content delivery (Akamai)



,

.

Parallel vs. Distributed

- Parallel computing can mean:
 - Vector processing of data
 - Multiple CPUs in a single computer
- Distributed computing is multiple CPUs across many computers over the network

A Brief History... 1975-85

- Parallel computing was favored in the early years
- Gradually more threadbased parallelism was introduced

Image: Computer Pictures Database and Cray Research Corp and is not subject to the Creative Commons license applicable to the rest of this work.

9

10

A Brief History... 1985-95

- "Massively parallel architectures" start rising in prominence
- Message Passing Interface (MPI) and other libraries developed
- Bandwidth was a big problem

A Brief History... 1995-Today

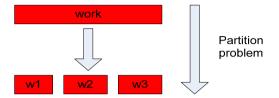
- Cluster/grid architecture increasingly dominant
- Special node machines eschewed in favor of COTS technologies
- Web-wide cluster software
- Companies like Google take this to the extreme

11

Parallelization & Synchronization

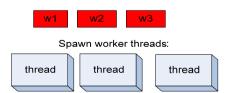
Parallelization Idea

 Parallelization is "easy" if processing can be cleanly split into n units:



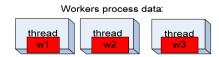
14

Parallelization Idea (2)

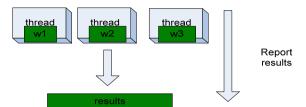


In a parallel computation, we would like to have as many threads as we have processors. e.g., a fourprocessor computer would be able to run four threads at the same time.

Parallelization Idea (3)



Parallelization Idea (4)



Parallelization Pitfalls

But this model is too simple!

- How do we assign work units to worker threads?
- What if we have more work units than threads?
- How do we aggregate the results at the end?
- How do we know all the workers have finished?
- What if the work cannot be divided into completely separate tasks?

What is the common theme of all of these problems?

8

Parallelization Pitfalls (2)

- Each of these problems represents a point at which multiple threads must communicate with one another, or access a shared resource.
- Golden rule: Any memory that can be used by multiple threads must have an associated synchronization system!

What is Wrong With This?

Thread 1:	Thread 2:
void foo() {	void bar()
X++;	y++;
y = x;	x+=3;
}	}

If the initial state is y = 0, x = 6, what happens after these threads finish running?

Multithreaded = Unpredictability

■ Many things that look like "one step" operations actually take several steps under the hood:

```
Thread 2:
Thread 1:
void foo() {
                                  void bar() {
 eax = mem[x];
                                   eax = mem[v]:
 inc eax:
                                   inc eax:
 mem[x] = eax;
                                   mem[y] = eax;
 ebx = mem[x]:
                                   eax = mem[x]:
 mem[y] = ebx;
                                   add eax. 3:
                                   mem[x] = eax;
```

• When we run a multithreaded program, we don't know what order threads run in, nor do we know when they will interrupt one another.

Multithreaded = Unpredictability

This applies to more than just integers:

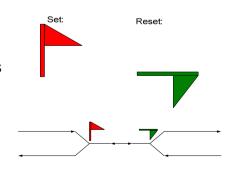
- Pulling work units from a gueue
- Reporting work back to master unit
- Telling another thread that it can begin the "next phase" of processing
- ... All require synchronization!

Synchronization Primitives

- A synchronization primitive is a special shared variable that guarantees that it can only be accessed atomically.
- Hardware support guarantees that operations on synchronization primitives only ever take one step

Semaphores

- A semaphore is a flag that can be raised or lowered in one step
- Semaphores were flags that railroad engineers would use when entering a shared track



Only one side of the semaphore can ever be red! (Can both be green?)

Semaphores

- set() and reset() can be thought of as lock() and unlock()
- Calls to lock() when the semaphore is already locked cause the thread to **block**.
- Pitfalls: Must "bind" semaphores to particular objects; must remember to unlock correctly

The "corrected" example

Condition Variables

- A condition variable notifies threads that a particular condition has been met
- Inform another thread that a queue now contains elements to pull from (or that it's empty – request more elements!)
- Pitfall: What if nobody's listening?

The final example

26

```
Thread 1:
                              Thread 2:
void foo() {
                              void bar() {
 sem.lock():
                               sem.lock():
                               if(!fooDone)
 X++;
                                fooFinishedCV.wait(sem);
 V = X;
                               y++;
 fooDone = true:
                               x+=3;
 sem.unlock();
                               sem.unlock();
 fooFinishedCV.notify();
 Global vars: Semaphore sem = new Semaphore(); ConditionVar
 fooFinishedCV = new ConditionVar(); boolean fooDone = false;
```

27

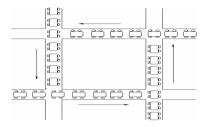
Too Much Synchronization? Deadlock

Synchronization becomes even more complicated when multiple locks can be used

Can cause entire system to "get stuck"

Thread A:

semaphore1.lock();
semaphore2.lock();
/* use data guarded by
 semaphores */
semaphore1.unlock();
semaphore2.unlock();



Thread B:

semaphore2.lock();
semaphore1.lock();
/* use data guarded by
 semaphores */
semaphore1.unlock();
semaphore2.unlock();

(Image: RPI CSCI.4210 Operating Systems notes)

29

The Moral: Be Careful!

- Synchronization is hard
 - Need to consider all possible shared state
 - Must keep locks organized and use them consistently and correctly
- Knowing there are bugs may be tricky; fixing them can be even worse!
- Keeping shared state to a minimum reduces total system complexity

30

Outline

- Part I: Motivations
 - Introduction
 - Parallel vs. Distributed Computing
 - History of Distributed Computing
 - Parallelization and Synchronization

• Part II: MapReduce theory and implementation

- Lisp/ML review (functional programming, map, fold)
- MapReduce overview
- Hadoop

Functional Programming Review

- Functional operations do not modify data structures: They always create new ones
- Original data still exists in unmodified form
- Data flows are implicit in program design
- Order of operations does not matter

Functional Programming Review

fun foo(I: int list) = sum(I) + mul(I) + length(I)

Order of sum() and mul(), etc does not matter – they do not modify *I*

Functional Updates Do Not Modify Structures

fun append(x, lst) =
let lst' = reverse lst in
reverse (x :: lst')

The append() function above reverses a list, adds a new element to the front, and returns all of that, reversed, which appends an item.

But it never modifies Ist!

33

21

Functions Can Be Used As Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its argument; DoDouble() will do it twice.

MapReduce

Motivation: Large Scale Data Processing

- Want to process lots of data (> 1 TB)
- Want to parallelize across hundreds/thousands of CPUs
- ... Want to make this easy

MapReduce

- Automatic parallelization & distribution
- Fault-tolerant
- Provides status and monitoring tools
- Clean abstraction for programmers

Programming Model

- Borrows from functional programming
- Users implement interface of two functions:
 - map (in_key, in_value) ->
 (out_key, intermediate_value) list
 - reduce (out_key, intermediate_value list) ->
 out_value list

map

- Records from the data source (lines out of files, rows of a database, etc) are fed into the map function as key*value pairs: e.g., (filename, line).
- map() produces one or more intermediate values along with an output key from the input.

reduce

- After the map phase is over, all the intermediate values for a given output key are combined together into a list
- reduce() combines those intermediate values into one or more final values for that same output key
- (in practice, usually only one final value per key)

Input key*value

(kéy 1,

values...)

map

(key 2,

values...)

intermediate

values

reduce

final kev 1

values

values)

== Barrier == : Aggregates intermediate values by output key

reduce

final kev 2

Parallelism

- map() functions run in parallel, creating different intermediate values from different input data sets
- reduce() functions also run in parallel, each working on a different output key
- All values are processed independently
- Bottleneck: reduce phase can't start until map phase is completely finished.

Example: Count word occurrences

```
map(String input_key, String input_value):
  // input_key: document name
  // input_value: document contents
  for each word w in input value:
    EmitIntermediate(w, "1");
reduce(String output_key, Iterator
  intermediate values):
  // output key: a word
  // output_values: a list of counts
  int result = 0;
  for each v in intermediate values:
    result. += ParseInt.(v):
 Emit(AsString(result));
```


42

Input key*value

(kév 1

values...)

ntermediate values

map

(key 2,

values...)

reduce

final kev 3

values

key 3, intermediate

values

(key 3,

values...)

Example vs. Actual Source Code

- Example is written in pseudo-code
- Actual implementation is in C++, using a MapReduce library
- Bindings for Python and Java exist via interfaces
- True code is somewhat more involved (defines how the input key/values are divided up and accessed, etc.)

Locality

- Master program divvies up tasks based on location of data: tries to have map() tasks on same machine as physical file data, or at least same rack
- map() task inputs are divided into 64 MB blocks: same size as Google File System chunks

45

46

Fault Tolerance

- Master detects worker failures
 - Re-executes completed & in-progress map() tasks
 - Re-executes in-progress reduce() tasks
- Master notices particular input key/values cause crashes in map(), and skips those values on re-execution.
 - Effect: Can work around bugs in third-party libraries!

Optimizations

- No reduce can start until map is complete:
 - A single slow disk controller can rate-limit the whole process
- Master redundantly executes "slow-moving" map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn't this mess up the total computation?

MapReduce Conclusions

- MapReduce has proven to be a useful abstraction
- Greatly simplifies large-scale computations at Google
- Functional programming paradigm can be applied to large-scale applications
- Fun to use: focus on problem, let library deal w/ messy details

Hadoop

- Apache Hadoop project develops open-source software for reliable, scalable, distributed computing
- MapReduce implementation
- Who uses Hadoop
 - Amazon
 - Adobe
 - Facebook
 - FOX
 - Google
 - IBM
 - LinkedIn
 - .

49

Outline

- Part I: Motivations
 - Introduction
 - Parallel vs. Distributed Computing
 - History of Distributed Computing
 - Parallelization and Synchronization
- Part II: MapReduce theory and implementation
 - Lisp/ML review (functional programming, map, fold)
 - MapReduce overview
 - Hadoop