
Building distributed
systems with RMI

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://sardes.inrialpes.fr/~bouchena/teaching/

© S. Bouchenak Distributed systems & Middleware 2

Agenda

Servlet-based distributed systems (CM), S. Bouchenak , 13:30 – 15:00

RMI-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S8

–S14

Project, S. Bouchenak & C. Labbé & D. Serrano, 13:30 – 16:45S15

Presentation of the project (CM), S. Bouchenak , 13:30 – 15:00

Multi-tier distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S12

Support projet (TD), C. Labbé & D. Serrano, 15:15 – 18:30S13

Interruption weekS9

Multi-tier distributed systems (CM), S. Bouchenak , 13:30 – 15:00

Servlet-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S11

Introduction to transactions (CM), C. Labbé, 13:30 – 15:00S10

RMI-based distributed systems (CM), S. Bouchenak , 13:30 – 15:00

RMI-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S7

Introduction to distributed systems and middleware (CM), S. Bouchenak, 13:30 – 15:00

Introduction to JDBC (CM), C. Labbé, 15:15 – 16:45
S6

Wednesday, 13:30 – 18:30Week

© S. Bouchenak Distributed systems & Middleware 3

Motivations

� Sockets are a simple and flexible technology for data
communication in distributed systems

� Sockets are restricted to the transmission of data

� Sockets leave the semantics of this data unconsidered

� Protocols which provide the semantic interpretation of the
data must be developed on the application level

� The development of such protocols is often time-consuming
and error-prone

© S. Bouchenak Distributed systems & Middleware 4

Motivations (2)

� Object-oriented programming already provides a framework for

semantics of data – the objects

� In local applications, objects communicate via methods

� It would be desirable, for distributed applications, to have a
similar communication paradigm available

� Such a communication paradigm would permit the remote call

of methods

� Java provides the Remote Method Invocation mechanism: RMI

© S. Bouchenak Distributed systems & Middleware 5

Remote Procedure Call (RPC)

� RPC is a technology developed in the 80s to call procedures

on remotes computers (with the procedural programming

paradigm)

� RPC allows the call of procedures located in another process

space on a remote computer (or on the same machine)

� Technical issues for implementing RPC

� Different addess spaces

� Heterogeneous machines

© S. Bouchenak Distributed systems & Middleware 6

RPC implementation

� Different address spaces

� In the local case:

� Data used in a procedure call is simply passed as a reference (a
pointer)

� This reference refers to a physical memory address

� Such a reference has no correct meaning in a different address

space

� In the distributed case:

� The referenced data used in a remote call needs to be passed as

a copy

© S. Bouchenak Distributed systems & Middleware 7

RPC implementation (2)

� Heterogeneous machines

� In communication between heterogeneous computer
architectures, the internal representation of data on another
computer may not be the same as on the original computer

� Data sent in remote procedure calls must be converted into a
platform-independent data format (e.g. XDR – eXtensible Data
Representation)

� Data received in remote procedure calls must be converted back
into an internal representation of the receiver’s side

© S. Bouchenak Distributed systems & Middleware 8

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications using RMI

5. The architecture of RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 9

Overview of RMI-based
distributed applications

� RMI applications comprise two separate programs, a server and a
client

� The server program:

� creates some remote objects,

� makes references to these objects accessible,

� and waits for clients to invoke methods on these objects.

� The client program:

� obtains a remote reference to one or more remote objects on a server,

� and then invokes methods on them.

� RMI provides the mechanism by which the server and the client
communicate and pass information back and forth.

© S. Bouchenak Distributed systems & Middleware 10

Overview of RMI-based
distributed applications (2)

� Distributed object applications follow these steps:
� Client locates remote objects on server

� Various mechanisms to obtain references to remote objects

� An application server can register its remote objects with RMI registry
(RMI's simple naming facility)

� An application server can return remote object references as part of
other remote invocations

� Client communicates with remote objects on server
� To the client programmer, remote communication looks similar to

regular Java method invocations

� Details of remote communication are handled by RMI and transparent
to client and server programs

� Load class definitions for objects that are passed around
� Because RMI enables objects to be passed back and forth, it

provides mechanisms for loading an object's class definition

© S. Bouchenak Distributed systems & Middleware 11

Overview of RMI-based
distributed applications (3)

rmiregistry

RMI serverRMI client

1

2

3

© S. Bouchenak Distributed systems & Middleware 12

Remote objects

� Objects with methods that can be invoked across Java virtual

machines are called remote objects

� An object becomes remote by implementing a remote

interface, which has the following characteristics:

� A remote interface extends the interface java.rmi.Remote

� Each method of the interface declares java.rmi.RemoteException
in its throws clause, in addition to any application-specific
exceptions

© S. Bouchenak Distributed systems & Middleware 13

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications using RMI

5. The architecture of RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 14

A simple example

import java.rmi.*;

public interface Hello

extends Remote {

// A method provided by the

// remore object

public String sayHello()
throws RemoteException;

}

Remote object – Interface definition

© S. Bouchenak Distributed systems & Middleware 15

A simple example (2)

import java.rmi.*;

public interface Hello

extends Remote {

// A method provided by the

// remore object

public String sayHello()
throws RemoteException;

}

import java.rmi.*;

import java.rmi.server.*;

public class HelloImp

implements Hello {

private String message;

public Hello(String s) {

message = s ;

}

public String sayHello ()

throws RemoteException {

return message ;

}

}

Remote object – Interface definition Remote object – Class implementation

© S. Bouchenak Distributed systems & Middleware 16

A simple example (3)
import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class HelloServer {

public static void main(String [] args){

...

try {

// Create a Hello remote object

HelloImp h =

new HelloImp ("Hello world !");

Hello h_stub = (Hello)

UnicastRemoteObject.exportObject(h, 0);

// Register the remote object in RMI

// registry with a given identifier

Registry registry= LocateRegistry.getRegistry();

registry.bind("Hello1”, h_stub);

System.out.println ("Server ready");

} catch (Exception e) {

System.err.println("Error on server :"

+ e) ;

e.printStackTrace();

return;

}

}

}

Server

© S. Bouchenak Distributed systems & Middleware 17

A simple example (4)
import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class HelloServer {

public static void main(String [] args){

...

try {

// Create a Hello remote object

HelloImp h =

new HelloImp ("Hello world !");

Hello h_stub = (Hello)

UnicastRemoteObject.exportObject(h, 0);

// Register the remote object in RMI

// registry with a given identifier

Registry registry= LocateRegistry.getRegistry();

registry.bind("Hello1”, h_stub);

System.out.println ("Server ready");

} catch (Exception e) {

System.err.println("Error on server :"

+ e) ;

e.printStackTrace();

return;

}

}

}

import java.rmi.*;

import java.rmi.registry.*;

public class HelloClient {

public static void main(String [] args) {

try {

if (args.lenght < 1) {

System.out.println("Usage:

java HelloClient <server host>");

return;

}

String host = arg[0];

// Get remote object reference

Registry registry =

LocateRegistry.getRegistry(host);

Hello h = (Hello) registry.lookup("Hello1");

// Remote method invocation

String res = h.sayHello();

System.out.println(res);

} catch (Exception e) {

System.err.println("Error on

client: " + e) ;

}

}

}

Server Client

© S. Bouchenak Distributed systems & Middleware 18

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications
using RMI

5. The architecture of RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 19

Steps to build distributed
applications with RMI

� Using RMI to develop a distributed application
involves the following general steps:

1. Designing and implementing the components of the

distributed application.

2. Compiling sources.

3. Making classes network accessible.

4. Starting the application.

© S. Bouchenak Distributed systems & Middleware 20

Designing and implementing the

components of the distributed application

� Determine application architecture

� Which components are local objects

� And which components are remotely accessible

� What components are servers (creators of remote objects) and which

are clients (accessors to remote objects)

� Define remote interfaces

� A remote interface specifies the methods that can be invoked remotely
by a client on remote objects

� The design of such interfaces includes the determination of the types
of objects that will be used as the parameters and return values for
these methods

� If any of these interfaces or classes do not yet exist, they need to be

defined as well

� Client program accesses remote interfaces, not to the implementation

classes of those interfaces

© S. Bouchenak Distributed systems & Middleware 21

Designing and implementing the

components of the distributed application (2)

� Implementing remote objects

� Remote objects must implement one or more remote interfaces

� The remote object class may include implementations of other
interfaces and methods that are available only locally

� If any local classes are to be used for parameters or return values of
any of these methods, they must be implemented as well

� Implementing servers

� Servers that create remote objects and provide access to them can be

implemented at any time after the remote objects are implemented

� Implementing clients

� Clients that use remote objects can be implemented at any time after

the remote interfaces are defined

© S. Bouchenak Distributed systems & Middleware 22

Steps to build distributed
applications with RMI

� Using RMI to develop a distributed application
involves the following general steps:

1. Designing and implementing the components of the

distributed application

2. Compiling sources

3. Making classes network accessible

4. Starting the application

© S. Bouchenak Distributed systems & Middleware 23

Compiling source code

� As with any Java program, use javac compiler to compile the
source files

� The source files contain

� the declarations of the remote interfaces

� their implementations

� any other server classes

� and the client classes

� With versions prior to Java Platform, Standard Edition 5.0

� an additional step was required to build stub classes

� by using the rmic compiler

� however, this step is no longer necessary

© S. Bouchenak Distributed systems & Middleware 24

Steps to build distributed
applications with RMI

� Using RMI to develop a distributed application
involves the following general steps:

1. Designing and implementing the components of the

distributed application

2. Compiling sources

3. Making classes network accessible

4. Starting the application

© S. Bouchenak Distributed systems & Middleware 25

Making classes network
accessible

� Certain class definitions are made network
accessible

� such as the definitions for the remote interfaces

� and their associated types,

� and the definitions for classes that need to be downloaded

to the clients or servers

� Class definitions are typically made network
accessible through a web server

© S. Bouchenak Distributed systems & Middleware 26

Steps to build distributed
applications with RMI

� Using RMI to develop a distributed application
involves the following general steps:

1. Designing and implementing the components of the

distributed application

2. Compiling sources

3. Making classes network accessible

4. Starting the application

© S. Bouchenak Distributed systems & Middleware 27

Starting the application

� Starting the application includes

� running the RMI remote object registry

� using the rmiregistry tool

� the server

� using the java tool

� and the client

� using the java tool

1. rmiregistry

2. RMI server3. RMI client

© S. Bouchenak Distributed systems & Middleware 28

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications using RMI

5. The architecture of RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 29

The architecture of RMI

� Transparency regarding distribution

� RMI offers full trasparency regarding distribution

� After a first initialization, a call can be used in exactly the same way as in
the local case

© S. Bouchenak Distributed systems & Middleware 30

The architecture of RMI (2)
import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class HelloServer {

public static void main(String [] args){

...

try {

// Create a Hello remote object

HelloImp h =

new HelloImp ("Hello world !");

Hello h_stub = (Hello)

UnicastRemoteObject.exportObject(h, 0);

// Register the remote object in RMI

// registry with a given identifier

Registry registry= LocateRegistry.getRegistry();

registry.bind("Hello1”, h_stub);

System.out.println ("Server ready");

} catch (Exception e) {

System.err.println("Error on server :"

+ e) ;

e.printStackTrace();

return;

}

}

}

import java.rmi.*;

import java.rmi.registry.*;

public class HelloClient {

public static void main(String [] args) {

try {

if (args.lenght < 1) {

System.out.println("Usage:

java HelloClient <server host>"); return;

}

String host = arg[0];

// Get remote object reference

Registry registry =

LocateRegistry.getRegistry(host);

Hello h = (Hello) registry.lookup("Hello1");

// Remote method invocation

String res = h.sayHello();

System.out.println(res);

} catch (Exception e) {

System.err.println("Error on

client: " + e) ;

}

}

}

Server Client

© S. Bouchenak Distributed systems & Middleware 31

The architecture of RMI (3)

� Transparency regarding distribution
� RMI offers full trasparency regarding distribution

� After a first initialization, a call can be used in exactly the same way as in the local
case

� RMI client and server
� Both client and server are normal objects implemented in Java

� The server must document the interface it provides for remote access

� From this description, additional classes are automatically created by a special
compiler

� These classes internally take care of communication handling between client and
server

� These classes are known as Stub (client-side) and Skeleton (server-side)

© S. Bouchenak Distributed systems & Middleware 32

Layers of RMI architecture

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

© S. Bouchenak Distributed systems & Middleware 33

The architecture of RMI (4)

� The stub and skeleton layer in RMI

� Stub

� A placeholder object which offers
the same interface as the server object

� Skeleton

� The skeleton takes the calls of the stub

� It processes them

� It forwards the call to the server object

� It waits for the result

� It sends the result back to the stub

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

© S. Bouchenak Distributed systems & Middleware 34

The architecture of RMI (5)

� The reference layer in RMI

� It finds the respective communication

partners

� It includes the name service, the registry TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

© S. Bouchenak Distributed systems & Middleware 35

The architecture of RMI (6)

� The transport layer in RMI

� It manages communication connections

� It handles communication

� It must not be confused with the

network transport layer (e.g. TCP/IP)

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

© S. Bouchenak Distributed systems & Middleware 36

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications using RMI

5. The architecture of RMI
� Architecture

� Class hierarchy in RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 37

Class hierarchy in RMI

HelloImp

java.rmi.Remote

Hello

implements

provided class

provided interface

class to develop

interface to develop

extends

© S. Bouchenak Distributed systems & Middleware 38

Class hierarchy in RMI (2)

� Package java.rmi.server
� Provides classes and interfaces for supporting the server side of

RMI

� Class java.rmi.server.RemoteObject
� Distributed objects do not inherit directly from Object
� They inherit from RemoteObject
� RemoteObject implements the Object behavior for remote

objects (e.g. methods hashCode, equals, and toString are
reimplemented)

� Class java.rmi.server.UnicastRemoteObject
� Provides support for point-to-point active object references

(invocations, parameters, and results)
� Uses TCP streams

© S. Bouchenak Distributed systems & Middleware 39

Class hierarchy in RMI (3)

� Package java.rmi
� Provides the RMI package

� Interface java.rmi.Remote
� Identifies interfaces whose methods may be invoked from a non-local

virtual machine
� Any object that is a remote object must directly or indirectly implement

this interface

� Only those methods specified in a "remote interface“ (an interface that
extends java.rmi.Remote) are available remotely

� Class java.rmi.RemoteException
� Communication-related exceptions that may occur during the

execution of a remote method call

� Each method of a remote interface (an interface that extends
java.rmi.Remote) must list RemoteException in its throws clause

© S. Bouchenak Distributed systems & Middleware 40

Class hierarchy in an example

import java.rmi.*;

public interface Hello

extends java.rmi.Remote {

// A method provided by the

// remore object

public String sayHello()
throws java.rmi.RemoteException;

}

import java.rmi.*;

import java.rmi.server.*;

public class HelloImp

implements Hello {

private String message;

public Hello(String s)
{

message = s ;

}

public String sayHello ()

throws java.rmi.RemoteException
{

return message ;

}

}

Remote object – Interface definition Remote object – Class implementation

© S. Bouchenak Distributed systems & Middleware 41

Outline

1. Motivations

2. Overview of RMI-based distributed applications

3. A simple example

4. Methodology to build distributed applications using RMI

5. The architecture of RMI

6. A detailed example step by step

© S. Bouchenak Distributed systems & Middleware 42

A detailed example step by step

� Main steps to create a distributed application with RMI:

Compile the source filesCompile the source files

Start the RMI regsitry

Implement the client programImplement the server program

Start the clientStart the server

Implement the remote object

Define the remote interface provided by the remote object

Client sideServer side

© S. Bouchenak Distributed systems & Middleware 43

A detailed example step by step (2)

� Define the remote interface provided by the remote object:

� Extends java.rmi.Remote

� Defines the set of methods that can be called remotely

� Each method must declare java.rmi.RemoteException

import java.rmi.Remote;

Import java.rmi.RemoteException;

public interface Hello extends Remote {

// A method provided by the remore object

public String sayHello() throws RemoteException;

}

© S. Bouchenak Distributed systems & Middleware 44

A detailed example step by step (3)

� Implement the remote object in a class:

� Declare the remote interface being implemented

� Implement the set of methods that can be called remotely

� Implement any other local method that can not be invoked remotely
import java.rmi.RemoteException;

public class HelloImp implements Hello {

private String message;

public Hello(String s) {

message = s ;

}

public String sayHello () throws RemoteException {

return message ;

}

}

© S. Bouchenak Distributed systems & Middleware 45

A detailed example step by step (4)

� Implement the remote object in a class – Passing objects in RMI

� Arguments to remote methods or return values from remote methods can
be of any type

� Primitive data types (e.g. int, float, etc.)

� Remote objects

� Local objects

� Objects passed to or returned from remote methods must be serializable

� They must implement the java.io.Serializable interface

� Some object types do not meet any of these criteria; they cannot be
passed to or returned from remote methods

� Most of these objects, such as threads or file descriptors, encapsulate
information that makes sense only within a single address space

� Many of the core classes (e.g. classes in the packages java.lang and
java.util) implement the Serializable interface

© S. Bouchenak Distributed systems & Middleware 46

A detailed example step by step (5)

� How arguments and return values are passed in remote method invocations

� Remote objects are essentially passed by reference
� A remote object reference is a stub

� It is a client-side proxy that implements the remote interface that the remote object
implements

� Passing a remote object by reference means that any changes made to the state of the
object by remote method invocations are reflected in the original remote object

� Local objects are passed by copy
� Using object serialization

� By default, all fields are copied except fields that are marked static or transient

� Default serialization behavior can be overridden on a class-by-class basis

� A copy of the object is created in the receiving Java virtual machine

� Any changes to the object's state by the receiver are reflected only in the receiver's copy, not
in the sender's original instance

� Any changes to the object's state by the sender are reflected only in the sender's original
instance, not in the receiver's copy

© S. Bouchenak Distributed systems & Middleware 47

A detailed example step by step (6)

� Implement the server program:

� Create and install a security manager

� Create and export remote objects

� Register remote objects with the RMI registry
import java.rmi.server.UnicastRemoteObject;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class HelloServer {

public static void main(String [] args){

try {

if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager());}

HelloImp h = new HelloImp ("Hello world !");

Hello h_stub = (Hello) UnicastRemoteObject.exportObject(h, 0);

Registry registry= LocateRegistry.getRegistry();

registry.bind("Hello1”, h_stub);

System.out.println ("Server ready");

} catch (Exception e) {

System.err.println("Error on server :" + e) ; e.printStackTrace(); return;

}

}

}

© S. Bouchenak Distributed systems & Middleware 48

A detailed example step by step (7)

� Implement the server program – Create and install a Security Manager

� The first task of the server program is to create and install a security manager

� This protects access to system resources from untrusted downloaded code running

within the Java virtual machine

� A security manager determines whether downloaded code has access to the local

file system or can perform any other privileged operations

� If an RMI program does not install a security manager, RMI will not download

classes (other than from the local class path) for objects received as arguments or

return values of remote method invocations

� This restriction ensures that the operations performed by downloaded code are

subject to a security policy

© S. Bouchenak Distributed systems & Middleware 49

A detailed example step by step (8)

� Implement the client program:

� Create and install a security manager

� Get a remot object reference

� Perform remote method invocations on the remote object
import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class HelloClient {

public static void main(String [] args) {

if (args.lenght < 1) { System.out.println("Usage: java HelloClient <server host>"); return; }

try {

if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager()); }

String host = arg[0];

Registry registry = LocateRegistry.getRegistry(host);

Hello h = (Hello) registry.lookup("Hello1");

String res = h.sayHello(); System.out.println(res);

} catch (Exception e) {

System.err.println("Error on client: " + e); e.printStackTrace(); return;

}

}

}
© S. Bouchenak Distributed systems & Middleware 50

A detailed example step by step (9)

� Compile source files

� This example separates

� The remote interface

� The remote object implementation class

� The server program class

� The client program class

� Compile the remote interface and build a jar file that contains it

� javac –d classes –classpath .:classes src/Hello.java

� jar cvf lib/Hello.jar classes/Hello.class

� Compile the remote object implementation class and build a jar file that
contains it

� javac –d classes –classpath .:classes:lib/Hello.jar src/HelloImp.java

� jar cvf lib/HelloImp.jar classes/HelloImp.class

© S. Bouchenak Distributed systems & Middleware 51

A detailed example step by step (10)

� Compile and run server-side and client-side programs:

� Server-side

� Compile the server program

� javac –d classes –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar
src/HelloServer.java

� Start RMI registry

� rmiregistry &

� Start the server

� java –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar HelloServer

� Client-side

� Compile the client program

� javac –d classes –classpath .:classes:lib/Hello.jar src/HelloClient.java

� Start the client

� java –classpath .:classes:lib/Hello.jar HelloClient

© S. Bouchenak Distributed systems & Middleware 52

A detailed example step by step (11)

� A note about security

� The server and client programs run with a security manager installed

� When either program runs, a security policy file must be specified

� So that the code is granted the security permissions it needs to run

� Example of a policy file (named server.policy) to use with the server
grant codeBase "file:/home/ann/src/" {

permission java.security.AllPermission;

};

� Example of a policy file (named client.policy) to use with the client
grant codeBase "file:/home/john/src/" {

permission java.security.AllPermission;

};

© S. Bouchenak Distributed systems & Middleware 53

Agenda

Servlet-based distributed systems (CM), S. Bouchenak , 13:30 – 15:00

RMI-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S8

–S14

Project, S. Bouchenak & C. Labbé & D. Serrano, 13:30 – 16:45S15

Presentation of the project (CM), S. Bouchenak , 13:30 – 15:00

Multi-tier distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S12

Support projet (TD), C. Labbé & D. Serrano, 15:15 – 18:30S13

Interruption weekS9

Multi-tier distributed systems (CM), S. Bouchenak , 13:30 – 15:00

Servlet-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S11

Introduction to transactions (CM), C. Labbé, 13:30 – 15:00S10

RMI-based distributed systems (CM), S. Bouchenak , 13:30 – 15:00

RMI-based distributed systems (TD), S. Bouchenak & D. Serrano, 15:15 – 18:30
S7

Introduction to distributed systems and middleware (CM), S. Bouchenak, 13:30 – 15:00

Introduction to JDBC (CM), C. Labbé, 15:15 – 16:45
S6

Wednesday, 13:30 – 18:30Week

© S. Bouchenak Distributed systems & Middleware 54

References

This lecture is extensively based on:

� Sun Microsystems. Java Tutorial on RMI.
http://java.sun.com/docs/books/tutorial/rmi/

� M. Boger. Java in Distributed Systems: Concurrency, Distribution
and Persistence. Wiley, 2001.

� This lecture is partly based on lectures given by Sacha Krakowiak,
http://sardes.inrialpes.fr/people/krakowia/

