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Abstract
Today, mobility and persistence are important aspects
of distributed applications. They have many fields of
use such as load balancing, fault tolerance and dynamic
reconfiguration of applications. In this context, the Java
virtual machine provides many useful services such as
dynamic class loading and object serialization which
allow Java code and objects to be mobile or persistent.
However, Java does not provide any service for the
mobility or the persistence of control flows (threads),
the execution state of a Java program remains
inaccessible.
We designed and implemented new services that make
Java threads mobile or persistent. With these services, a
running Java thread can, at an arbitrary state of its
execution, migrate to a remote machine or be
checkpointed on disk for a possible subsequent
recovery.
Therefore migrating a Java thread is simply performed
by the call of our go primitive, by the thread itself or by
an external thread. In other words, the migration or the
checkpointing of a thread can be initiated by the thread
itself or by another thread.
We integrated these services into the JVM, so they
provide reasonable and competitive performance
figures without inducing an overhead on JVM
performance. Finally, we experimented a dynamic
reconfiguration tool based on our mobility service and
applied to a running distributed application.
Keywords: mobility, persistence, migration,
checkpointing, recovery, Java, thread, JVM

11..  IInnttrroodduuccttiioonn
Today, mobility and persistence are important

aspects of distributed applications and have several
fields of use [Milojicic99] [Ambler99]. Application
mobility can be used to dynamically balance the load
between several machines in a distributed system
[Nichols87], to reduce network traffic by moving
clients closer to servers [Douglis92], to dynamically

reconfigure distributed applications [Hofmeister93], to
implement mobile agent platforms [Chess95] or as a
machine administration tool [Oueichek96]. Application
persistence can be used for fault tolerance [Wojcik95]
or for application debugging.

Distributed applications development is an
important research direction in computing systems. In
this context, the object paradigm has proven to be well
suited to distributed applications development and the
Java Virtual Machine (JVM) is now considered as a
reference platform [Gosling96]. The Java compiler
produces bytecode, an intermediate code that is
interpreted by the JVM. Today, the JVM is ported on
almost every platform and can therefore be viewed as a
universal machine.

In order to facilitate the development of
distributed applications, the JVM provides several
services [Sun00a] among which:
• Object serialization. The serialization service

allows the transfer of Java objects between several
nodes or the storage of objects on disk.

• Dynamic class loading. The dynamic class loading
service enables the transfer of Java code between
several nodes.
Therefore, Java provides useful services for the

mobility and the persistence of code and data. However,
Java does not provide any service enabling the mobility
and the persistence of applications during their
execution. Thus, if a running Java application migrates
to a new location, only using object serialization and
dynamic class loading, the execution state of the
application is lost. In other words, when arriving on its
new location, the migratory application can access to its
code and its re-actualized data but it has to restart the
execution from the beginning. Consequently, the
provided Java services are not sufficient for either
enabling dynamic load balancing of distributed Java
executions or allowing the state of running applications
to be checkpointed and then recovered.

We designed and implemented new services that
make Java threads, i.e. executions, mobile or persistent.
With these services, a running Java thread can, at an



arbitrary state of its execution, migrate to a remote
machine or be checkpointed on disk for a possible
subsequent recovery.

Our java.lang.threadpack  Java package provides
several primitives, among which go performs thread
migration, store is used for thread checkpointing and
load for thread recovery. Therefore migrating a Java
thread is simply performed by the call of the go
primitive, by the thread itself or by an external thread.
In other words, the migration or the checkpointing of a
thread can be initiated by the thread itself or by another
thread.

We integrated these services into the JVM, so they
provide acceptable performance figures without
inducing an overhead on JVM performance. Finally, we
experimented with a prototype implementation a
dynamic reconfiguration tool based on our mobility
service and applied to a running distributed application.

The rest of this paper consists of three main parts.
We first describe our service for capturing/restoring
Java thread state in section 2 and then present the
services of thread mobility and thread persistence in
section 3. In sections 4 and 5, we respectively present
performance figures and describe some experiments
that we performed with our services. Finally, we
discuss related work and present our conclusions and
future directions in section 6 and 7.

22..  TThhrreeaadd  ss ttaattee   ccaappttuurree //rreess ttoorraattiioonn  sseerrvviiccee
Both services allowing the mobility and the

persistence of Java threads are based on a common
service: a thread state capture/restoration service. We
first describe the representation of a thread state in the
JVM and then present the design principles of our
capture/restoration service and its implementation
details.

2.1. Java thread state

The JVM can support the concurrent execution of
several threads [Lindholm96]. The state of a Java
thread is illustrated by figure 1, it consists of three main
data structures:
• The Java stack . A Java stack is associated with

each thread in the JVM. The Java stack consists of
a succession of frames (see figure  2). A new frame
is pushed onto the stack each time a Java method is
invoked and popped from the stack when the
method returns. A frame includes the local
variables of the associated method and the partial
results of this method. The values of local variables
and partial results may be of several types: integer,
float, Java reference, etc. A frame also contains

registers such as the program counter and the top of
the stack.

• The object heap. The heap of the JVM includes all
the Java objects created during the lifetime of the
JVM. The heap associated with a thread consists of
all the objects used by the thread (objects
referenced in the thread’s Java stack).

• The method area. The method area of the JVM
includes all classes (and their methods) that have
been loaded by the JVM. The method area
associated with a thread contains the classes used
by the thread (classes whose some methods are
references by the thread’s Java stack).

2.2. Design of the capture/restoration service

Here are the design principles and the design
decisions of our Java thread state capture/restoration
service.

2.2.1. Design principles

The thread state capture/restoration service
enables, on the one hand, the capture of the current
state of a running thread, and on the other hand, the
restoration  of a previously captured state in a new
thread: the new thread starts running at the point at
which the execution of the previous thread was
interrupted.

Thread state capture consists in interrupting the
thread during its execution and extracting its current
state. The extraction amounts to build a data structure (a
Java object) containing all information necessary for
restoring the Java stack, the heap and the method area
associated with the thread. To build such a data

Figure 1: Java thread state
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structure, the Java stack associated with the thread is
scanned in order to identify the objects and the classes
that are referenced from the stack. After state capture,
the resulting data structure can be serialized and sent to
another virtual machine in order to implement mobility
or it can be stored on disk for persistence purpose.

One of our motivations was to provide a generic
service which allows the implementation of various
capture policies. Consequently we rely on Java object
serialization and dynamic class loading features in
order to capture respectively the heap and the method
area.

The restoration of a thread consists first in
creating a new thread and initializing its state with a
previously captured state. After that, the Java stack, the
heap and the method area associated with the new
thread are identical to those associated with the thread
whose state was previously captured. Finally, the new
thread is started, it resumes the execution of the
previous thread.

2.2.2. Design decisions

There were mainly two problems for designing a
Java thread state capture/restoration service. The first
issue is to have access to the state of Java threads, a
state that is internal to the JVM. The second issue is
that the state of Java threads is not portable on
heterogeneous architectures.

2.2.2.1. Non accessible state

The state of Java threads is internal to the JVM.
This state is not accessible by Java programs and can
therefore not be directly captured. In order to allow the
capture of threads state, we extended the JVM and
externalized the state of Java threads.

2.2.2.2. Non portable state

Unlike the heap and the method area that consist
of information portable on heterogeneous architectures
(Java objects and Java classes), the Java stack is a
native data structure (C structure). The representation of
the information contained in the Java stack depends on
the underlying architecture. The thread state capture
service must translate this non portable data structure
(C structure) to a portable data structure (Java object).

Translating the Java stack into a portable data
structure consists more precisely in translating the
native values of local variables and partial results
(figure 2) into Java values. This translation requires the
knowledge of the types of the values. But the Java stack
does not provide any information about the types of the
values it contains: a four bytes word may represent a
Java reference as well as an int value or a float value.
The thread state capture service must recognize the

types of the values contained in the Java stack. We
propose two approaches for type recognition:
• Type recognition at runtime . The first approach

consists in recognizing the types during runtime.
The type information is built in parallel with thread
execution. The type information is actualized each
time a bytecode instruction is interpreted by the
thread because the bytecode instructions are typed
and are applied to particular types [Lindholm96].
Therefore, at state capture time, the type
information is available. The drawback of this
approach is that it induces an overhead on
application performance.

• Type recognition at capture time . The second
approach consists in recognizing the types at
capture time. The type information is built by
analyzing the bytecode to determine the execution
path of the thread. This analyze is similar to the
bytecode verifier algorithm [Lindholm96]. This
approach avoids any overhead on application
performance but causes a latency due to type
information building.
We first implemented the approach based on type

recognition at runtime [Bouchenak00] and then
implemented the approach based on type recognition at
capture time*. In this paper, we focus our attention on
the design principles of our services and do not tackle
the implementation details.

2.3. Implementation of the
capture/restoration service

Our Java thread state capture/restoration service
was integrated to the Java 2 SDK (formerly called
JDK 1.2) [Sun00a]. Our new Java package, called
java.lang.threadpack , provides many classes such as
the ThreadState class whose instances represent the
state of Java threads and the ThreadStateManagement
class that provides the necessary features for capturing
and restoring Java threads state.

Figure 3 illustrates a part of the application
programming interface (API) of the
ThreadStateManagement class. The capture method
allows the capture of the current state of a Java thread,
the captured state is returned as a result of this method,
as a ThreadState object. Symmetrically, the restore
method creates a new Java thread, initializes its state
with the ThreadState argument, starts the new thread
and returns it as a result of the method. The new thread
resumes the execution of the thread whose state was

                                                                
* The evaluation presented in section 4 concerns the
first approach



previously captured and passed as an argument of the
restore method.

The captureAndSend  and receiveAndRestore
methods are generic and can specialize the capture and
restoration operations to application needs. Besides
capturing the state of a Java thread, the captureAndSend
method allows the programmer to specify the way the
captured state is handled: the captured state can for
example be sent to a remote machine for a mobility
purpose, it can be stored on disk in the case of
application persistence, etc. The specialization of the
handling of the captured state is specified by the second
argument of the captureAndSend method. In fact, this
argument implements our SendInterface interface and
so provides a sendState method that is called by our
captureAndSend method, just after the capture of the

thread state. The third argument of the captureAndSend
method is a boolean that specifies if the thread whose
state is captured is stopped or resumed. This argument
is for example set to true in the case of thread migration
and is set to false for remote thread cloning.

Symmetrically, the receiveAndRestore method
specifies the way a thread state is received before it is
restored: the state can for example be received from a
remote machine, it can be read from disk, etc. The
specialization of the way the thread state is received is
possible thanks to the argument of the
receiveAndRestore method: this argument implements
our ReceiveInterface interface and so provides a
receiveState method that is called by our
receiveAndRestore method, just before the restoration
operation.

33..  TThhrreeaadd  mmoobbii llii ttyy  aanndd  tthhrreeaadd  ppeerrss iiss tteennccee
sseerrvviicceess

Besides our system service for capturing/restoring
the state of Java threads, we provide higher-level
services for the mobility and the persistence of Java
applications.

Making an application mobile is the action of
moving an application, during its execution, from one
node to another: the application starts running, on the
new node, at the point at which the execution was
interrupted on the first node. Therefore, making a Java
application mobile consists in making the underlying
Java thread mobile. In the case of a multi-threaded
application, the whole group of threads has to be
moved.

Making a thread mobile is the action of capturing
the current state of the thread, sending this state to a
target machine and restoring the state in a new thread
on the target machine: the new thread resumes the
execution in the state left by the original thread.

In the same way, application persistence consists
first in saving the current state of a running application
on stable storage (disk). The saved state can
subsequently be restored in order to resume the
execution of the application. Therefore, making a Java
application persistent consists in making the underlying
Java thread(s) persistent.

Making a thread persistent is, first, the action of
capturing the current state of the thread and saving it on
disk and then, the ability of restoring the saved state in
a new thread: the new thread resumes the execution of
the previous thread.

Our MobileThreadManagement class belongs to
the java.lang.threadpack  package and provides services
necessary for the mobility of Java threads. Figure 4.a
illustrates a part of the application programming

java.lang.threadpack
Class ThreadStateManagement
public final class ThreadStateManagement  extends
Object
The ThreadStateManagement class provides several
useful services for the capture and restoration of Java
thread states.
Method Summary
staticThreadState capture(Thread thread)

   Captures the state of the thread
argument and returns it as a
ThreadState  object.

static Thread restore(ThreadState threadState)
   Creates a new Java thread,
initializes it with a previously
captured state and starts its
execution.

static void captureAndSend(Thread thread,
   SendInterface sndItf,
   boolean toStop)
   Captures the state of the  thread
argument and sends it (to a remote
node or to the disk) by calling the
sendState  method of the
SendInterface interface.

static Thread receiveAndRestore(
   ReceiveInterface rcvItf)
   Receives the state of a Java
thread by calling the receiveState
method of the ReceiveInterface
interface, creates a new Java
thread, initializes it with the
received state and starts its
execution.

Figure 3: Interface of the
capture/restoration service



interface of this class. The go method  allows the
transfer of a running Java thread to a Java virtual
machine identified by an IP address and a port number.
And the arrive method enables the reception of a Java
thread coming from a machine specified by an IP
address and a port number.

The go and arrive methods are implemented using
respectively the captureAndSend and
receiveAndRestore generic methods (see section 2.3).
The go method is implemented as follows:
• The go method calls the captureAndSend method

(figure 4.b).
• The captureAndSend  method is adapted using an

instance of the MySender class.
• The MySender class implements the

SendStateInterface interface and therefore provides
a sendState method, this method aims at
establishing a connection to a machine and sending
the ThreadState object using serialization
(figure 4.c).

java.lang.threadpack
Class MobileThreadManagement
public final class MobileThreadManagement  extends
Object
The MobileThreadManagement class provides
several useful services for making  Java threads mobile.
Method Summary

static void go(Thread thread,
   String tagetHost,
   int targetPort)
   Moves the execution of the
thread argument to the machine
specified by the host name and the
port number arguments.

static Thread arrive(String sourceHost,
   int sourcePort)
   Receives a thread from the
machine specified by the host
name and the port number
arguments.

Figure 4.a: Service for the mobility of Java
threads

public static void go(Thread thread, String targetHost,
                                 int targetPort) {

MySender sndItf = new MySender(targetHost,
targetPort) ;
ThreadStateManagement.captureAndSend(thread,
sndItf) ;

}

public static Thread arrive (String sourceHost,
                                            int sourcePort) {

MyReceiver rcvItf = new MyReceiver(sourceHost,
                                                               sourcePort) ;
return
ThreadStateManagement.receiveAndRestore(rcvItf) ;

}

Figure 4.b: Implementation of mobility service

class MySender
    implements SendInterface {

String host ;
int port  ;

MySender(String host, int port) {
    this.host = host ;
    this.port = port  ;
}

public void sendState(ThreadState state) {
// Send state to <host, port>.
…
}
}

class MyReceiver
    implements ReceiveInterface {

String host ;
int port  ;

MyReceiver(String host, int port) {
    this.host = host ;
    this.port = port  ;
}

public ThreadState receiveState () {
// Receive a state from <host, port> and return
it.
…
}
}

Figure 4.c: Implementation of mobility service



The arrive method is implemented as follows:
• The arrive method calls the receiveAndRestore

method (figure 4.b).
• The receiveAndRestore method is adapted using an

instance of the MyReceiver class.
• The MyReceiver class implements the

ReceiveStateInterface interface and therefore
provides a receiveState method, this method aims
at establishing a connection to a machine and
receiving a ThreadState  object using de-
serialization (figure 4.c). The classes associated
with this ThreadState object are received relying
on the Java dynamic class loading service.
We can also imagine go and arrive methods that

rely on the Wireless Application Protocol instead of IP
in order to perform thread migration between JVM
installed on wireless hosts [WAPFactory00].

In the same way, the
PersistentThreadManagement provides several services
for the persistence of Java threads. A part of its
application programming interface is illustrated by
figure 5. The store method  saves the current state of a
Java thread in a file specified by a name and the load
method restores a Java thread from a state saved in a
file identified by a name. These two methods are also
implemented using our captureAndSend and
receiveAndRestore generic methods.

Finally, the MobileThreadManagement and
PersistentThreadManagement classes are two possible
adaptations of our generic service of Java thread state
capture/restoration. In the same way and for a particular

application, our generic service can be adapted to build
tools that meet application's needs.

44..  EEvvaalluuaatt iioonn
This section first presents the performance figures

of our thread state capture/restoration service. The cost
of migrating a Java thread between two machines and
the cost of checkpointing/recovering a thread are then
presented. Finally, a comparison between the results of
benchmarking our extended JVM and the standard JVM
is described. Our evaluation environment is as follows:

• JDK 1.2.2,
• Solaris 2.6, Sun Ultra-1 (Sparc Ultra-1

167 MHz),
• Ethernet 100Mb/s.

4.1. Basic costs

The time spent in capturing/restoring a Java thread
state depends on the size of the state at capture time.
The size of a Java thread depends on the number and
the size of the frames pushed onto the Java stack
associated with the thread. In the following, we focus
our attention on the influence of the number of frames
on the cost of our services. In order to vary the number
of frames pushed onto thread's Java stack, we used a
recursive program (the factorial function).

Figure 6 describes the variation of the cost of a
thread state capture operation according to the number
of frames on thread's Java stack at capture time. The
cost of a capture operation is less than 1 ms when the
number of frames is lower than 10. This cost reaches
2 ms when the number of frames is 20 and 9 ms when
the number of frames is 80.

Figure 7 presents the cost of a thread state
restoration operation when varying the number of
frames on thread's Java stack at capture time. The curve
shows that the cost of a restoration operation is less
than 1 ms when the number of frames is lower than 80.

java.lang.threadpack
Class PersistentThreadManagement
public final class PersistentThreadManagement
extends Object
The PersistentThreadManagement class provides
several useful services for making  Java threads
persistent.
Method Summary

static void store(Thread thread,
         String fileName)
   Saves the state of the thread
argument in the file specified by
the name argument.

static Thread load(String fileName)
   Restores the execution of a Java
thread from the state stored in the
file specified by the name
argument.

Figure 5: Service for the persistence of Java
threads
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Finally, the costs of the capture and the restoration
of Java thread's state are acceptable, especially in the
case of threads with few frames on the Java stack.

4.2. Evaluation of thread migration

We measured the cost of a Java thread migration
based on our thread mobility service. In figure 8, the
solid curve represents the variation of the cost of a Java
thread migration operation according to the number of
frames on thread's Java stack at migration time. The
dotted curve represents the cost of a thread state
transfer between two machines when varying the
number of frames on thread's Java stack.

The cost of a thread migration linearly varies from
100 ms to 600 ms when the number of frames on the
thread's stack is between 1 and 100. This cost may seem
significant but it is mainly due to the cost of thread state
transfer, as shown by the two almost superimposed
curves. In fact, thread migration consists in capturing
thread's state, sending this state to a destination
machine and restoring the state in a new thread on the
destination machine. So state transfer represents 98% of
the total cost of thread migration.

 On the other hand, the transfer of a thread state to
a destination machine consists in first serializing the
state object in order to translate the object graph to a
byte array, then transferring the resulting array of bytes
over the network to the destination machine and finally
de-serializing the byte array on the destination machine
in order to rebuild the object graph. The state transfer
time can partly be reduced using Java externalization
rather than serialization. Externalization allows the
application programmer to write its own object transfer
policy by only saving information necessary for
rebuilding object graphs. Externalization may be until
40% faster than serialization [Sun00c].

4.3. Evaluation of thread checkpointing and
recovery

Besides thread migration, we also measured the
cost of checkpointing a running Java thread and saving
its state on disk and the cost of recovering an execution
from a state previously stored on disk. In figure 9, the
solid  curve represents the variation of the cost of a Java
thread checkpointing operation according to the number
of frames on the thread's Java stack at checkpointing
time. The dotted  curve represents the cost of writing a
thread state on disk according to the number of frames
on the thread's Java stack. In figure 10, the solid  curve
represents the cost of a Java thread recovery and the
dotted  curve illustrates the cost of reading a thread
state from disk.

We notice, on the one hand, that the cost of thread
checkpointing and the cost of thread recovery increase
linearly when the number of frame on the thread's Java
stack increases. On the other hand, 97% of the time of
thread checkpointing is spent in writing thread's state on
disk and 99% of the time of thread recovery is spent in
reading thread's state from disk. As explained in
section 4.2, the costs of serialization/de-serialization
can be decreased by using externalization. The
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performance of thread checkpointing can also be
improved by performing asynchronous disk writing.

4.4. Benchmarking the JVM

Our thread mobility and thread persistence
services were integrated into the JVM. In order to
evaluate the performance of our extension of the JVM,
we compared them to the performance figures of the
standard JVM. We used two benchmarks: the
Embedded CaffeineMark 3.0 general Java benchmark
[Pendragon99] and the SciMark 2.0 numeric Java
benchmark [Pozo00]. In order to measure JVM
performance, the benchmarks were run by disabling JIT
compilation.

Embedded CaffeineMark consists of 6 tests:
finding prime numbers, loops, logic tests, String and
Float tests and method calls. The overall score is the
geometric mean of the individual scores, i.e., it is the 6th

root of the product of all the scores. The score for each
test is proportional to the number of times the test was
executed divided by the time taken to execute the test,
i.e. a higher number represents a better score. Figure 11
presents the results of benchmarking the standard
JDK 1.2.2 and our extended JDK 1.2.2. It shows that

our extension does not induce any loss of performance
on the JVM.

SciMark 2.0 is a Java benchmark for scientific and
numerical computing. It consists of five computational
kernels: Fast Fourier Transform (FFT), Jacobi
Successive Over-relaxation (SOR), Monte Carlo
integration, dense LU matrix factorization and Sparse
matrix-multiply. The kernels are chosen to provide an
indication of how well the underlying JVM performs on
applications utilizing these types of algorithms. The
problems sizes are purposely chosen to be small in
order to isolate the effects of memory hierarchy and
focus on internal JVM and CPU issues. This benchmark
reports a composite score in approximate Mflops
(Millions of floating point operations per second).
Figure 12 shows the performance figures resulting from
benchmarking the standard JDK 1.2.2 and our extended
JDK 1.2.2. It shows that our extension does not induce
any loss of performance on the JVM.

55..  EExxppeerriimmee nnttaatt iioonn
In this section, we describe two experiments that

use our mobility service. The first experiment shows
the usefulness of strong mobility and the second
experiment shows how to build a dynamic
reconfiguration tool on top of our mobility service.
Finally, we discuss some implementation issues and
solutions.

5.1. Strong mobility: Mobile recursive Fractal

Two degrees of application mobility can be
distinguished: weak mobility and strong mobility
[Fuggetta98]. With weak mobility, only data state
information and application’s code are transferred.
Therefore, on the new location, the mobile application
has its actualized data but restarts execution from the
beginning. With strong mobility, the code of the
application and the state of data and execution are
transferred: the application on the destination location
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Tests
Standard

JDK 1.2.2
Extended
JDK 1.2.2

Overall Score 1913 1913
Sieve 1447 1457
Loop 3314 3311
Logic 5403 5265
String 1922 1985
Float 1130 1134

Method 871 858

Figure 11: Benchmarking the JVM with
Embedded CaffeineMark 3.0

Tests
Standard

JDK 1.2.2
Extended
JDK 1.2.2

Composite Score 8.9891 9.0977
FFT (1024) 7.4484 7.6727

SOR (100x100) 18.6662 18.7242
Monte Carlo 0.9157 1.1166
LU (100x100) 7.4484 7.6727

Sparse matmult
(N=1000,
nz=5000)

7.7224 7.5683

Figure 12: Benchmarking the JVM with
SciMark 2.0



resumes the execution at the point where it was
interrupted on the source location.

The usage of weak or strong mobility depends on
application’s needs. Let’s consider a recursive Java
application. The recursive calls are translated by a
succession of frames on the Java stack associated with
the underlying thread. How is this application made
mobile?
• Weak mobility does not consider the state of

execution (thread’s state), so frames previously
pushed onto the Java stack are lost after the transfer
and the execution restarts from the beginning.

• Strong mobility captures the state of execution and
allows the execution to be resumed after the
transfer.

We considered a recursive graphical Java
application: the Dragon fractal curve where a small
dragon appears at a certain depth of recursion
[Mandelbrot75]. We implemented a Java Dragon
application and used our thread mobility service in
order to move the application, when it is running,
between several machines. Figure 13 illustrates this
experiment. The Dragon application is first started on a
first machine, then moved to a second machine where it
resumes its execution and finally moved to a third
machine where it finishes its execution. The transfer of
the thread calculating the fractal is performed by an
external thread that calls the go method of our
MobileThreadManagement class.

5.2. Dynamic reconfiguration: Mobile Talk

In this section, we describe how our mobility
service can be combined with other Java services
(object serialization, dynamic class loading) in order to
build a dynamic reconfiguration tool.

We consider a Talk  application where two remote
users exchange messages. Initially, each user starts an
instance of the Talk  application on its personal
computer with a graphical user interface. Each user has
two communication channels: an input channel to
receive messages from the remote user and an output
channel to send messages to the remote user. During the
talk, one of the users decides to transfer its application
to a minimal host with limited physical characteristics
(a mobile phone for example) and to resume its
execution. This dynamic reconfiguration of the Talk
application is illustrated by figure 14 and has the
following requirements:
• Moving a running application from one host to

another.
• Handling communication channels during transfer.
• Replacing the graphical user interface by a textual

user interface when arriving on the destination host
because of the limited physical characteristics.

To transfer the running mobile Talk  application to
a new host, our mobility service can be used: it takes
the current state of the application into account. To
transfer the application to a mobile phone, the mobility
service must use the Wireless Application Protocol
(WAP) [WAPfactory 00].

To tackle the problems of communication
channels and user interface, the Java serialization and
dynamic class loading services are adapted. In fact, our
mobility service relies on both serialization and
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dynamic class loading to respectively transfer the
objects and the classes used by the application at
migration time. These two features can be specialized
as follows:
• The serialization of the communication channels

can be adapted in order to send a particular
message to the remote user informing him about
the next migration and then to close the
connections. Symmetrically, the de-serialization of
the communication channels can be adapted in
order to recreate new channels and reestablish the
connection with the remote user.

• The dynamic class loading can be adapted in order
to use a textual user interface rather than the
graphical one on the mobile phone.
Finally, the combination of our mobility service,

the serialization and the dynamic class loading enables
the building of a complete dynamic reconfiguration
tool. This application has been experimented with a
prototype implementation on our extended JDK 1.2.2.
A port of our services to the K Virtual Machine, a
lightweight JVM, is planned [Sun00b].

5.3. Discussion

In this section, we discuss some issues
encountered when implementing thread mobility and
thread persistence. Let's focus our attention on the
mobility of a thread:
• What happens if a thread moves from a source host

to a destination host while it is using objects shared
with other threads on the source host?

• How are the communication channels connecting
several threads handled when one of these threads
moves to a new host?

• What happens if a thread that belongs to a multi-
threaded application move to a new host?
We now tackle each of these issues and propose

possible solutions.
What happens if a thread moves from a source

host to a destination host while it is using objects shared
with other threads on the source host? A first solution
consists in replicating the shared object and transferring
it with the mobile thread [Garcia-Molina86]. In this
case, the consistency of the replicas must be managed.
Another solution to the problem of shared objects is to
use proxies on the destination host in order to allow
remote access to shared objects. A problem of object
availability occurs if the source host crashes [Chou83].

How are the communication channels connecting
several threads handled when one of these threads
moves to a new host? A first approach consists in using
proxies on the destination host in order to access the
communication channels remotely. A problem of

channel availability occurs if the source host crashes.
Another approach consists in closing the channels on
the source host and recreating them on the destination
host. In this case, messages in transit must be redirected
to the new location and the naming of the new channels
must be actualized on other hosts.

 What happens if a thread that belongs to a multi-
threaded application move to a new host? The thread
can move alone to the destination host and
communicate with the other threads remotely, or it can
move with all the other threads or with a sub-set of
them.

Finally, for each of the discussed issues, the
solution strongly depends on application's needs. That
is why we deliberately chose not to impose a particular
solution at the level of our thread mobility and thread
persistence services. The programmer of the application
is thus free to choose the more appropriate approach.

66..  RReellaatteedd  wwoorrkk
Many systems have been developed providing

process mobility and persistence, considering either
homogeneous or heterogeneous processor architectures.
There are a number of surveys discussing these features
[Milojicic97] [Deconinck93]. Both mobility and
persistence of control flows are based on a mechanism
that enables the capture and the restoration of
executions’ state. Let’s focus our attention on such
mechanisms in the Java environment.

Three main approaches to address the problem of
capturing/restoring the state of Java threads are
distinguished: an explicit  approach, an implicit
approach based on a pre-processor of the application
code and an implicit approach based on an extension of
the JVM.

In the first approach, which we call explicit
management, the programmer of an application has to
entirely manage the capture and the restoration of the
state of his application. For this purpose, the
programmer has to explicitly add supplementary code
in fixed points of his program and usually has to
manage his own program counter. The added code
manages a backup object in which information relative
to the state of the application is stored. The backup
object is then used in order to restore the application
execution. When restoring the state of the application,
the first statement of the program is a branch to the
point where the program must continue. This approach
is not flexible and implies a modification of the
application itself if new backup points are added. This
approach is used in most of applications based on
mobile agent platforms [Chess95] that provide weak



mobility, such as Aglets [IBM96] and Mole
[Baumann98].

The two other approaches, which we call implicit,
provide a transparent service for capturing/restoring
thread state. The service is independent from the
application code and is provided as a function that may
be called by the application itself or by an external
application. These two approaches differ by their
implementation:
• The first implicit approach consists in pre-

processing the source (or byte) code of the
application in order to insert statements. The
inserted code attaches a backup object to the
application. While the application is running, the
backup object is re-actualized with the state of the
application. When an application requires a
snapshot of its state, it just has to use the associated
backup object. In order to restore the execution
state, data stored in the backup object are used to
re-initialize the application in the same state as at
snapshot time. This restoration is achieved by re-
executing a different version of the application
code (produced by the pre-processor) in order to
rebuild the stack and re-initialize the local variables
with the values stored in the backup object. The
main motivation of this approach is that it does not
modify the JVM. But its drawback is that it induces
a significant overhead on application performance
due to the inserted code, and on execution
restoration which requires a partial re-execution of
the application. The Wasp project provides a Java
mobile agent platform based on a pre-processor
which instruments the source code of Java
applications [Fünfrocken98]. Several
implementations of Java thread mobility based on a
pre-processor of the bytecode are proposed
[Truyen00] [Sakamoto00].

• The second implicit approach consists in extending
the JVM in order to make threads’ state accessible
from Java programs. This extension must provide a
facility for extracting the thread state and storing it
in a Java object. The extension must also provide a
facility for building a new thread initialized with a
previously captured state. These facilities can only
be used on extended virtual machines. We
followed this last approach for two reasons:
• It reduces the overhead on application

performance (no inserted code) and reduces
also the cost of the capture/restoration service
(its implementation is mainly native).

• Since the thread state capture/restoration
service has many applications, we believe that
it is a basic functionality which must be
integrated within the JVM.

This solution has been used in the
implementation of the Sumatra mobile agent
platform [Ranganathan97]. Unlike Sumatra which
supplies a mobility service, our implementation
provides a generic service intended for other uses
than mobility, like persistence [Bouchena99]. The
recently proposed Merpati system also follows this
approach [Suezawa00]. It makes the whole JVM
mobile or persistent, with all its threads, while our
services are fine-grained and can be applied to one
thread.
To summarize, our services provide a transparent

and fine-grained Java thread state capture/restoration
facility. They can be used for several purposes among
which thread mobility and thread persistence. They are
integrated into the JVM and thus present competitive
performance figures. A comparison between the
performance of the first implicit approach (Wasp’s
mobility service) and the second implicit approach (our
mobility service) can be found in [Bouchenak00].

77..  CCoonncclluuss iioonn  aanndd  ffuuttuurree   wwoorrkk
Since the Java virtual machine does not provide

any access to the state of Java threads, we designed and
implemented a new service for the capture and
restoration of thread state. Our capture/restoration
service is generic: we used it as a basis for the
implementation of thread mobility and thread
persistence services. With these services, a running
Java thread can, at an arbitrary state of its execution,
migrate to a remote machine or be checkpointed on disk
and then recovered. In addition, the migration or the
checkpointing of a thread can be initiated by the thread
itself or by another thread.

Our services were integrated into the JVM, so
they provide acceptable performance figures without
inducing overhead on JVM performance. Finally, we
experimented with a prototype implementation a
dynamic reconfiguration tool based on our mobility
service and applied to a running distributed application.

The lessons learned from this experiment are that:
• It is possible to extend the Java virtual machine

with thread mobility and persistence services
without re-designing the whole JVM.

• This implementation provides reasonable and
competitive performance costs.
At the present time, we are considering the usage

of our services in real world applications such as
dynamic load balancing in distributed systems and the
integration of our services into distributed Java virtual
machines. We also plan to port our services to the K
Virtual machine, the lightweight JVM, in order to make



them available on small devices such as phones and
PDA [Sun00b].
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