
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Experiences Implementing
Efficient Java Thread
Serialization, Mobility and
Persistence

S. Bouchenak, D. Hagimont, S. Krakowiak,
N. De Palma, F. Boyer

INRIA (French National Institute for Research in Computer Science and Control)
655, avenue de l’Europe, Montbonnot, 38334 St-Ismier Cedex, France

{Sara.Bouchenak,Daniel.Hagimont,Sacha.Krakowiak,Noel.Depalma,Fabienne.Boyer}@inria.fr

SUMMARY

Today, mobility and persistence are important aspects of distributed computing.
They have many fields of use such as load balancing, fault tolerance and dynamic
reconfiguration of applications. In this context, Java provides many useful mechanisms
for the mobility of code via dynamic class loading, and the mobility or persistence of
data via object serialization. However, Java does not provide any mechanism for the
mobility/persistence of computation (i.e., threads).
We designed and implemented a new mechanism, called Java thread serialization, that
is used to build thread mobility or thread persistence. Therefore, a running Java thread
can, at an arbitrary state of its execution, migrate to a remote machine where it
resumes its execution, or be checkpointed on disk for possible subsequent recovery. With
our services, migrating a thread is simply performed by the call of our go primitive,
and checkpointing/recovering a thread is performed by the call of our store and load
primitives.
Several projects have recently addressed the issue of Java thread serialization, e.g.,
Sumatra, Wasp, JavaGo, Brakes, JavaGoX, Merpati. Some of them have attempted
to minimize the overhead incurred by the thread serialization mechanism on thread
performance, but none of them has been able to completely avoid this overhead.
We propose a generic Java thread serialization mechanism that does not impose any
performance overhead on serialized threads. This is achieved thanks to the use of type
inference and dynamic de-optimization techniques. In this paper, we describe the design
and implementation details of our thread serialization prototype in Sun Microsystems’
JDK. We report on experiments conducted with our prototype, present a comparative
performance evaluation of the main thread serialization techniques, and confirm the
elimination of the performance overhead with our thread serialization mechanism.
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2 S. BOUCHENAK ET AL.

1. INTRODUCTION

Today, mobility and persistence are important aspects of distributed applications and have
several fields of use [35, 13]. Application mobility can be used to dynamically balance the
load between several machines in a distributed system [38, 20], to reduce network traffic by
moving clients closer to servers [16], to dynamically reconfigure distributed applications [24],
to implement mobile agent platforms [41, 11], to tackle user nomadism in mobile computing
environments [3], or as a machine administration tool [39]. Application persistence can be used
for fault tolerance [26, 48] or for application debugging.

In the context of distributed applications, the object paradigm has proven to be well suited
and the Java Virtual Machine (JVM) is now considered as a reference platform [21, 31].
Today, the JVM is ported on almost every platform and can therefore be viewed as a universal
machine. Among the services provided by the JVM to facilitate the development of distributed
applications are:

• Object serialization. The serialization service allows the transfer of Java objects between
several nodes or the storage of objects on disk.

• Dynamic class loading. The dynamic class loading service enables the transfer of Java
code between several nodes.

Therefore, Java provides useful services for the mobility and the persistence of code
and data. However, Java does not provide any service enabling mobility or persistence of
running applications (control flows, i.e., processes/threads). Thus, if a running Java application
migrates to a new location, only using object serialization and class loading, the execution state
of the application is lost. In other words, when arriving on its new location, the migratory
application can access its code and its re-actualized data but it has to restart the execution
from the beginning. Consequently, the provided Java services are not sufficient for enabling
the mobility or persistence of Java control flows.

Several projects have recently addressed the issue of Java thread mobility or Java thread
persistence. Some of them have attempted to minimize the overhead incurred by their
mechanisms on thread performance, but none of them has been able to completely avoid
this overhead. Such an overhead has several reasons:

• Additional instructions inserted in the application code (code executed by the thread);
this is the case for the Wasp [19], JavaGo [43], Brakes [47] and JavaGoX [42] thread
mobility systems.

• Extension of the Java interpreter, as in the Sumatra thread mobility system [1], and the
Merpati [44] and ITS [6] thread mobility and persistence systems.

• Non-compliance with Java JIT (Just-In-Time) compilation (execution optimization),
e.g., CIA [28], Sumatra, ITS and Merpati.

All the above-mentioned systems impose a performance overhead because of code injection,
Java interpreter extension or non-compliance with JIT compilation.
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EFFICIENT JAVA THREAD SERIALIZATION, MOBILITY AND PERSISTENCE 3

1.1. Contributions

We designed and implemented new services that make Java threads, i.e. executions, mobile
or persistent. With these services, a running Java thread can, at an arbitrary state of its
execution, migrate to a remote machine where it resumes its execution or be checkpointed on
disk for a possible subsequent recovery. With these services, migrating a Java thread is simply
performed by the call of our go primitive, and checkpointing/recovering a thread is performed
by the call of our store and load primitives. At a lower level, we propose a new mechanism,
called Java thread serialization. Similarly to object serialization, thread serialization allows
Java programmers to access the state of threads and transfer it between several nodes (for
mobility), or to store it on disk (for persistence).

The proposed Java thread serialization/mobility/persistence services do not affect the
“normal” performance of threads. In this paper, we describe how we built such services. The
scientific contributions of the paper are:

1. The design of an extended Java virtual machine that supports Java thread serialization
with the following properties:

(a) The Java language syntax is not modified.
(b) The Java compiler is not modified.
(c) The existing Java API is not affected.
(d) A new Java API is proposed for a generic thread serialization mechanism.
(e) A high-level Java API for thread mobility and thread persistence is provided on

top of thread serialization.

2. The implementation details of a zero-overhead Java thread serialization mechanism. This
implementation is mainly based on two techniques:

(a) Type inference.
(b) Dynamic de-optimization.

3. Our performance evaluation comparing several thread serialization approaches and
confirming that our mechanism is the unique system that does not affect the “normal”
performance of threads.

Our prototype is freely available from:
http://sardes.inrialpes.fr/research/JavaThread/
It has been successfully integrated into the Suma metacomputing platform for fault tolerance
purpose, where it was used as a basic service for the implementation of global uncoordinated
checkpointing/recovery for parallel computations [10]. In addition to Suma’s designers, there
were about 200 downloads from users, testers, students and researchers working with our
thread serialization service.

1.2. Roadmap

The rest of the paper is structured as follows. Section 2 discusses the related work and section 3
presents the Java Virtual Machine’s characteristics that are necessary to understand the rest of
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4 S. BOUCHENAK ET AL.

the paper. Section 4 describes our overall design to support Java thread serialization. Following
this, sections 5 and 6 respectively focus on the implementation details of thread serialization
and thread mobility/persistence. Sections 7 and 8 are respectively devoted to the experiments
and performance evaluation. Finally, section 9 presents our conclusions.

2. RELATED WORK

Many systems have been developed providing mobility or persistence of control flows, i.e.,
processes/threads, considering either homogeneous or heterogeneous processor architectures,
e.g., Charlotte [2], Sprite [15], Emerald [30], Ara [40]. There are a number of surveys discussing
these features [35, 13]. In this paper, we focus our attention on providing such mechanisms in
the Java environment. Our objective was to answer the following questions:

• Is it possible to provide thread serialization/mobility/persistence in Java?
• At which conditions regarding performance?

In the following, we first place our research in the context of complementary works in the area
of middleware systems, and then focus on related work in the area of Java thread serialization.

2.1. Context of our research

Our work focuses on the design and implementation of a Java thread serialization mechanism
on top of which thread mobility and persistence are built.

What the mechanism does. As Java object serialization, thread serialization allows a thread
execution state to be saved in a data structure, that is copied on a disk to implement persistence
or transmitted to a remote machine for mobility purpose.

What the mechanism does not do. As object serialization, thread serialization does not deal
with distribution, object sharing between threads, synchronization, nor the management of
IO objects (sockets or files). Thread serialization is intended to be a basic mechanism used
for the implementation of a middleware environment which addresses the above problems.
The middleware may implement a distributed object space or a higher level distributed
synchronization service, and thus ensure that the de-serialization of a thread is consistent
with the implemented distributed object management or synchronization service. Figure 1
illustrates how thread serialization takes place in such a middleware. Let us here consider
three examples:

• A mobile agent system. In such a middleware, agents are generally well encapsulated
Java object containers that migrate using object serialization. Thread serialization could
therefore be used instead of object serialization in order to transform agents’ weak
mobility (i.e., data mobility) into strong mobility (i.e. computation/thread mobility). In
the Aglets mobile agent system [27], interactions between agents are based on message
exchanges, and Java object sharing management is thus avoided. A detailed work on the
isolation of Java applications is presented in [12].
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Figure 1. Thread serialization: a basic component in a middleware environment

• A shared object system, e.g., Ajents [29] and Javanaise [22]. The latter project is a Java
distributed replicated object system, where synchronization of replicas is based on the
entry consistency protocol [5]. Such a system could be combined with thread serialization
in order to build a complete distributed thread migration service that benefits from
replication and synchronization.

• A distributed system responsible for managing IO objects. Accent/Mach [49] and
Condor [32] are examples of systems that respectively provide transparent access to
communication channels and files (i.e., location/distribution are hidden). The same
functionalities could be implemented by a Java based middleware, where thread mobility
and persistence would benefit from transparent access to IO objects.

2.2. Related work

In this section, we focus on the research conducted in the area of Java thread serialization, in a
centralized JVM§, where some projects propose Java thread mobility systems, e.g., Sumatra [1],
Wasp [19], JavaGo [43], Brakes [47], JavaGoX [42], CIA [28], and others propose both Java
thread mobility and thread persistence, e.g., ITS [6] and Merpati [44].

The main issue when building Java thread serialization is to be able to access the thread’s
execution state, a state that is internal to the Java virtual machine and is not directly accessible
to Java programmers. In order to address this issue, two main approaches are followed:

• JVM-level approach.

§Further details on distributed Java virtual machines can be found in [50, 10].
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6 S. BOUCHENAK ET AL.

• Application-level approach.

The most intuitive approach to access the state of a Java thread is to add new functions to
the Java environment in order to export the thread state from the JVM. In the Sumatra [1],
Merpati [44], ITS [6] and CIA [28] projects, the JVM is extended with new mechanisms that
capture a thread state in a serialized and portable form, and later restore a thread from its
serialized state. This solution grants full access to the entire state of a Java thread. But its
main drawback is that it depends on a particular extension of the JVM; the provided thread
serialization mechanism can therefore not be used on existing virtual machines.

In order to address the issue of non-portability of the thread serialization mechanism on
multiple Java environments, some projects propose a solution at the application level, without
relying on an extension of the JVM. In this approach, the application code is transformed by
a pre-processor, prior to execution, in order to attach a backup object to the Java program
executed by the thread, and to add new statements in this program. The added statements
manage the thread state capture and restoration operations and store the state information
in the backup object. The backup object can therefore be serialized using object serialization.
Several Java thread migration systems follow this approach: Wasp [19] and JavaGo [43] provide
a Java source code pre-processor while Brakes [47] and JavaGoX [42] rely on a bytecode pre-
processor. The key advantage of application-level implementations is the portability of the
provided mechanisms to all Java environments. However, they are not able to access the entire
execution state of a Java thread, because some part of the state is internal to the JVM [8].
The resulting systems are therefore incomplete.

On the other hand, whatever the level of implementation (JVM or application), all the
aforementioned solutions impose a performance overhead on threads. Indeed, the JVM-level
systems suffer from inducing a significant overhead on thread performance (+335%, +340%,
cf. section 8) because some of them extend the Java interpretation process (e.g., Sumatra,
Merpati, ITS) and none of them supports Java JIT compilation (execution optimization). And
the application-level systems impose a non negligible performance overhead (+88%, +250%,
cf. section 8) due to the statements added to the original code of the thread.

To summarize, Java thread serialization mechanisms are characterized by four properties:

• the genericity of thread serialization, i.e., the ability to use it in different contexts such
as mobility, persistence,

• the completeness of the accessed thread state,
• the portability of the serialization mechanism across different Java environments,
• and the efficiency of the mechanism, i.e., its impact on the performance of thread

execution.

Regarding the existing solutions, the thread serialization systems based on a JVM-level
implementation verify the completeness requirement but lack in efficiency and portability.
And the thread serialization systems proposed at the application level are portable but they
are neither efficient nor complete. Furthermore, except Merpati and ITS, all the existing
implementations propose Java thread serialization mechanisms that are restricted to thread
mobility. Merpati allows Java threads to benefit from both mobility and persistence but it lacks
in genericity because the proposed mobility/persistence services are predefined and can not be
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Figure 2. Existing Java thread serialization systems

adapted to applications’ needs; while ITS proposes a generic implementation of adaptive Java
thread serialization. Finally, the existing Java thread serialization systems are summarized in
Figure 2.

3. BACKGROUND: JVM CHARACTERISTICS

This section recalls the JVM characteristics that are necessary to understand the rest of the
paper. The Java Virtual Machine is the runtime environment on which applications developed
in the Java object-oriented language can run. A program developed in Java is generally
compiled in order to generate bytecode, a binary format which can be interpreted by a JVM.
As the JVM is ported on most contemporary machines, a compiled (bytecode-based) Java
program is portable between different machines.
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Figure 3. Architecture for the Java Environment

The architecture of the Java environment is illustrated by Figure 3 where the JVM is
presented as an abstraction of a homogeneous machine with a defined set of instructions
(bytecode), an execution engine (an equivalent of a hardware processor) and runtime data
areas used, for example, for memory and process management. In the following, we detail the
bytecode properties we are interested in, and the operating principles of the JVM’s execution
engine and runtime data areas.

3.1. Bytecode

The Java bytecode provides an instruction set that is very similar to the one of a hardware
processor. Each instruction specifies the operation to be performed, the number of operands
and the types of the operands manipulated by the instruction. For example, the iadd, ladd,
fadd and dadd instructions respectively apply on two operands of type int, long, float and
double (cf., the prefixing letter), and return a result of the same type.

The execution of bytecode in the JVM is based on a stack, called the operand stack. Figure 4
illustrates the execution of the iadd instruction which adds two integer operands. Before the
invocation of the iadd instruction, two integer operands are pushed on the stack, and after the
operation is completed, the integer result is left on top of the stack.

3.2. Execution engine

The first generation of JVM was based on an interpreted scheme in which the Java interpreter
translates each bytecode instruction into the execution of native code (the binary/machine code
executed by the underlying processor). In order to improve performance, the second generation
of JVM has integrated Java Just-In-Time (JIT) compilers, which dynamically compile Java
methods, i.e., bytecode, into native code [45]. The subsequent calls and executions of these
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Before After

Figure 4. Addition of two integers in the JVM

methods are no more based on the Java interpreter; they directly rely on the underlying
processor and therefore perform much faster.

3.3. Runtime data areas: Thread state

Timothy Lindholm and Franck Yellin define in the Java Virtual Machine Specification several
runtime data areas [31]. Here, we focus on the data areas describing the execution state of a
Java thread, as illustrated by Figure 5:

• The Java stack. A Java stack is associated with each thread in the JVM; it consists of
a succession of frames. A new frame is pushed onto the stack each time a Java method
is invoked by the thread and popped from the stack when the method returns. A frame
includes a table containing the local variables of the associated method and an operand
stack that contains the partial results (operands) of the method. The values of local
variables and operands may be of several types: integer, float, Java reference, etc. A
frame also contains registers such as the program counter (pc) and the top of the stack.

• The object heap. The heap of the JVM includes all the Java objects created during the
lifetime of the JVM. The heap associated with a thread consists of all the objects used
by the thread (objects accessible from the thread’s Java stack).

• The method area. The method area of the JVM includes all classes that have been loaded
by the JVM. The method area associated with a thread contains the classes used by the
thread (classes where some methods are referenced by the thread’s stack).

In addition to the above-mentioned data areas, and in order to support native methods, the
JVM specification mentions a native stack associated with a thread [31]. The structure of the
native stack is not specified, it depends on the underlying operating system. Notice that the
Java stack is managed for the execution of bytecode by a thread, i.e., when the underlying
execution engine is a Java interpreter. But when a Java method is JIT compiled, the invocation
frame of this method is not managed on the Java stack anymore but on the native stack.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls



10 S. BOUCHENAK ET AL.

Class

reference Object

reference

Java stack Object heapMethod area

variable 1

variable n

pc

operand 1

operand m

Frame

Java stack

operand stack

local variables

Figure 5. Java thread state

4. DESING OF THREAD SERIALIZATION

Here are the design principles and choices of our Java thread serialization mechanism.

4.1. Design principles

The thread state serialization/de-serialization service enables, on the one hand, the capture of
the current state of a running thread, and on the other hand, the restoration of a previously
captured state in a new thread: the new thread starts running at the point at which the
execution of the previous thread was interrupted.

Thread serialization consists, more precisely, in interrupting the thread during its execution
and extracting its current state. This extraction amounts to build a data structure (a Java
object) containing all information necessary for restoring the Java stack, the heap and the
method area associated with the thread. To build such a data structure, the Java stack
associated with the thread is scanned in order to identify its current Java frames, the objects
and classes that are referenced from these frames, and the bytecode index for each frame (i.e.,
a portable value of the pc). After thread serialization, the resulting data structure can be
transmitted to another virtual machine in order to implement thread mobility, or it can be
stored on disk for persistence purpose.

Symetrically, thread de-serialization consists first in creating a new thread and initializing
its state with a previously captured state. After that, the Java stack, the heap and the method
area associated with the new thread are identical to those associated with the thread whose
state was previously captured. Finally, the new thread is started, it resumes the execution of
the previous thread.
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4.2. Main issues and design choices

The design of a Java thread serialization mechanism faces serveral issues, such as:

• the accessibility of the execution state of Java threads,
• the portability of this state,
• and the provision of an overhead-free
• and a generic thread serialization mechanism.

In the following, we discuss each of these issues and present our solutions to face them.

4.2.1. Non-accessible thread state

The state of Java threads (Java stack, heap, method area) is internal to the JVM. In other
words, there is not a standard Java API that allows the programmer to access a thread’s Java
stack, heap (objects used by a thread) or method area (the classes used by a thread). This
state can therefore not be directly captured in order to implement thread serialization. For
facing this problem, we extended the JVM in order to be able, on the one hand, to externalize
the state of Java threads (for thread serialization), and on the other hand, to initialize a thread
with a particular state (for thread de-serialization).

4.2.2. Non-portable thread state

Unlike the heap and the method area that consist of information portable on heterogeneous
architectures (respectively Java object and bytecode), the Java stack is implemented in most
JVMs as a native data structure (C structure). Therefore, the representation of the information
contained in the Java stack depends on the underlying architecture. For a serialized thread to
be portable on heterogeneous platforms, the thread serialization mechanism must translate the
non-portable data structure representing a state (C structure) into a portable data structure
(Java object), and thread de-serialization must perform the symmetric process.

Translating the Java stack into a portable data structure consists, more precisely, in
translating the native values of local variables and operands (c.f., section 3.3) into Java values.
This translation requires the knowledge of the types of the values. But the Java stack does
not provide any information about the types of the values it contains: a four bytes word may
represent a Java reference as well as an int value or a float value. Therefore, the main issue
here is to infer the types of the data stored in the Java stack.

The only place where these types are known is the bytecode of the methods that push the
data on the stack. As explained in section 3.1, a bytecode instruction which pushes a value on
a Java stack is typed and determines the type of this value. The most intuitive solution is thus
to modify the Java interpreter in such a way that each time a bytecode instruction pushes a
value on the stack, the type of this value is determined and stored “somewhere” (i.e., on a type
stack associated with the thread). Our first prototype of Java thread serialization follows this
approach, it is called ITS (Interpreter-based Thread Serialization) [6]. But the drawback of
this solution is that it introduces a significant performance overhead on thread execution, since
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12 S. BOUCHENAK ET AL.

additional computation has to be performed in parallel with bytecode interpretation. In order
to avoid any overhead, type inference must not be performed during thread execution but only
at thread serialization time. We propose a solution in which the bytecode executed by the
thread is analyzed with one pass, at thread serialization time. With this analysis, the type of
the stacked data is retrieved and used to build the portable data structure that represents the
thread’s Java stack. Thus, the Java interpreter is kept unchanged and no performance overhead
is incurred on the serialized thread. This approach is called CTS (Capture time-based Thread
Serialization) [7, 9].

4.2.3. Overhead-free thread serialization

As discussed in section 2.2, the existing Java thread serialization mechanisms either focus
on providing a complete solution at the JVM-level or proposing a portable system at the
Java language-level; but none of them tackles the performance overhead issue. One of the
first criticisms addressed to Java was its poor performance; therefore, an important effort was
made by Java/JVM designers in terms of execution optimization which led to today’s efficient
JVM. Consequently, for a new Java facility to be widely accepted, it must not degrade the
performance of the applications which use it. Therefore, our primary objective has been to
provide a thread serialization mechanism that does not impose any overhead on the execution
of serialized threads. In order to avoid any performance overhead, we followed two principles:

• No additional computation is performed in parallel with bytecode interpretation:
everything is done at serialization time. This is achieved by using a type inference
technique applied at thread serialization time as detailed in section 5.1.

• Compatibility of thread serialization with today’s Java JIT compilation techniques. The
problem here is to be able to perform thread serialization even if the thread’s Java
stack does not really reflect the current execution state of the thread. This is the case
when some Java methods currently executed by the thread are JIT compiled (i.e., their
execution is based on the threads’ native stack and not on the Java stack). In order to
face this problem, we propose to use a dynamic de-optimization technique as described
in section 5.2.

4.2.4. Generic thread serialization

One of our motivations was to provide a generic Java thread serialization mechanism which
allows the programmer to adapt the serialization policy in order to meet applications’ needs.
With a generic thread serialization mechanism, various high level services can be built, such
as thread mobility or thread persistence; and particular policies can be implemented such as
mobility on wireless terminals or persistence using data base systems.

4.2.5. Synthesis

To summarize, the main issues that we faced when extending the JVM with Java thread
serialization are the following:
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EFFICIENT JAVA THREAD SERIALIZATION, MOBILITY AND PERSISTENCE 13

(a) To have access to threads’ execution state. This is necessary to build a Java thread
serialization mechanism.

(b) To provide a portable Java thread state. This is necessary to follow the Java philisophy
regarding portability (code portability, data portability, and in this case, execution
portability).

(c) To provide a thread serialization mechanism that is compatible with Java JIT-
compilation. This is necessary to provide an effective solution for today’s Java
environments.

(d) To propose a generic thread serialization service. This approach was followed to respect
the genericity and reusability necessary to Java services.

The respectively proposed solutions to these issues are:

(a) An extension of the JVM in order to externalize the thread state, and the provision of a
new API that allows the programmer to access this state.

(b) The provision of a type inference mechanism that transforms a non-portable data
structure of a thread state to a portable data structure. In a JVM that does not
provide any type information (e.g., standard JVM), using a type inference mechanism
is the unique solution that tackles the portability issue without incurring a performance
overhead.

(c) The use of dynamic de-optimization techniques for JIT-compilation compatibility. Using
dynamic de-optimization is the only one technique to revert from JIT-compiled methods,
and therefore to provide a Java thread serialization mechanism that is compatible with
JIT compilation.

(d) A generic design that follows the object-oriented approach and class hierarchy to propose
a generic, adaptable and reusable thread serialization mechanism.

4.2.6. Miscellaneous

Complementary questions regarding the issues and design choices of thread serialization may
be asked at this point:

• Is thread serialization initiated by the serialized thread itself (self-serialization) or can it
be initiated by another thread (preemptive serialization)?

• How is the execution context associated with native methods (frames on the native stack)
managed when a thread serialization operation occurs?

• Does the introduction of a thread serialization mechanism violate Java security?

In this paper, we focus on the design and implementation details of a complete and efficient
mechanism for Java thread self-serialization without native methods. Further details on how
the above issues are tackled can be found in [8].
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5. IMPLEMENTATION OF THREAD SERIALIZATION

As described earlier, the main issues that we faced and the main design choices that we made
when designing Java thread serialization are the following:

• To have access to a Java thread state, we extend the JVM.
• To provide portable thread state, we propose a type inference technique.
• To build a zero-overhead thread serialization, we combine type inference with dynamic

de-optimization techniques.
• To propose several uses of thread serialization, we provide a generic design of the

serialization mechanism.

In the following, we describe how we extended the JVM with the type inference and dynamic
de-optimization techniques, before giving an overview of the API of our generic Java thread
serialization mechanism, and finally describing its current implementation status.

5.1. Type inference

The proposed type inference mechanism aims at building a type stack that reflects the types
of the values (local variables and operands) contained in the thread’s Java stack. Like the Java
stack, the type stack consists of a succession of frames that we call type frames (see Figure 6).
A type frame on a type stack is associated with each Java frame on the Java stack. A type
frame contains two main data structures: a table that describes the types of the local variables
of the associated method and an operand type stack that gives the types of the partial results
of the method.

The type stack of a thread is built as follows. At thread serialization time, an empty type
stack is initially associated with the thread’s Java stack. And for each frame on the Java stack,
an empty type frame is initially pushed onto the associated type stack. The types of the local
variables and operands of the Java frame are then inferred as follow. The bytecode of the
associated method is parsed from the beginning of the method to the exit point of the method
(the exit point is given by the Java frame’s pc and represents the last instruction executed in
the method). Following this code path, the parsed bytecode instructions are analyzed and the
types of the values they manipulate are inferred and stored in the type frame, as local variable
or operand types.

The main problem when inferring the types occurs when several paths exist between the
beginning of the method’s code and the method’s exit point. In this case, which path should
be followed for type inference? It is important to notice here that different code paths may
assume different types for a same item (local variable or operand) on the Java stack. Let us
illustrate this problem through an example of a Java method m represented by a Java source
code, its equivalent bytecode and the associated execution flow graph (see Figure 7). In this
program, local variables i and j are declared in block 1 and represent values of type int, and
local variable k represents a value of type int in block 2 and of type float in block 3. This
variable is implemented by the same entry in the local variable table of the Java frame (a
variable at index 2, manipulated at lines 7 and 12 in the bytecode).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls



EFFICIENT JAVA THREAD SERIALIZATION, MOBILITY AND PERSISTENCE 15

Java

stack

J
a
v
a
 f

ra
m

e

operand 1

operand m

variable 1

variable n

o
p
e
ra

n
d

s
ta

c
k

lo
c
a
l
v
a

ri
a
b

le
s

type of op1

type of opm

type of var1

type of varn

T
y

p
e

 f
ra

m
e

Type

stack

Figure 6. Type stack vs. Java stack

When serializing the thread executing method m, and given the non-typed Java frame and
bytecode of m, how are the types of the local variables/operands of method m determined?
Four cases are possible here:

1. The exit point (pc value) is in block 1. In this case, there is only one possible path from
the beginning of the code to the exit point. The analysis of this path determines that the
local variable i is an int value thanks to the method signature, and the local variable j is
an int value thanks to the instruction istore 1 at line 1 of the bytecode† (see Figure 7).

2. If the exit point is in block 2, then the only one path reaching that point is block 1-block 2.
When analyzing this path, the local variables i and j are recognized as being int values
(as in the first case) and the int type of the local variable k is determined thanks to the
instruction istore 2 at line 7 of the bytecode†.

3. In case the exit point is in block 3, there is only one path reaching that point: block 1-
block 3. This case is similar to the second one; the only one difference is that path analysis
recognizes the variable k as being a float value thanks to the instruction fstore 2 at line
12 of the bytecode†.

4. Finally, if the exit point is in block 4, then two paths exist: either block 1-block 2-block 4
or block 1-block 3-block 4. In this case, which code path should be followed for type
inference? Is variable k of type int or of type float?

†In case the exit point is after the store instruction, otherwise the variable is not yet used and determining its
type is unnecessary.
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static void m(int i){

int j;
j = 3;
if (i == 0) {

int k;
k = 1;

} else {
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k = 2;

}
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}
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Figure 7. Example of bytecode execution

Our solution to this problem is based on two correctness properties of the Java bytecode [17]:

Correctness properties:
At any given point in the program, no matter what code path is taken to reach that
point:
P1: The operand stacks built by following each code path contain the same types.
P2: The local variables built by following each code path are of the same types or
are unused if the types differ.

As a consequence of the P2 correctness property, following either path block 1-block 2-block 4
or path block 1-block 3-block 4, variable k is no more used and its type is undefined. And
according to the P1 correctness property, an operand built following two different code paths
has the same type. Therefore, any of the existing code paths can be used for type inference.
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To summarize, we implemented an algorithm that infers the types of the values (local
variables and operands) on a Java frame, and more generally on a thread’s Java stack, in
one pass of the bytecode. This algorithm is applied at thread serialization time; it amounts to:

• determining, for the code of each method currently executed by the thread, any code
path starting from the beginning of the method’s code and reaching the method’s exit
point (pc value), and

• inferring the types of the manipulated values from the bytecode instructions contained
in this path.

Finally, our type inference algorithm builds a type stack that reflects the types of the values
on the thread’s Java stack. The resulting type information is then used in order to capture
the thread’s Java stack in a portable form. Furthermore, type inference is a technique used in
bytecode verification, which is generally applied at Java class loading time [31]. Thus, a possible
optimization of the thread serialization system can be made if the class loading system keeps
the type information that it builds during bytecode verification: this would prevent thread
serialization from re-building the necessary type information.

5.2. Dynamic de-optimization

The type inference technique described in the previous section requires access to the thread’s
Java stack. But the Java stack may sometimes not reflect the current execution state of the
thread, because of Java JIT compilation. In this case, the execution of JIT compiled methods
is no longer based on the thread’s Java stack but on the native stack. The issue here is to
permit thread serialization even in the presence of JIT compilation. That was one of our main
objectives: not to trade thread performance for the provision of thread serialization.

Here, the thread serialization mechanism would need functions that allow it to restore Java
frames from native frames produced by the JIT compiler, and then to be able to apply the
type inference technique.

Sun Microsystems’ HotSpot virtual machine includes a mechanism which performs dynamic
de-optimization. This mechanism transforms the native frames associated with JIT compiled
methods into Java frames [34].

Dynamic de-optimization was first used in the Self’s source-level debugging system; it shields
the debugger from optimizations performed by the compiler by dynamically de-optimizing code
on demand [25]. This allows the programmer to debug his program at the source code-level
even in presence of compilation optimizations.

In the HotSpot VM, dynamic de-optimization was introduced in order to deal with the
inconsistency problem rising from the combination of method inlining performed by JIT
compilation and dynamic class loading. Figure 8 illustrates this problem with an example
where a method m1 calls a method m2 of a class C1. For optimization purpose, the JIT
compiler may inline m2 in m1. But this inlining may become invalid if C2, a subclass of C1
that overrides m2, is dynamically loaded and if the getInstanceOfC1 called in method m1
return an instance of C2. Here, dynamic de-optimization is used to revert from inconsistent
optimized (i.e., compiled/inlined) code to a valid interpreted code.
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class C1 {

void m2() {

…

}

}

class C2 extends C1 {

// Overridden method

void m2() {

…

}

}

void m1() {

C1 o;

for (…) {

o = getInstanceOfC1();

o.m2();

…

}

…

}

Figure 8. Method inlining and dynamic class loading

Dynamic de-optimization was used in the context of debugging systems and dynamic class
loading systems. Here, we use it in a thread serialization system as follows. At serialization
time, in case some Java methods were JIT compiled, dynamic de-optimization is invoked on
the thread’s JIT compiled frames. This leads to retrieve the Java frames that would have
been produced by the Java interpreter. Therefore, the type inference algorithm described
in section 5.1 can be applied to these Java frames, and the thread can be serialized. It is
important to notice here that if dynamic de-optimization is used at thread serialization time,
re-optimization must be used at thread de-serialization time in order not to trade performance
of serialized threads. Finally, Java applications that use our thread serialization mechanism
continue to benefit from JIT compilation, before and after thread serialization: they execute
exactly in the same conditions as on an unmodified JVM¶.

5.3. API of thread serialization

Our Java thread serialization mechanism is proposed in a new Java package, called
java.lang.threadpack. This package provides many classes such as the ThreadState class whose
instances represent the execution state of Java threads and the ThreadStateManagement class
that provides the necessary features for Java thread serialization.

Figure 9 illustrates a part of the application programming interface (API) of the
ThreadStateManagement class. The capture method performs the serialization of a Java thread
and returns the captured thread state as a result of the method, as a ThreadState object.
Symmetrically, the restore method performs thread de-serialization. It creates a new Java

¶In [50], a thread migration system compatible with JIT compilation is also proposed. It is not based on
dynamic de-optimization but on a particular extension/implementation of the JIT compiler.
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Figure 9. Thread serialization mechanism

thread, initializes its state with the ThreadState argument, starts the new thread and returns
it as a result of the method. The de-serialized thread resumes the execution of the thread
whose state was previously captured and passed as an argument of the restore method.

With the proposed thread serialization mechanism, it is possible to build higher-level services
such as specialized thread mobility or thread persistence, thanks to our captuteAndSend and
receiveAndRestore methods. To motivate the usefulness of these methods, let us consider an
example. The implementation of thread mobility upon thread serialization could naively be
performed as described in Figure 10 where:

• On the source site, a thread starts executing Part 1 of method m and then migrates
to a target site by first performing thread serialization using our capture primitive,
before transmitting the thread state to the target site using, for example, Java object
serialization.

• On the target site, the migrating thread is received by first receiving its execution state
(e.g., using object de-serialization and dynamic class loading) and then performing thread
de-serialization using our restore primitive. Here, the de-serialized thread would resume
its execution starting at Part 2 of method m.
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void serverReceiver {

…

// Thread mobility: Arrival

// State reception

ThreadState state = receive(IP, port);

// Thread de-serialization

Thread =   

ThreadStateManagement.restore(state

);

…

}

void m() {

// Part 1

…

// Thread mobility: Departure

// (a) Thread serialization

ThreadState state = 

ThreadStateManagement.capture();

// (b) State transmission

transmit(state, IP, port);

// Part 2

…

}

Target siteSource site

Figure 10. Naive implementation of thread mobility

But with this solution, the de-serialized thread will resume its execution at the point
following the thread serialization operation that is state transmission (part (b) of method
m in Figure 10 and not Part 2 ). This behavior is similar to the UNIX fork.

In order to tackle this problem, we propose the captureAndSend method that allows the
programmer to specify the way a thread state is handled after a capture operation: the captured
state can for example be sent to a remote machine for mobility purpose, it can be stored
on disk to implement persistence, etc. The specialization of the handling of the captured
state is specified by the first argument of the captureAndSend method. Indeed, this argument
implements our SendInterface interface and so provides a sendState method that is called by
our captureAndSend method just after the capture of the thread state (see Figure 11). The
second argument of the captureAndSend method is a boolean that specifies if the thread whose
state is captured is stopped or resumed. This argument is, for example, set to true in the case
of thread migration and is set to false for remote thread cloning.

Symmetrically, the receiveAndRestore method specifies the way a thread state is received
before it is restored: the state can for example be received from a remote machine, or it
can be read from disk, etc. The specialization of the way the thread state is received is
possible thanks to the argument of the receiveAndRestore method: this argument implements
our ReceiveInterface interface and so provides a receiveState method that is called by our
receiveAndRestore method just before the restoration operation (see Figure 11).

Finally, captureAndSend and receiveAndRestore are proposed as generic methods that can
specialize thread serialization to application needs.
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public static void captureAndSend
(SendInterface sndItf, 
boolean toStop) {

ThreadState state;

// Thread state capture
state = 

ThreadStateManagement.capture();

// Thread state handling
sndItf.sendState(state);

// Resuming or stopping the thread
if (toStop)

Thread.currentThread().stop();

}

public static Thread receiveAndRestore
(ReceiveInterface rcvItf) {

ThreadState state;
Thread thread;

// Thread state handling
state = rcvItf.receiveState();

// Thread state restoration
thread = 

ThreadStateManagement.restore(state);

return thread;

}

Figure 11. Generic thread serialization

5.4. Implementation status

The type inference system, described in section 5.1, has been implemented in Sun
Microsystems’ JDK 1.2.2. Our first prototype of Java thread serialization is therefore proposed
as an extension of JDK 1.2.2.

We have then experimented with the de-optimization functions provided by JDK 1.3.1
(HotSpot) and showed that we were able to retrieve the Java frames from the JIT compiled
frames. We are currently completing the port of the type inference system from JDK 1.2.2
to JDK 1.3.1 in order to produce an integrated prototype of our solution as described in
sections 5.1 and 5.2. The performance evaluation presented in section 8 is thus based on our
extended JDK 1.2.2.

Table I summarizes the characteristics of the implementation of our system for Java thread
serialization, mobility and persistence.

6. THREAD MOBILITY AND THREAD PERSISTENCE

One of our main motivations was to provide a generic thread serialization mechanism that
can be used to implement various higher level services such as thread mobility and thread
persistence. Therefore, besides our mechanism for capturing/restoring the state of Java
threads, we provide higher-level services for the mobility and the persistence of Java threads.
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Java code lines 2500 (+0.2% of original JDK 1.2.2’s Java code)

C code lines 17500 (+3% of original JDK 1.2.2’s C code)

Supported OS/processors - Solaris 2.5.1/2.6 on Sparc

- Solaris 2.5.1/2.6 on x86

- Windows NT/95/98 on x86

Table I. Implementation results of Java thread serialization

Making a thread mobile is the action of capturing the current execution state of the thread,
sending this state to a target machine and restoring the state in a new thread on the target
machine: the new thread resumes the execution in the state left by the original thread.

In the same way, making a thread persistent is, first, the action of capturing the current
state of the thread and saving it on disk and then, the ability to restore the saved state in a
new thread: the new thread resumes the execution of the previous thread.

Java thread mobility and Java thread persistence facilities are respectively provided
by our MobileThreadManagement and PersistentThreadManagement classes, in the
java.lang.threadpack package.

6.1. API and implementation of thread mobility/persistence

Our MobileThreadManagement class provides the necessary services for the mobility of Java
threads. Figure 12 illustrates a part of the API of this class. The go method transfers the
execution of a running Java thread to a Java virtual machine identified by an IP address and
a port number. And the arrive method enables the reception of a migrating Java thread.

The go method is implemented as a combination of our thread serialization mechanism with
Java object serialization in order to transmit the captured thread state (see Figure 13):

• The go method calls our captureAndSend method which first captures the current state
of the thread.

• As presented in section 5.3, captureAndSend is a generic method; it is adapted here using
an instance of the MySender class.

• The MySender class implements our SendStateInterface interface and thus provides a
sendState method. Here, this method aims at establishing a connection to a machine
and sending the ThreadState object using object serialization.

The arrive method is implemented as a combination of our thread de-serialization
mechanism with Java object de-serialization and dynamic class loading in order to receive
the thread state (see Figure 14):

• The arrive method calls our receiveAndRestore method.
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Figure 12. Java thread mobility service

public static void go(String targetHost, 
int targetPort) {

MySender sndItf = new 
MySender(targetHost, 

targetPort);

ThreadStateManagement.
captureAndSend(sndItf, true);

}

class MySender
implements SendInterface {

String host;
int port;

MySender(String host, int port) {

this.host = host;
this.port = port;

}

public void sendState
(ThreadState state) {

// Send state to <host, port>.
…

}

}

Figure 13. Implementation of the go method
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public static Thread arrive
(String targetHost, 
int targetPort) {

MyReceiver rcvItf = new 
MyReceiver(targetHost, 

targetPort);

return ThreadStateManagement.
receiveAndRestore(rcvItf);

}

class MyReceiver
implements ReceiveInterface {

String host;
int port;

MyReceiver(String host, int port) {
this.host = host;
this.port = port;

}

public ThreadState receiveState() 
{

// Receive a state on
// <host, port> and return it.
…

}
}

Figure 14. Implementation of the arrive method

• The receiveAndRestore method is a generic method that is adapted here using an instance
of the MyReceiver class.

• The MyReceiver class implements our ReceiveStateInterface interface and therefore
provides a receiveState method; this method aims at accepting a connection on a
particular machine/port, and then receiving a ThreadState object using de-serialization.
The classes associated with this ThreadState object are received relying on the Java
dynamic class loading mechanism.

• After that, the receiveAndRestore method restores the received thread state in a new
Java thread (cf., section 5.3).

It is important to notice that the presented Java thread mobility service proposes a default
behavior, where all Java objects and classes used by the mobile thread are transmitted with the
thread. In other words, default thread serialization behaves as default object serialization and
class loading, i.e., leaving decisions related to object sharing, static fields, synchronization and
non-serializable objects to the application programmer. And because Java object serialization
and dynamic class loading are themselves generic facilities, they can be specialized in order to
build various thread transmission and storage policies. Object serialization can, for example, be
specialized in order to specify a particular management of IO objects included in the thread’s
heap, such as Socket objects that may be closed at serialization time, and recreated and
reconnected at de-serialization time. And dynamic class loading can be specialized in order to
use a particular URL for fetching thread’s classes. We can also imagine go and arrive methods
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Figure 15. Java thread persistence service

that rely on wireless transport protocols instead of IP in order to perform thread migration
between JVM installed on wireless hosts [14].

In the same way, the PersistentThreadManagement class provides several functions for the
persistence of Java threads. A part of its API is illustrated by Figure 15. The store method
saves the current state of a Java thread in a file specified by a name and the load method
restores a Java thread from a state saved in a file identified by a name. These two methods
are also implemented using our captureAndSend and receiveAndRestore generic methods.

Finally, the MobileThreadManagement and PersistentThreadManagement classes are two
possible adaptations of our generic Java thread serialization service. In the same way and
depending on application requirements, the generic thread serialization service can be adapted
to build other tools that meet specific applications’ needs.

7. EXPERIMENTS WITH THREAD MOBILITY/PERSISTENCE

This section gives an idea of how our thread mobility and persistence services can be used
by applications; through three experiments. The first experiment shows the usefulness of
strong mobility (mobility of computation/thread), the second experiment shows how to build a
dynamic reconfiguration tool on top of our mobility service, and the third experiment describes
how the Suma metacomputing platform’s designers use our thread persistence mechanism for
fault tolerance purpose.
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Figure 16. Mobile Fractal

7.1. Strong mobility: Mobile recursive Fractal

Two degrees of application mobility can be distinguished: weak mobility and strong
mobility [18]. With weak mobility, only data state information and application’s code are
transferred. Therefore, on the new location, the mobile application has its actualized data but
restarts execution from the beginning. With strong mobility, the code of the application, the
state of data and execution are transferred: the application on the destination location resumes
its execution at the point where it was interrupted on the source location.

The use of weak or strong mobility depends on applications’ needs. Let us consider a recursive
Java application; how such an application is made mobile?

• Weak mobility does not consider the state of execution (thread’s state and in particular
thread’s Java stack), so frames corresponding to recursive calls and previously pushed
onto the Java stack are lost after transmission and the execution restarts from the
beginning.

• Strong mobility captures the execution state and allows the execution to be resumed
after transmission.

For demonstration purpose, we experimented a recursive graphical Java application: the
Dragon fractal curve where a small dragon appears at a certain depth of recursion [33].
We implemented a Java Dragon application and used our thread mobility service in order
to transfer the application, when it is running, on several sites. Figure 16 illustrates this
experiment. Here, the Dragon application is first started on a first site, then transmitted to
a second site where it resumes its execution and finally transferred to a third site where it
completes its execution. The transfer of the thread calculating the fractal is performed by
calling the go method of our MobileThreadManagement class. Finally, this Dragon Fractal
demonstration application illustrates the usefulness of thread mobility (i.e., strong mobility).
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Figure 17. Mobile Talk

7.2. Dynamic reconfiguration: Mobile Talk

This second experiment shows how our mobility service can be combined with adapted object
serialization and dynamic class loading, in order to build a dynamic reconfiguration tool.

We consider a Talk application where two remote users exchange messages. Initially, each
user starts an instance of the Talk application on its personal computer with a graphical user
interface. Each user has two communication channels: an input channel to receive messages
from the remote user and an output channel to send messages to the remote user. During
the talk, one of the users decides to transfer its application to a minimal host with limited
physical characteristics (a mobile phone for example) and to resume its execution. This
dynamic reconfiguration of the Talk application is illustrated by Figure 17; it has the following
requirements:

• Moving a running application from one host to another. This is performed by our thread
mobility mechanism which takes into account the current state of the application.

• Handling communication channels during transfer. This is achieved by specializing Java
object serialization. Indeed, serialization of the communication channel objects can be
adapted in order to send a particular message to the remote user informing him about
the next migration and then to close the connections. Symmetrically, de-serialization of
the communication channel objects can be adapted in order to recreate new channels
and re-establish the connection with the remote user.
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• Replacing the graphical user interface by a textual user interface when arriving on the
destination host because of the limited physical characteristics. This can be performed
by adapting Java dynamic class loading in order to use a textual user interface instead
of the graphical one on the mobile phone.

Finally, this dynamic reconfiguration experiment shows how our thread serializa-
tion/mobility mechanism can be combined with other Java mechanisms (object serialization,
dynamic class loading) in order to build higher level services.

7.3. Fault tolerance: Global checkpointing/recovery

SUMA (Scientific Ubiquitous Metacomputing Architecture) is a distributed platform that
supports the execution of parallel Java computations [23]. These parallel computations
communicate through message passing that is implemented in SUMA using mpiJava, a Java
interface to the Message Passing Interface (MPI) [4].

SUMA’s designers extended their platform with a new facility: parallel checkpointing and
recovery for fault tolerance purpose. This is illustrated by Figure 18, where the implementation
of parallel checkpointing/recovery is based:

• On the one hand, on our Java thread persistence mechanism in order to perform local
checkpoints and recoveries of individual computations.

• And on the other hand, on a protocol proposed by Mostefaoui et al. in [36, 37] to
implement global uncoordinated checkpointing and recovery of parallel computations.

Therefore, our Java thread persistence mechanism was successfully integrated into the
SUMA platform. The implementation details and performance evaluation regarding this
integration are deeply discussed by Cardinale et al. in [10].

8. EVALUATION

This section first describes our evaluation environment, and then presents the performance
figures of our Java thread mobility/persistance mechanisms before giving the results of a
comparative performance evaluation that we made between several Java thread serialization
systems.

8.1. Evaluation environment

The performance results presented here were obtained in the following environment:

• Pentium III, 1 GHz mono-processor, 256 MB RAM,
• Windows NT, SP 4,
• Sun Microsystems’ Java Development KIT/Version 1.2.2, also known as Java 2

SDK/Version 1.2.2.
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SUMA: Scientific Ubiquitous Metacomputing

Architecture

(a parallel Java computation platform)

SUMA: Scientific Ubiquitous Metacomputing

Architecture

(a parallel Java computation platform)

mpiJavampiJava

Communication

sub-system

PersistentThreadManagementPersistentThreadManagement

Parallel

checkpointing/recovery

sub-system

Figure 18. Global checkpointing/recovery in a metacomputing system

8.2. Evaluation of thread mobility/persistence

This section presents the performance figures of the Java thread mobility and persistence
mechanisms proposed by our CTS system:

• the cost of migrating a Java thread between two machines,
• and the cost of checkpointing/recovering a Java thread.

The time spent in a Java thread migration operation depends on the size of the thread state
at migration time. Because a thread state consists of a heap, a method area and a Java stack
(c.f., 3.3), its size varies according to the number and size of objects used by the thread, the
number and size of classes used by the thread, and the number and size of frames on the
thread’s Java stack. In this paper, and because of space limitation, we focus our attention
on the influence of the number of frames on the cost of our mechanisms. In order to vary
the number of frames pushed onto the thread’s Java stack, we use a recursive program (the
factorial function).

Figure 19 describes, on the left-hand side, the variation of the cost of a thread migration
operation according to the number of frames on the thread’s Java stack at migration time.
The cost of thread migration linearly varies from 30 ms to 190 ms when the number of frames
on the thread’s stack is between 1 and 100. Figure 19 gives, on the right-hand side, the ratio
of the basic operations (i.e., state capture, transfer and restoration) to a migration operation.
It shows that the cost of thread migration is mainly due to the cost of thread state transfer.
Indeed, in a thread migration operation, between 2% and 9% of the time is devoted to state
capture and less than 3% is required for state restoration, while 89% to 95% of the time

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls



30 S. BOUCHENAK ET AL.

0

25

50

75

100

125

150

175

200

0 10 20 30 40 50 60 70 80 90 100

Number of frames

M
ig

ra
ti

o
n

 l
a

te
n

c
y

 (
m

s
)

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 15 20 25 50 75 100

Number of frames
R

a
ti

o
 t

o
 m

ig
ra

ti
o

n

Capture Transfer Restoration

Figure 19. Java thread migration
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Figure 20. Java thread cehckpointing and recovery

is necessary to state transmission. Therefore, reducing the cost of state transmission would
significantly reduce the overall migration latency. In our Java thread migration mechanism, the
implementation of state transmission partly relies on Java object serialization. The resulting
performance can be improved by using Java externalization rather than object serialization.
Indeed, externalization allows applications programmer to write its own object transmission
policy by only saving the information necessary to rebuild object graphs. Externalization may
be until 40% faster than object serialization [46].

Besides thread migration, we measured the cost of checkpointing a running Java thread
and saving its state on disk, and the cost of reading a thread state from disk and recovering
the execution. Figure 20 gives the cost of a Java thread checkpointing operation and the
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Figure 21. Ratio of state capture/write to thread checkpointing and state read/restoration to thread
recovery

cost of a thread recovery operation, according to the number of frames on the thread’s Java
stack at checkpointing time. We notice that these two costs vary linearly when the number
of frames on the thread’s Java stack varies. And according to Figure 21, 86% to 95% of the
time of thread checkpointing is spent in writing the thread’s state on disk, and 96% to 99%
of the time of thread recovery is spent in reading the thread’s state from disk. Similarly to
thread migration, the checkpointing and recovery latencies can be improved by improving disk
read/write operations.

8.3. Comparative evaluation

In this section, we present the results of our comparative performance evaluation of several
Java thread serialization systems. In this evaluation, two measurements have been reported
(see Figure 22):

• The performance overhead on code execution. It is defined as the difference between
the necessary time to execute the application code on a system that provides thread
serialization (E2a + E2b) and the necessary time to execute the same code on a system
that does not provide thread serialization (E1), that is (E2a + E2b) - E1.

• The latency of serialization. It is defined as the sum of the time necessary to thread
serialization/de-serialization, that is S.

We have taken into account both performance overhead and serialization latency in order
to show when a cost is paid with thread serialization. And in order to explain how these costs
vary according to several thread serialization techniques, we installed and configured several
Java thread serialization prototypes, which cover all the approaches to thread serialization as
described in section 2.2:
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Figure 22. Performance overhead vs. thread serialization latency

• JavaGo [43], an application-level system based on a pre-processor of the Java application
source code executed by the serialized Java thread,

• Brakes‡ [47] and JavaGoX [42], two application-level systems based on a pre-processor
of the bytecode executed by the serialized thread,

• ITS [6], the first JVM-level solution that we proposed, based on an extension of the Java
interpreter,

• and finally CTS, our final JVM-level solution, based on type inference and dynamic
de-optimization techniques integrated into the JVM.

The Sumatra [1] and Merpati [44] projects are no longer maintained, and the current
implementation of thread serialization in CIA [28] is in progress. We were thus unable to
include these systems in our comparative evaluation.

The following subsections 8.3.1 and 8.3.2 respectively discuss our evaluation of performance
overhead and serialization latency.

8.3.1. Performance overhead

In order to evaluate the variation of the performance overhead on a thread according to the
amount of computation performed by the thread, we wrote a benchmark based on the Fibonacci
recursive algorithm. The performance overhead incurred by the different thread serialization
systems was evaluated as follows:

• For the JavaGo, Brakes and JavaGoX thread mobility systems, the pre-processor of the
systems is first applied to the Fibonacci benchmark. And because the pre-processor
only applies on programs that call the “move” method of the underlying thread

‡In this comparative evaluation, we used the fastest implementation of Brakes’ thread serialization, namely
“brakes-serial”.
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static boolean toMove = false;

int fibo(int n) {

if (n == 0) {

// False migration

if (toMove)

move(“//IP:port/”);

return 1;

} else if (n == 1)

return 1;

else

return (fibo(n – 1) + fibo(n – 2));

}

Figure 23. Extended Fibonacci program

mobility system, we extended the Fibonacci program in such a way that it calls the
“move” method. And in order to evaluate the performance overhead separately from
the serialization latency, the “move” method must not be executed by the benchmark,
and is thus placed inside an if-block with a false condition (see Figure 23). Finally, this
benchmark is run on the standard JVM.

• For the ITS system, we wrote a benchmark that is based on the original (non-extended
with “move”) Fibonacci program. This benchmark is run on the ITS-related extension
of the JVM.

• For the CTS system, the original Fibonacci benchmark is run on the CTS-based extension
of the JVM.

The above mentioned benchmarks were run using several Fibonacci’s parameter values (i.e.,
20, 25, 30). The obtained results were compared to the ones obtained when running the original
Fibonacci benchmark on the standard JVM, in order to calculate the performance overhead
incurred by each system. The resulting overheads are presented in Figure 24:

• JavaGo , Brakes and JavaGoX incur a non-negligible performance overhead
(+88% to +250%), due to the code inserted by the pre-processor in the application
code. Among these systems, JavaGo incurs the highest overhead because it adds Java
code to the application’s source code while Brakes and JavaGoX follow a more fine-
grained approach that adds code at the bytecode level.

• ITS imposes a significant overhead (+335% to +340%) due to the additional
processing performed by the underlying extended Java interpreter at almost each
bytecode interpretation.
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Figure 24. Performance overhead / Fibonacci benchmark (JIT disabled)

• CTS does not incur any performance overhead, because it does not impose any
additional computation.

In Figure 24, the illustrated performance figures result from benchmarks running without
Java JIT compilation. This was necessary in order to be able to compare the ITS system with
other systems. Indeed, ITS is based on an extended Java interpreter and can therefore only
be used in interpreted mode (without JIT compilation). The effective performance overheads
(with JIT compilation) incurred by the other systems (JavaGo, Brakes, JavaGoX, CTS) are
presented in Figure 25. Finally, even if JIT compilation reduces the performance overhead
incurred by JavaGo, Brakes and JavaGoX, it does not cancel it (+45% to +106%), thus
heavily penalizing serializable Java threads.

8.3.2. Serialization latency

The previous section shows that CTS is the only Java thread serialization system that does
not incur a performance overhead on serializable threads. This behavior is not magic: it is due
to the fact that with CTS, all additional processing is transferred to thread serialization time.
In this section, we aim at discussing the relationship between, on the one hand, the variation
of the performance overhead on a serialized thread and, on the other hand, the variation of
the thread serialization latency.
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Figure 25. Performance overhead / Fibonacci benchmark (JIT enabled)

In order to be able to compare the latency of Java thread serialization using different
systems, these systems must be as similar as possible. But the evaluated systems implement
different thread serialization and transfer policies. To homogenize the comparative evaluation
environment, and to be as close as possible to the thread serialization operation itself (and not
to the network transfer), we built mid-level thread serialization operations for all the evaluated
systems:

• We first implemented a common thread state “transfer” mechanism which is simply
based on default Java object serialization and system class loading.

• We then built mid-level thread serialization mechanisms for JavaGo, Brakes and
JavaGoX by modifying the implementation of these systems in order to replace their
state transfer mechanism by the new one.

• We finally built mid-level thread serialization mechanisms for ITS and CTS by combining
the new state transfer mechanism to ITS and CTS’s thread serialization mechanisms.

The mid-level thread serialization mechanisms implemented for each system were then used
as a basis for benchmarking these systems and comparing their thread serialization latencies.

Let us now focus on the implementation of the latency benchmark. Thread serialization
latency varies when the size of the thread state varies, e.g., number and size of Java frames
pushed on the Java stack, number and size of objects in the heap. The latency benchmark
that we present in this paper was written in such a way that we fixed the number of objects
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used by the serialized thread and focused on the variation of the number of Java frames on
the thread’s Java stack. To vary the number of frames on the thread’s stack, the serialization
latency benchmark program first performs recursive calls to a Java method. When it reaches the
deepest recursive call (N frames), the benchmark runs a ping-pong program using the thread
serialization facility of the benchmarked system in order to measure the average latency of a
thread serialization operation when the thread has a particular state size (N frames).

In addition to the comparative evaluation of the thread serialization latency using different
systems, we conducted a complementary evaluation that illustrates the relationship between
the variation of the serialization latency and the variation of the performance overhead on
a serializable thread. In order to achieve this goal, the two evaluations were performed with
similar evaluation parameters. Indeed, the variation of the serialization latency was evaluated
according to the number of frames on the thread’s Java stack when the thread is serialized;
and the variation of the performance overhead on the execution of a program was evaluated
according to the number of frames that this execution pushes on the thread’s stack.

For measuring this performance overhead, we wrote a benchmark program that performs
recursive calls which vary the number of frames.

Finally, the performance overhead and serialization latency were obtained as follow: -(

• With JavaGo, Brakes and JavaGoX, the benchmark programs were first written following
the programming constraints of each system and then passed through the pre-processor
before they were run on the standard JVM.

• For ITS and CTS, the benchmark programs were written using the thread serialization
functions provided by these systems and run on the underlying extended JVM (i.e.,
respectively ITS and CTS).

Figure 26 and Figure 27 illustrate, for JavaGo , Brakes , JavaGoX , ITS and
CTS , the variation of, on the left-hand side, the performance overhead on a serializable
thread, and on the right-hand side, the thread serialization latency. In Figure 26, the thread
is serialized when it has five Java frames on its Java stack and in Figure 27, the thread is
serialized when there are ten frames on its Java stack. The two figures show that:

• For the application-level systems (JavaGo, Brakes, JavaGoX), the overhead on the
serialized thread and the serialization latency are inversely proportional. This is explained
by the fact that the more processing is performed during the execution of the thread
(overhead), the less processing is required at serialization time (latency). We also notice
that with these benchmarks, Brakes and JavaGoX present similar behaviors due to their
similar bytecode-level approach.

• The performance overhead of ITS lies between the overhead of the Java source-level
system (JavaGo) and the overhead of the bytecode-level systems (Brakes, JavaGoX).
But in this case, the inverse proportion with latency is not present: ITS presents a
higher serialization latency, compared to JavaGo, Brakes and JavaGoX. This is certainly
due to the fact that ITS captures the complete thread state (see section 2.2) and thus
performs more processing at serialization time.

• CTS does not impose any performance overhead but it presents the highest thread
serialization latency because everything is done at serialization time. Furthermore, it
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Figure 26. Performance overhead vs. serialization latency, thread serialized with 5 frames (JIT
disabled)
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Figure 27. Performance overhead vs. serialization latency, thread serialized with 10 frames (JIT
disabled)

is important to notice that our current intermediary implementation of CTS does not
yet include dynamic de-optimization. Thus, the final implementation would probably
present a more significant latency due to the integration of dynamic de-optimization and
re-optimization.

To summarize, our evaluation experiments show that:

• With JavaGo, Brakes and JavaGoX, a part of the cost of the provided functionality is
added to the “normal” performance of the serialized thread, and the other part is put in
the serialization latency. These two costs are inversely proportional.
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• ITS behaves similarly to the above-mentioned systems, but it presents an important
drawback: it is not compatible with JIT compilation. It is an interesting academic
experiment but is probably not an effective solution for today’s Java applications.

• With CTS, we show that it is possible to build a zero-overhead Java thread serialization
facility. Indeed, apart from the thread serialization operation itself, the performance
of the thread when it is running its own application code does not change. Here, the
cancellation of the performance overhead is not magic; it is obtained by transferring all
additional cost to the serialization latency.

As a result of this evaluation, we can identify two kinds of behaviors in the existing Java
thread serialization systems:

(a) Serialization systems that provide a low serialization latency by adding an overhead on
the serialized threads; this behavior is probably interesting for applications with frequent
serialization operations, e.g., mobile agent based applications

(b) Serialization systems that do not modify the “normal” performance of the serialized
threads and put all additional cost in the serialization operation; this kind of
behavior targets applications where serialization is necessary but occurs rarely such as
administration of distributed systems.

9. CONCLUSIONS

Java provides most of the functions required to transmit the code (i.e., dynamic class loading),
and to transmit or store data (i.e., object serialization). However, Java does not provide any
mechanism for the transmission/storage of the computation (i.e., threads).

We propose a thread serialization mechanism that allows Java programmers to access the
execution state of a Java thread as a Java object, and thus to build Java thread transmission
and storage facilities. Our thread serialization mechanism is generic: we used it as a basis for
the implementation of thread mobility and thread persistence services. With these services, a
running Java thread can, at an arbitrary state of its execution, migrate to a remote machine
and resume its execution, or be checkpointed on disk and then recovered.

Recently, several projects attempted to provide thread serialization in the Java environment;
but the proposed solutions are limited in terms of performance: they impose a significant
overhead on threads performance. The objective of this paper was twofold:

• to detail the implementation techniques that are necessary to build a zero-overhead Java
thread serialization system (the CTS - Capture-time Thread Serialization - system), and

• to exhibit the benefits of this system in term of performance via a comparative evaluation
of several Java thread serialization approaches.

We implemented the CTS thread serialization system within Sun Microsystems’ Java Virtual
Machine. The lessons learned from this experiment are:

• It is possible to extend the Java Virtual Machine with thread serialization, mobility and
persistence facilities without redesigning the whole JVM.
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• The proposed thread serialization/mobility/persistence mechanisms do not incur any
performance overhead on threads. This was possible thanks to the use of two techniques:

– A type inference technique which permits to build a thread serialization mechanism
that is totally separated from the JVM interpreter and does therefore not impact
bytecode interpretation performance.

– A dynamic de-optimization technique which allows thread serialization to be
compliant with Java JIT compilation.

Type inference and dynamic de-optimization are widely used techniques applied in the
context of code verification and program debugging. We showed how to use them in the
context of thread serialization.

The second result of our work comes from the performance evaluation that we reported on
for the comparison of our thread serialization prototype with other prototypes implementing
different approaches. This evaluation shows that:

• Java thread serialization based on an extension of the Java interpreter is non-compliant
with JIT compilation, and is therefore not a realistic solution for today’s Java
applications.

• Application-level Java thread serialization is probably an interesting solution for
applications that require frequent thread serialization operations, e.g., mobile agent based
applications.

• CTS is an effective solution for applications where thread serialization is necessary
but occurs rarely and for which the “normal” behavior of applications must be kept
unchanged, e.g., distributed system administration.

In this paper, we described our work towards the provision of basic mechanisms for
an overhead-free Java thread serialization/mobility/persistence system. We restricted our
discussion to the design and implementation issues in a local environment (i.e., a local
JVM), and we did not discuss the problems rising from using our serialization facility to
build large distributed systems. Some elements of response are presented in [10], where the
authors describe how they use our Java thread serialization mechanism for fault tolerance
purpose, and how they built a checkpoint/restart facility for parallel computations in the
Suma metacomputing system. Further experiments have to be conducted in order to evaluate
the use of our thread serialization system to build large mobile distributed applications.

10. SOFTWARE AVAILABILITY

The CTS implementation of Java thread serialization is available from
http://sardes.inrialpes.fr/research/JavaThread
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