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Abstract: Although server technology provides a mean to support a wide range of online
services and applications, their ad-hoc configuration poses significant challenges to the perfor-
mance, availability and economical costs of applications. One of the main concerns is that under
a heavy load, the delay introduced by a server in the transaction process may grow unbounded.
This paper precisely addresses this issue. First, we present the design of a server model as
a non-linear continuous-time model. Second, we develop an admission control algorithm that
allow to ensure a maximum average delay on the server. Model and control algorithm were
implemented and applied on the standard PostgreSQL database server running the TPC-C
warehouse application. The experiments show that the proposed method provides significant
benefits for database servers management. Copyright c© IFAC 2009
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1. INTRODUCTION

A large variety of Internet services exists, ranging
from web servers to e-mail servers (Sendmail.org, 2007),
streaming media services (Apple Inc., 2007), e-commerce
servers (Amazon.com Inc, 2007), and database sys-
tems (PostgreSQL, 2008). These services are usually based
on the classical client-server architecture, where multiple
clients concurrently access an online service provided by a
server (e.g. reading web pages, sending emails or buying
the content of a shopping cart). Such server systems face
varying workloads as shown in several studies (Arlitt and
Williamson, 1996; Arlitt and Jin, 1999). For instance, an
e-mail server is likely to face a heavier workload in the
morning than in the rest of the day, since people usually
consult their e-mails when arriving at work. In its extreme
form, a heavy workload may induce server thrashing and
service unavailability, with underlying economical costs.
These costs are estimated at up to US$ 2.0 million/hour
for Telecom and Financial companies (North American
Systems International Inc., 2008).

A classical technique used to prevent servers from thrash-
ing when the workload increases is admission control (Hy-
man et al., 1992; Hellerstein et al., 2004). It consists in
limiting client concurrency on servers – also known as
the multi-programming level (MPL) configuration param-
eter of servers. Obviously, servers’ MPL configuration has
a direct impact on server performance, availability and
quality-of-service (QoS).

While the improvement of server performance and avail-
ability is usually achieved by system administrators us-
ing ad-hoc tuning (Brown, 2008; Microsoft, 2008), new
approaches tend to appear to ease the management of

such systems. In (Menascé et al., 2001) a heuristic for the
management of the QoS of servers through the determi-
nation of the multi-programming level (MPL) of servers
using the hill-climbing optimization technique is proposed.
Althrough performing well in a variety of applications,
hill-climbing does not guarantee optimality. In (Elnikety
et al., 2004), a similar technique is applied; however the
MPL is determined offline and thus, does not adapt to
changing workloads. Other solutions to MPL identification
were proposed specifically to some server technologies,
such as transactional servers (Schroeder et al., 2006).
Other approaches aim at modeling the system in order
to characterize its capacity. In (Heiss and Wagner, 1991),
a simulation-based study is conducted and an analytic
model is proposed to adjust server MPL according to
changing workloads. However, this model is restricted to
performance functions with a parabola shape and thus,
does not apply to criteria such as request latency and
abandon rate that usually underly service level objectives
(SLOs) as perceived by clients. Other works aiming at ap-
plying control theory to server systems appeared in the last
decade. A first approach consists in applying well-known
linear control theory on servers modeled as SISO (single-
input single-output) or MIMO (multiple-inputs multiple-
outputs) black-boxes (Parekh et al., 2002; Diao et al., 2002;
Hellerstein et al., 2004). Nevertheless, due to the intrinsic
non-linear behavior of these systems, linear control the-
ory does not provide much success. Other approaches are
based on non-linear models derived from queuing theory
(Tipper and Sundareshan, 1990; Wang et al., 1996) with
a theoretical proposal in (Kihl et al., 2003; Robertsson
et al., 2004). The resulting models interestingly predict
the performance of the system, but this is obtained at the



expense of a hard calibration of model parameters in order
to provide accurate results.

In this paper, we apply a nonlinear continuous-time control
theory based on fluid approximations, in order to model
and control the QoS of server systems. The QoS to control
in this paper is the delay before a client is served. The
total amount of clients, considered as an exogeneous input,
directly impacts this delay. The main contribution of the
paper is twofold:

• The design and implementation of a nonlinear
continuous-time model of server systems for control
purpose that accurately captures the main dynamics
of server systems.
• The design and implementation of nonlinear admis-

sion control for server systems.

The paper presents our experiments on the TPC-C appli-
cation, an industry-standard benchmark, running on the
PostgreSQL database server.

2. BACKGROUND

2.1 Server systems

We consider server systems such as database servers and
web servers that follow the client-server architecture where
servers provide clients with some online service, such as on-
line bookstore, or e-banking. Clients and servers are hosted
on different computers connected through a communica-
tion network. Basically, a client remotely connects to the
server, sends it a request, the server processes the request
and builds a response that is returned to the client before
the connection is closed. Multiple clients may concurrently
access the same server.
Server workload is characterized, on one hand, by the
number of clients that try to concurrently access a server
(i.e. workload amount), and on the other hand, by the
nature of requests made by clients (i.e. workload mix ),
e.g. read-only requests mix vs. read-write requests mix.
Workload amount is denoted as N while workload mix is
denoted as M . Server workload may vary over the time.
This corresponds to different client behaviors at different
times. For instance, an e-mail service usually faces a higher
workload amount in the morning than in the rest of the
day.
Server admission control is a classical technique to
prevent a server from thrashing when the number of
concurrent clients grows (Hyman et al., 1992). It consists
in fixing a limit for the maximum number of clients allowed
to concurrently access a server – the Multi-Programming
Level (MPL) configuration parameter of a server. Above
this limit, incoming client requests are rejected. Thus,
a client request arriving at a server either terminates
successfully with a response to the client, or is rejected
because of the server’s MPL limit. Therefore, due to the
MPL limit, among the N clients that try to concurrently
access a server, only Ne clients actually access the server,
with Ne ≤ MPL. Servers’ MPL has a direct impact on
the quality-of-service (QoS), performance and availability
of servers as discussed below.

2.2 Service performance and availability

Several criteria may be considered to characterize ser-
vice performance and availability (Menascé et al., 2001).
In the following, we consider in particular two metrics
that reflect performance and availability from the user’s
perspective (Menascé et al., 2001), namely latency and
abandon rate.
Service performance – Latency. Client request latency
is defined as the delay between the arrival of a request
on a server and the service (ie the time needed by the
server to process a request). The average client request
latency is denoted as L. A low client request latency (or
latency, for short) is a desirable behavior which reflects
a reactive system. Figure 1(a) describes the impact of
server admission control and MPL value on client request
latency, when the workload amount varies Here, three
values of MPL are considered, a low value (1), a medium
value (25) and a high value (75). Low MPL is very
restrictive regarding to client concurrency on the server
and thus keeps the server unloaded which implies low client
request latency. In contrast, with a high MPL, the server
workload amount increases with client request latency.
Service availability – Abandon rate. Client request aban-
don rate is defined as the ratio between requests rejected
due to admission control and the total number of requests
received by a server. It is denoted as α. A low client request
abandon rate (or abandon rate, for short) is a desirable
behavior that reflects service availability. Figure 1(b) de-
scribes the impact of MPL on client request abandon
rate. A low MPL is very restrictive regarding to client
concurrency on the server. Obviously it implies a higher
abandon rate compared to a high MPL.
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(b) Impact of MPL on availability

Fig. 1. Impact of MPL

Service performance and service availability are part of
the SLA (Service Level Agreement). The SLA specifies



the service level objectives (SLOs) such as the maximum
latency Lmax and the maximum abandon rate αmax to be
guaranteed by the server.

3. FLUID MODEL FOR SERVER SYSTEMS

We propose a fluid model which renders the dynamics of
server systems and captures characteristics that reflect the
state of servers in terms of performance and availability.

The choice of the control inputs, the system outputs and
the state variable outputs is crucial for the design of a
model. As the MPL is a tunable parameter of a server and
has a meaningful effect on its performance, it is natural to
take it as control input of the system. We assume that the
state of the system can be described by three variables:
the current number of concurrent requests in the server
Ne, the throughput To and the rejection rate α. The server
workload amount N can be seen as an exogenous input.
Obviously, the outputs will depend on the chosen SLOs.
Among the N concurrent clients that try to connect to a
server, admission control authorizes Ne concurrent clients
to actually enter the server, with 0 ≤ Ne ≤ N and
0 ≤ Ne ≤ MPL.
Let cr(t, t+dt) be the number of client connections created
on the server between t and t+ dt, and cl(t, t+ dt) be the
number of client connections closed on the server between
t and t + dt. Thus, a balance on Ne between t and t + dt
gives

Ne(t+ dt) = Ne(t) + cr(t, t+ dt)− cl(t, t+ dt) (1)
Let Ti be the incoming throughput of the server, measured
as the number of client connection demands per second.
It comes that the number of connections created between
t and t+ dt is

cr(t, t+ dt) = (1− α(t+ dt)) · Ti(t+ dt) · dt (2)

where α is the abandon rate of the server.

Similarly, let To be the outgoing throughput of the server,
measured as the number of client requests a server is able
to handle per second. Thus, the number of connections
closed between t and t+ dt is

cl(t, t+ dt) = To(t+ dt) · dt (3)

Deriving from (1), (2) and (3) the derivative of Ne

Ṅe(t) = (1− α(t)) · Ti(t)− To(t) (4)

Moreover, we assume that the system reaches a steady
state in a reasonably short period of time ∆; this is par-
ticularly reflected in state variables outgoing throughput
To and abandon rate α. During this short period of time,
the workload is relatively stable, which is consistent with
studies such as (Arlitt and Jin, 1999). Thus, the dynamics
of To and α can be approximated by first order systems
through their derivatives as follows

Ṫo(t) = − 1
∆

(
To(t)− T̄o

)
α̇(t) = − 1

∆
(α(t)− ᾱ)

where T̄o and ᾱ are the steady state values of respectively
the outgoing throughput and the abandon rate of the
server. The next step naturally consists in finding the
expression of T̄o and ᾱ. A balance on the number of served
client requests (or outgoing requests) No gives

No(t+ dt) = No(t) + sr(t, t+ dt)
where sr(t, t + dt) is the number of served request be-
tween t and t + dt. Since there are Ne concurrent clients
on the server and the average client request latency
is L, the number of served requests during dt will be
sr(t, t + dt) = dt

LNe. Thus, we get Ṅo = Ne

L , that
is T̄o = Ne

L which is an expression of Little’s law (Little,
1961).

By definition, ᾱ is equal to zero if Ne is smaller than MPL,
and ᾱ is equal to 1 − To

Ti
if Ne = MPL. However, the

stochastic nature of the client request arrival may lead to
situations where the measured average Ne is smaller than
MPL but where punctually, the number of clients that
try to access the server is actually higher than MPL, and
thus, some clients are rejected.

In order to take this behavior into account, we choose
to write ᾱ = Ne

MPL ·
(

1− To

Ti

)
. This renders that the

probability to reject a client connection is higher when
the average Ne is close to MPL. Finally, it follows that

Ṫo(t) = − 1
∆

(
To(t)−

Ne(t)
L(t)

)
(5)

α̇(t) = − 1
∆

(
α(t)− Ne(t)

MPL(t)
·
(

1− To(t)
Ti(t)

))
(6)

Now that we have defined the model state variables, the
last step consists in expressing the model output variable
latency L. Latency obviously depends on the global load
of the server, i.e. the workload mix M and the number of
concurrent clients on the server Ne.
Figure 2 describes the evolution of latency L as a function
of Ne, for a given workload mix 2 . One can see that a
second degree polynomial in Ne is a good approximation
of the latency L. Thus:

L(Ne,M, t) = a(M, t)N2
e + b(M, t)Ne + c(M, t) (7)

The parameter c is positive as it represents the zero-load
latency. a and b are also positive since they model the
processing time of requests. Equation (7) represents the
delay of the system. This delay is clearly impacted by the
the workload mix M and by the number of concurrent
clients on the server Ne - which is a state variable of the
system that dynamically varies according to equation (1).

In summary, the proposed fluid model is given by equa-
tions (4) to (7) that reflect the dynamical behavior of
states and outputs of server systems in terms of perfor-
mance and availability.

4. CONTROL OF SERVER SYSTEMS

In the following, we study the tradeoff between the perfor-
mance and the availability of server systems, and derive
the optimal admission control of server systems based on
the proposed fluid model, that is the optimal number of
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Fig. 2. Latency as a function of Ne

concurrent clients admitted to the server with respect to
this tradeoff.
We want to guarantee a tradeoff between server perfor-
mance and availability with the following properties:

(P1) the average client request latency does not exceed a
maximum latency Lmax, and

(P2) the abandon rate α is made as small as possible.

To that end, a feedback control law is proposed to auto-
matically adjust the MPL server admission control pa-
rameter in order to satisfy this tradeoff. The basic idea
behind this law is to admit clients in such a way that the
average client request latency L is close (equal) to Lmax.
By construction, this maximizes the number of admitted
clients Ne, which induces a minimized abandon rate α.
A first approach could consist in solving Eq. (7) in such a
way that L = Lmax. Althrough accurately reflecting the
system, such an approach is unwieldy since it requires
the knowledge of accurate values of parameter a, b and
c in equation 7, through an online identification of these
parameters since the workload may change over the time.
We propose another approach which avoids this online
identification of model’s parameters. It is a Lyapunov
approach. First, let us assume that the dynamic of the
load’s variations is much smaller than the dynamic of To
and α. It follows:

L(Ne) = aN2
e + bNe + c

α(t) = ᾱ

To(t) = T̄o

We choose V (Ne) = 1
2 (L−Lmax)2 as a Lyapunov function

candidate. Then with (4) we get

V̇ (Ne) = (L− Lmax) (2aNe + b)
(

1− Ne
MPL

) (
Ti − T̄o

)
Taking MPL = Ne

1+γ
L

(L−Lmax) will give:

V̇ (Ne) = −γ
L

(L− Lmax)2(Ti − T̄o)(2an+ b).
In case of overload (Ti − T̄o > 0) since 2aNe + b > 0,
we have V̇ (Ne) ≤ 0 for every γ

L
> 0. Invoking Lasalle’s

Invariance principle, L globally asymptotically converges
to Lmax.

The proposed admission control technique requires a
unique external parameter, that is γ

L
. This parameter has

an impact on both convergence time of the control and
stability of the system.

5. EVALUATION

5.1 Experimental setup

The evaluation of the proposed fluid model and feedback
controllers has been conducted using the TPC-C bench-
mark (TPC-C, 2008). TPC-C comes with a client emulator
which emulates a set of concurrent clients that remotely
send requests to the database server. We extended the
client emulator in order to be able, on the one hand, to
vary the workload amount N over the time, and on the
other hand, to vary the workload mix M over the time. For
the latter extension, we considered two mixes of workload,
one consisting of read-only requests, and another of read-
write requests.
Experiments have been conducted on a set of two comput-
ers connected via a 100 Mb/s Ethernet LAN, one computer
dedicated to the database server and another to the client
emulator. The database server is PostgreSQL 8.2.6 (Post-
greSQL, 2008). A proxy-based approach was followed to
implement the controller where a proxy stands in front of
the database server to implement online feedback admis-
sion control. Both client and server machines run Linux
Fedora 7. The server machine is a 3 GHz processor with
2GB RAM, while the clients’ computer is a 2 GHz proces-
sor with 512MB RAM.

5.2 Model validation

We perform measurements to validate the accuracy of
the proposed fluid model and its ability to render the
dynamics of the system. In particular, we evaluate the
ability of the model to reflect the variation of the state
of the system when input variables such as the server
MPL and the workload amount N vary. For the same
set of input variables, the state reified by the model
(which parameters have been off-line identified on another
scenario) is compared with the actual state of the real
system.

Figure 3 illustrates the case of an open loop system where
both workload amount N and server MPL vary over the
time (see Figure 3(a)). Figures 3(b), 3(c) and 3(d) present
the evolution over the time of respectively the number Ne
of concurrent clients admitted in the server, the outgoing
throughput To and the abandon rate α, for both the real
system (+) and the modeled system (solid line). Results
show that the model is able to render the behavior of the
real system.

5.3 Control evaluation

Figure 4 presents the system behavior under workload
amount variation (c.f. Figure 4(a)) when the workload mix
remains unchanged. Figures 4(b), 4(c) and 4(d) present the
variation over the time of respectively the server MPL,
the average client request latency and the client request
abandon rate, comparing the non-controlled base system
with the controlled system. Notice that, due to TPC-C
client think time, the number of active clients at any given
time may be different from (lower than) the actual load
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Fig. 3. System behavior with varying MPL and workload
amount – Real system (+) vs. modeled system (solid
line)
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generated by TPC-C client emulator at that time. Results
show that the controlled MPL is able to adjust its value
to the optimal value so that the performance constraint
is guaranteed. Whereas in the case of the non-controlled
system, the latency grows up to 14.4 s, with an overhead
of up to 80 % compared to the controlled system.
In the controlled system, the abandon rate is maintained
below 5% with up to 75 clients (i.e. during the first half
of the experiment). Then, the abandon rate increases with
the increase of concurrent clients in the system, to attain
its highest value when the number of clients is maximum,
in order to keep latency below the target maximum la-
tency. Notice that at the end of the experiment (between
the 18th and 25th minutes), it seems justifiable to have
a high abandon rate since latency attains its maximum
authorized value (c.f. Figure 4(b)) and client request re-
jection is necessary at that time to guaranty the latency
constraint. However, during the first part of the experi-
ment where latency is lower than the authorized maximum
latency, having an abandon rate which is higher that 0%
is questionable. This is explained in Figure 4(e) by the
stochastic nature of the workload where MPL is always
higher than the average Ne but where punctually, there
may be a client amount higher than the MPL and thus, a
non-null abandon rate is observed (as depicted by circles
in Figure 4(e)). To face this, an improved control law
consists in taking into account system underload situations
an thus, minimize abandon rate further (i.e. increase MPL)
as long as the latency constraint is guaranteed. Due to
space limitation, this scenario is not presented.

6. CONCLUSION AND PERSPECTIVES

This paper presents the design, implementation and eval-
uation of a nonlinear continuous-time model, upon which
admission control of servers is derived for optimal con-
figuration of servers. The proposed control law allows to
guaranty the maximum average delay introduced by the
server while the availability of its service is maximized.
Our experiments show its efficiency.
In a future work, we will consider optimizing the MPL of
a server so that several QoS constraints can be respected.
Moreover, the application of server control on more com-
plex systems distributed Internet services will be studied.
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