
Using Components for Architecture-Based Management

The Self-Repair case

Sylvain Sicard
Université Grenoble I
INRIA Rhône-Alpes

sylvain.sicard@inrialpes.fr

Fabienne Boyer
Université Grenoble I

fabienne.boyer@inrialpes.fr

Noël De Palma
Institut National

Polytechnique de Grenoble
noel.depalma@inrialpes.fr

ABSTRACT
Components are widely used for managing distributed ap-
plications because they not only capture the software archi-
tecture of managed applications as an assembly of compo-
nents but also permit to dynamically adapt these applica-
tions to changing environments. Following this approach,
our practical experience in the Jade environment about de-
veloping an autonomic repair management service with a
self-healing behavior shows novel requirements on reflective
component models for architecture-based management sys-
tems. First, we have identified five essential runtime abstrac-
tions that a component model must include in order to effi-
ciently support an autonomic repair service. Second, our ex-
perience suggests that traditional reflective component mod-
els should be extended so that it is possible to specialize
meta-operations. Third, our experience also shows that a
meta-data checkpointing capability is best-suited for meta-
data recovery after failures. We demonstrate the soundness
of these findings in several ways. We applied the difficult
problem of autonomic repair to both J2EE and JMS mid-
dleware. We further stressed our algorithms and mecha-
nisms by applying them recursively towards gaining a self-
healing property for the repair service itself. Although our
experience was done in the Jade context, using the Frac-

tal component model, we believe our findings to be general
to architecture-based management systems using reflective
component models.

1. INTRODUCTION
Architecture-based management approaches promote the

use of architectural models as guidelines for various man-
agement functions [13], [21]. Such approaches facilitate the
building of autonomic management services which perform
administration tasks without (or with minimal) human in-
tervention. This trend has emerged as an important research
agenda in the face of the ever-increasing complexity of dis-
tributed applications. Management services include appli-
cation deployment, platform configuration, and reaction to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

events such as node failures, wide variations in load, vari-
ous kinds of attacks, etc. An important part of this agenda
lies in the elicitation of architectural principles and design
patterns for the construction of autonomic systems.

A well-accepted design principle in system management
consists in using a component-based technology to develop
the management framework, such as in Jmx [18], Smart-

Frog [15, 22], Jade [7], Rainbow [13], Ega [2]. Based on
our experience in building a self-repair service in the con-
text of an architecture-based management framework called
Jade [7], we observed that the relevance of the repair service
strongly depends on the properties and services provided by
the component model. The contribution of this paper is
to report on this experience and to expose these properties
and services which are seldom satisfied by the existing ap-
proaches.

We more specifically consider the case of self-repairing
J2EE clusters. Apart from the fact that J2EE application
servers constitute an important and representative segment
of distributed computing, there are two main reasons for this
choice of application area and experimental setting.

First, a clustered J2EE application server constitutes a
distributed system which has a non-trivial architectural com-
plexity, involving several interacting tiers, and combining
different legacy middleware technologies (Web servers, Ejb

servers, databases). Dealing with such levels of complex-
ity has implications on the component model, which should
provide the relevant abstractions to reify the software archi-
tecture of the managed legacy system.

Second, repair management in J2EE application servers
still remains an open issue, witness several recent papers
that deal with this subject [17, 23]. A self-repair service
provides an entirely automatic repair process dealing with
failures occurring either in the application or in the man-
agement system itself. To build such a service, additional
properties have to be supported by the component model.
More precisely, we have identified a need for associating the
components with a meta-data checkpointing facility. Fur-
thermore, some components had to be enhanced with repli-
cation capabilities.

The rest of the paper is organized as follows. Section 2
exposes the objectives of architecture-based management
systems. Section 3 presents the basic properties expected
from a component model used as a building block of an
architecture-based management system. Section 4 focuses
on the building of a repair management service and presents
additional requirements that apply on the component model.
The ideas exposed in this paper have been validated by an

experiment whose results are exposed in Section 5. In par-
ticular, we give the principles of the Fractal [8] component
model we used, as well as the way we enhanced it to fulfill
the identified requirements. Related work is presented in
Section 6, and we conclude in Section 7.

2. OBJECTIVES OF AN ARCHITECTURE-
BASED MANAGEMENT SYSTEM

In this section, we present the objectives of architecture-
based management systems, and the way components can
be used in such systems.

2.1 Architecture-Based Management
When managing a distributed application, architecture-

based management suggests to consider two levels: the ap-
plication itself and the environment in which the application
is deployed. Both are looked as composed of elements. The
application is composed of software elements connected to-
gether through distinct kinds of relationships, such as com-
position or delegation. The environment is composed of
hardware elements, such as nodes. Hardware elements are
also connected through different relationships such as net-
work connections.

Elements, both hardware and software, exhibit a manage-
ment state. The management state of an element is com-
posed of certain aspects exposed to the control of a manage-
ment system by that element. Three such aspects are usually
considered as essential in architecture-based management:
local configuration settings (i.e., its properties values), life
cycle state and relationships between managed elements. It
is important to point out that the concept of management
state is a dynamic one since aspects may change during the
lifetime of the application.

As an example, we can consider the management state of
an Apache Httpd server as exposing its current configuration
settings (corresponding to properties defined in a file named
httpd.conf), its life cycle state (started/stopped) and the
host address and port of the Tomcat servlet server to which
it is connected as a client (if such a connection exists).

Using the management states of elements, we can define
the management state of a distributed application as whole
that captures the current software architecture and config-
uration settings of a distributed application. The global
management state is composed of the management states
of the elements belonging to both the application and the
environment. This includes the relationships between ele-
ments of the application and the environment, that is, how
the application’s elements are mapped on the environment’s
ones.

According to these definitions, two kinds of basic man-
agement functions need to be provided by an architecture-
based management system. One must be able to observe
the management state of the application, as an open box
inside which the internal software architecture is made ex-
plicit. One must also be able to manipulate this manage-
ment state, for instance creating or deleting elements as well
as modifying their attributes or their relationships.

2.2 The J2EE Use Case
The J2ee specification aims at enabling the design of com-

plex web application servers, which dynamically produce
web pages in response to client requests. A J2ee appli-

Figure 1: A Classical J2EE Application Server Ar-

chitecture

cation server is generally composed of four tiers, which can
be deployed on different nodes:

• The web (e.g., Apache) and Servlet (e.g., Tomcat)
server tiers execute the presentation part of the ap-
plication, managing references to both static and dy-
namic web pages. Dynamic pages are generated using
data that can be requested from the Ejb tier.

• The Ejb tier (e.g., JOnAS [20]) hosts the business logic
of the application. If needed, the Ejb server could in-
teract with one ore more database servers (the fourth
tier) which deal with persistent data used by the ap-
plication.

Most J2ee application servers must be scalable (i.e., be able
to deal with an arbitrary number of client requests in a rea-
sonable time) and must ensure availability (i.e., be able to
serve requests despite failures). Both scalability and avail-
ability can be achieved by replication of the different tiers
on a cluster of machines, as illustrated in Fig. 1.

In this context, a typical management scenario consists in
dealing with the failures of machines by (1) detecting such
failures and (2) automatically restarting the failed replica
on another node and updating its connections with the dif-
ferent tiers. Such a scenario implies that the management
system should be aware of the software architecture of the
application server and able to manipulate this architecture.

2.3 Using Components
In the context of an architecture-based management sys-

tem, the components may be used in two ways:

• As wrappers of legacy elements: components are used
to reify the management interface of the legacy ele-
ments (and not their functional interface) into a uni-
form management interface providing operations for
observing and manipulating their management state.
Most management services can then be designed in a
generic way, independently of the specific management
interface of the managed legacy elements.

• For building management services: the expected ben-
efit is that the management services can be applied
to the management system itself. For instance, a self-
sizing service can be under the control of a repair man-
agement service in order to be automatically repaired
in case of its failure.

The requirements related to the building of wrappers are
presented in Section 3 and those related to the building of
a repair management service are presented in Section 4.

3. USING COMPONENTS AS WRAPPERS
OF LEGACY ELEMENTS

This section presents the main requirements that apply to
a component model used for wrapping legacy elements in an
architecture-based management system. We suppose that
the basics of component models [24] are well-known.

3.1 Objectives
A relevant design principle for an architecture-based man-

agement system is to represent the management state of a
legacy application using the abstractions (e.g., interfaces,
bindings, etc.) provided by the component model. These
abstractions are indeed close to those required to represent
a management state. Following this principle, a wrapper
performs the two following tasks.

• It reifies the management state of a legacy element
into the component model abstractions. For instance,
a legacy element is reified into a component, and a
composition link is reified into a containment relation
between components.

• It provides a uniform way of manipulating this man-
agement state through the meta-operations (e.g., bind,
unbind, etc.) associated to the component model. In
other words, the management operations correspond
to the meta-operations. In the case of a composition
link between two legacy elements, modifying this link
should be performed by invoking the meta-operations
manipulating the containment relation which reifies
this link, given that the corresponding legacy actions
are executed at the legacy level.

This leads to an overall architecture composed of two lay-
ers, as shown in Fig. 2. Since management state is a dynamic
notion, only component models providing runtime compo-
nents can be considered here. Consistency maintenance be-
tween the two layers should ensure that the Management
layer reflects the current management state of the Legacy
layer. In principle, any manipulation of the Legacy layer
must go through the control of the management system.

Reaching these objectives implies that the abstractions
provided by the component model are relevant to represent
the management state of a legacy element, and that the
meta-operations used to manipulate these abstractions are
sufficient. The next sections describe more precisely the ex-
pected abstractions (Section 3.2) and meta-operations (Sec-
tion 3.3).

3.2 Requirements for the Component Model
Abstractions

Our experience has shown that the five following abstrac-
tions are sufficient to reify the management state of a legacy
element (also called managed element), with respect to the
requirements of a repair management service.

• Attributes. The attributes of a component reify the
configurable properties of its managed element (e.g.,
properties defined in the Web server’s configuration
file).

• Life cycle state. The life cycle state of a compo-
nent reifies the life cycle state of its managed element
(e.g., deployed, started, etc.). This implies that the

Figure 2: Basic Architecture of a Management Sys-

tem

set of possible states defined by the component model
be extensible to reflect the states of the Legacy layer.

• Interfaces. The interfaces of a component reify the
functional dependencies of its managed element with
the other managed elements in order to provide control
on an application’s configuration. For instance, two
legacy elements such as an Apache Httpd Web server
and a Tomcat Servlet server may be wrapped by two
components having respectively a client and server in-
terface of a compatible type, meaning that the two
servers can be connected together by the management
system.

• Bindings. Bindings between components reify con-
nections between managed elements that have func-
tional dependencies. An important point is that, by
reification, bindings provide a way to manage connec-
tions (e.g., creating or closing connections), but they
are not intended to implement them.

• Containment. Containment relations reify architec-
tural composition links between legacy elements. For
instance, a J2EE component is a composite one, to
reflects the software architure illustrated in 2.2.

It should be noted that the mapping between the software
legacy elements and the hardware ones (e.g., nodes) can be
represented either by binding or by containment. In the
later case, the hardware elements of the execution environ-
ment are wrapped into composite components which contain
their consumers as sub-components (e.g., a node component
contains sub-components representing the legacy elements
running on it). Using the containment feature to represent
the mapping between the execution environment and the
legacy application requires, however, that the component
model should allow components to be shared among multi-
ple parent components.

3.3 Requirements for the Component Model
Meta-Operations

Given our five abstractions and the way they are used to
represent a legacy system, the two following classical kinds
of meta-operations are required:

• Introspection. Introspectable components provide
a way to dynamically discover their meta-data. By

Figure 3: Wrapping the life cycle interface of the

Apache legacy software.

meta-data, we means the current state of our five ab-
stractions. This feature allows observing the manage-
ment state of the legacy application.

• Reconfiguration. Reconfigurable components pro-
vide a way to dynamically modify their meta-data (e.g.,
adding / removing a binding). This indirectly allows
modifying the management state of the legacy appli-
cation, provided that the corresponding actions are re-
ported at the Legacy layer.

While operations of this kind are often provided by reflec-
tive component models ([16]), a less frequently covered as-
pect is that the implementations of these operations should
be specializable. This is required to manage the mapping
with the Legacy layer through the specific management in-
terfaces provided by the legacy elements. For instance, a web
server and a database server can be wrapped into two com-
ponents that provide a setProperty operation. While the
former translates this operation into editing the web server’s
configuration file (e.g., for setting the server port number),
the later may translate the same management operation into
defining a parameter value used when starting the database
server (e.g., for setting the maximum number of parallel con-
nections). In the same way, when a bind operation is invoked
on a wrapper component, the corresponding specific actions
which establish the binding at the Legacy layer should be
executed (e.g., creating a TCP connection). To avoid syn-
chronization problems, a locking mechanism should of course
be provided by the component model.

Figure 3 illustrates the wrapping of the Apache legacy
software in the Jade system, and shows more precisely the
specialization of the life-cycle operations to manage the map-
ping with the Apache legacy software.

4. USING COMPONENTS FOR MANAGE-
MENT SERVICES: THE CASE OF A RE-
PAIR SERVICE

An autonomic repair service is one of the most complex
management service and as such a very interesting case study
of the architecture-based management approach and the ab-
stractions required in the underlying component model.

The goal of an autonomic repair management service is to
detect the occurrence of some well-identified types of failures
and to restore a managed application to an active state. The
goal is to achieve a specified level of availability, according

to a given policy [4]. One policy consist in restoring the ap-
plication to a known management state which existed prior
to the failure.

The most challenging aspect of an autonomic repair is
that it must not only repair the applications that it manages
but also demonstrate a self-healing behavior. An interest-
ing approach is to provide self-healing behavior through the
same algorithms and mechanisms that were used for repair-
ing managed applications.

In the following subsections, we present the additional re-
quirements needed to build (1) a basic repair service and (2)
enhance it with self-healing behavior.

4.1 Requirements for a Basic Repair Service
We consider the case of a repair service that restores an

application’s management state to the state which existed
prior to the failure.

The core process executed after a failure detection involves
the following main steps.

• Analysis step. Identify the failed elements and get
their management state.

• Substitution step. Substitute the failed elements
identified by the previous step by newly instantiated
ones configured with the same management state.

Both steps involve the manipulation of the components of
the Management layer (wrapper components), as explained
in the two following sub-sections.

4.1.1 Meta-data checkpointing for the Analysis step.
The analysis step must introspect the wrapper compo-

nents in order to get the knowledge allowing the failure to be
repaired. The components concerned by the failure are those
wrapping the failed node and the software elements which
were running on it prior to failure. The required knowledge
corresponds to the meta-data of these components (what are
their bindings, containments, attributes, etc.). To be able
to perform this introspection task, these components should
be available, even after the failure.

One solution to ensure such property is to forbid a wrap-
per component to be co-located with its managed element.
However, this is not realistic in the context of multi-tier dis-
tributed applications, where the execution time of the man-
agement functions can be critical (as for self-sizing services).
Moreover, some managed elements (such as nodes) may not
be entirely manipulated from a distant location, implying
these to be co-located with their wrapper.

Thus there is a requirement for using a checkpointing
mechanism which provides an up to date view of the meta-
data of the wrapper components. This leads to the global ar-
chitecture of the management system as illustrated in Fig. 4.

For uniformity reasons, the Checkpoint layer may be com-
posed of components. The same introspection interface can
then be used to introspect the Management and the Check-
point layers. Following this principle, any checkpointable
component is associated to a checkpoint component having
the same type but an empty implementation part. The in-
vocation of any meta-operation on such a component (e.g.,
addSubComponent(...)) is then reflected at the Checkpoint
layer (e.g., by establishing the corresponding containment
relation).

Figure 4: The Global Management Architecture

From a global point of view, invoking a meta-operation
on a wrapper component (such as invoking a bind(...) on
an Apache wrapper) causes the following actions:

• Checkpoint update: performing the same invocation
at the Checkpoint layer, (e.g., establishing the corre-
sponding binding at the Checkpoint layer),

• Legacy update: invoking the specific management in-
terface of the Apache legacy component (e.g., estab-
lishing the binding at the Legacy layer), as said in 3.3.

4.1.2 Component Reconfiguration for the Substitu-
tion step.

The principle of the substitution step is to replace the
failed components by new ones at the Management layer.
The reconfiguration actions mostly concern the component
bindings and containments. If a failed component was bound
to other components, the bindings should be closed and re-
established with the replacing component to reflect the same
connections. Similarly, if a failed component was a sub-
component of other components, the containment relation-
ships should be updated accordingly.

4.2 Requirements for adding Self-Healing Be-
havior

To achieve self-healing behavior for the above repair ser-
vice, we need to add reliability to both the Management and
Checkpoint layers:

• Add reliability the core process involved by the repair
service as defined in Section 4.1

• Add reliability the critical data accessed by the repair
service (the components of the Checkpoint layer)

A classical way for adding reliability is to use redundancy.
By replicating both the core process of the repair service and
the Checkpoint layer, a fault-tolerant repair service can be
provided. However, the number of faults that are tolerated
is limited by the replica cardinality. This is still insufficient
with regard to a self-healing property, because each time a
failure appears in the repair service, a human administrator
must detect it and re-establish the replica cardinality.

In our approach, we avoid this human intervention. Be-
cause the repair service is able to repair itself, the repair

Figure 5: Putting pieces together: repair service &

replicated components.

service automatically manages the re-establishment of the
replica cardinality. Our approach achieves this without mod-
ifying (i.e., patching) the repair service. Indeed, since the
repair service is implemented as components, the self-healing
behavior of the repair service is obtained through the same
algorithms and mechanisms as those used for repairing the
legacy elements. This has the following implications.

• The replicas of both the core process of the repair
service and the Checkpoint layer must be under the
control of the repair service. Therefore, each replica
should be represented as a component in the Manage-
ment layer, which delimits the“repair”area (see 4.1.1).

• Replication should be provided as an orthogonal aspect
allowing a component to be tagged with a “replicated”
capability without having to program it specifically.

Since the Checkpoint layer provides an isomorphic view
of the Management layer, the Checkpoint replicas will be
visible in the Checkpoint layer itself. To prevent an infinite
recursion in the Checkpoint layer, the meta-operations of
the Checkpoint components are specialized in a way that
avoids the Checkpoint update action presented in 4.1.1.

The resulting overall management architecture is illus-
trated in Fig. 5. The operating principle to gain self-healing
capability is as follows: (1) the components implementing
the repair service (including nodes failure detector) as well
as Checkpoint components are replicated components; (2)
these replicas are represented (i.e., referenced) in the Man-
agement layer; (3) each repair replica detects and repairs
failures from any component represented in the Management
layer, including the other repair replicas’ nodes.

The fact that the replication is managed at the level of
the component model is essential regarding the self-healing
property of the repair service. In a previous design of our
repair service [7], replication was applied at the level of
the overall management system (any request made to the
management system was replicated to another management
system), the component-based internal organization of the
management system being ignored by the replication service.
While this design has made the repair service fault-tolerant,

it has not allowed to provide a self healing property in a
convenient way.

4.3 Self-Healing Repair Algorithm
This section describes the repair service algorithm based

on the component features fulfilling the requirements previ-
ously exposed. In this algorithm, the expression checkpoint-
reference (resp. management-reference) refers to a refer-
ence of a Checkpoint component (resp. Management com-
ponent).

The main steps of the general algorithm are detailed in
the following.

Algorithm 1 Global algorithm

Requires: An architecture-based management system sat-
isfying the requirements exposed in this paper.

Ensures: The overall system is repaired in case of a node
failure.

1: Analyse the failure and build a repair plan
2: Clean up the global system (remove failed components)
3: Execute the repair plan (substitute the failed compo-

nents by newly ones)

4.3.1 Analysing the failure and building a repair plan.
This step (see Alg. 2) consists in analysing the failure

and subsequently returning a repair plan, according to a
repair policy. It uses the Checkpoint Layer to introspect the
management state of the application prior to the failure,
and inserts the references of the components to repair in the
repair plan.

Algorithm 2 Analyse the failure & build a repair plan

Requires: FailedNode : The checkpoint-reference of the
component representing the failed node.

Ensures: FailedCmps: The management-references of the
failed components. RepairP lan: A repair plan com-
posed of the checkpoint-references of the components to
repair (the default policy defines the components to re-
pair as those which were running on the failed node)

1: for all cmp in FailedNode.getSubComponents() do

2: FailedCmps.addCmp(managementReference(cmp))
3: RepairP lan.addCmp(cmp)
4: end for

4.3.2 Cleaning up the global system.
Cleaning up the global system (see Alg. 3) means locating

and removing all references from a surviving component to
a failed component in the Management layer. This is done
by using the reconfiguration meta-operations of the compo-
nent model. Because these operations are specialized for
each type of legacy element, the necessary actions will be
automatically performed at the Legacy layer (e.g., closing a
TCP connection).

4.3.3 Execute the repair plan.
The checkpoint-references of the components to repair

have been registered in the repair plan. Each of these com-
ponents can be introspected to get its management state in

Algorithm 3 Clean up the global system

Requires: FailedCmps : The management-references of
the failed components.

Ensures: All relationships (binding, containment) involv-
ing a failed component are closed and removed.

1: for all cmp in FailedCmps do

2: {for each alive component, remove a failed binding}
3: for all itf in cmp.getServerInterfaces() do

4: for all clientItf in itf.getBindingSources() do

5: if clientItf.owner() not in FailedCmp then

6: clientItf.unbind()
7: end if

8: end for

9: end for

{for each alive component, remove a failed child}
10: for all parentCmp in cmp.getParents() do

11: if parentCmp not in FailedCmp then

12: parentCmp.removeSubComponent(cmp)
13: end if

14: end for

{for each alive component, remove a failed parent}
15: for all cmp in FailedCmp do

16: for all subCmp in cmp.getSubComponents() do

17: if subCmp not in FailedCmp then

18: subCmp.removeParent(cmp)
19: end if

20: end for

21: end for

22: end for

order to substitute it by a new one having the same man-
agement state (see Alg. 4).

Algorithm 4 Execute the repair plan

Requires: RepairP lan : a repair plan as returned by Al-
gorithm 2, FailedNode : the checkpoint-reference of the
component representing the failed node.

Ensures: The failed components are replaced by newly
ones having the same management state

1: newNode = NodeAllocator.replaceNode(FailedNode)
2: for all cmp in RepairP lan do

3: {Create an equivalent component (same attributes,
interfaces, relationships and life cycle state) and de-
ploy it on newNode}

4: end for

5. EXPERIMENTAL RESULTS
The ideas presented in this paper result from our expe-

rience with building and using the Jade architecture-based
management system. Using this experience we assess the
fact that a component model fulfilling the identified require-
ment allows building a self-repair service. This service has
been validated both from a qualitative and a quantitative
point of view. The rest of this section gives details on both
Jade and the experiments. Then we evaluate the generic-
ity of the requirements. On the basis of a self-repair service
prototype applied to a J2ee system, we evaluate the perfor-
mance overhead induced by the requirements and the gain
in availability on such a legacy system.

5.1 Context
In the Jade architecture-based management system, we

used the Fractal [8] reflective, Java-based component model,
which is intended for the construction of dynamically con-
figurable and monitorable systems.

The Fractal components have a reflective structure that
is organized into membrane and content. The membrane of a
component defines its abstractions and its meta-level meth-
ods, organized in specializable controllers and providing the
introspection and reconfiguration operations as exposed in
Section 3.

The components were enhanced with a meta-data check-
pointing facility, and organized to support replication capa-
bilities such as presented in Section 4. More precisely, any
component can be tagged with the replicated and/or check-
pointed property, which are provided in a generic fashion
by the component programmer’s point of view. Replicated
components are managed through a semi-active replication
strategy which deals with side-effects of server component
(typically replicated component with both server and client
interfaces). The protocol is asymmetric in the sense that
one replica has the status of leader, and clients interact only
with a leader replica. When the leader receives a request,
it broadcasts it to the follower replicas using a FIFO broad-
cast protocol (all replicas are members of a group). Atomic
broadcast is not required since there is at that moment only
one sender in a given group (the leader). Then both leader
and follower process the request and only the leader sends
its response to the client (follower requests are just locally
logged). If replicated components own a client interface,
since requests are processed by all replicas, the component’s
interface to which the replicated component is bound will re-
ceive replicated requests. Since interaction is not necessarily
idempotent, detection and filtering of duplicate requests is
performed.

5.2 Genericity supported by the requirements
We recall that one of the Jade’s objectives is to man-

age a variety of legacy software systems, regardless of their
specific interface and underlying implementation. In order
to evaluate this, we applied the Jade’s management func-
tions over two different legacy systems: a J2ee clustered web
server and a Jms message server. To this end, we provide
two specialized implementations of the management API de-
scribed in Section 3, one for wrapping each legacy system.
Experience on J2ee used the RUBiS benchmark, which im-
plements an auction site [3]. RUBiS defines several web
interactions (e.g., registering new users, browsing, buying
or selling items); and it provides a benchmarking tool that
emulates web client behaviors and generates a tunable work-
load (300 web clients). We used the RUBiS 1.4.2 version
of the multi-tier J2ee application running on several mid-
dleware platforms: Apache 1.3.29 as a web server, Jakarta
Tomcat 3.3.2 as an enterprise server and MySQL 4.0.17 as a
database server. Experience on Jms used Joram 4.3.12 as a
Jms server. Due to the lack of Jms open source benchmark,
we used a micro-benchmark composed of an arbitrary set of
queues and topics. A synthetic workload is injected through
a set of message producers and consumers.

Table 1 gives the code size of Jade’s generic and spe-
cific sub-systems. It provides a rough measure of the code
factoring obtained thanks to the generic approach followed
in Jade. Indeed, taking into account a new administered

Java # ADL
lines lines

G
en

er
ic

co
d
e Deployment Service 3505 1690

Checkpoint layer 6630 –
Replication layer 4567 832
Self-Repair service 4750 430
Total 19452 2952

S
p
ec

ifi
c

co
d
e J
2
e
e

Rubis app. - Web 150 11
Rubis app. - Servlets 150 11
Rubis app. - Database 150 11
Total 450 33

Apache Web server 800 16
Tomcat Servlet container 550 12
MySQL SGBD 760 40
Total 2110 68

J
m
s

Joram server 368 51
Jndi 134 12
Jms Queue 253 16
Jms topic 297 16
Total 1052 95

Table 1: Generic code vs. specific code

Human admin. Jade admin.

Throughput 12 req./s 12 req./s
Resp. time 87 ms 89 ms
Mem. usage 17.5 % 20.1 %

Figure 6: Throughput, response time and memory

usage of RUBiS with and without Jade.

legacy system in Jade would require to implement a Jade

wrapper that consists of, in average, 360 lines of Java code
and a Fractal configuration file of 20 lines (i.e. Fractal

Adl). On the other hand, with an ad-hoc (i.e. non-generic)
approach, taking into account a new legacy system would
require to re-implement a new version of a repair service
(with a total code size around 4750 lines of Java code).

5.3 Performance overhead induced by the re-
quirements

In order to measure the possible performance overhead
induced by Jade, we compared two executions of the same
multi-tier J2ee system: when it is run over Jade and when
it is run without Jade. Experiment were performed on
the Linux kernel running x86-compatible machines, with
1 GB Ram and 1800 MHz, connected via a 100 Mb/s Eth-
ernet LAN to form a cluster. During the experiments, the
managed application has been submitted to a medium work-
load without any failure so that its execution under the con-
trol of Jade induced no dynamic reconfiguration. The re-
sults (see Fig. 6) show no significant overhead in terms of
application response times and throughput. We can notice
a slight memory overhead (20.1% vs. 17.5%) that can be
linked with the creation of internal software components by
Jade. However, Jade does not induce a perceptible over-
head on CPU usage; this is due to the fact that Jade does
not intercept application communications but only configu-
ration/management operations.

nb. failed req. 1900
MTTR 43 s
Availability 0.96

(a) With Jade

nb. failed req. 18700
MTTR 464 s
Availability 0.72

(b) Without Jade

Figure 7: Enterprise server behavior in the presence

of failures.

5.4 Guarantying service continuity
Figure 7 (a) & (b) compares the availability of the RUBiS

application, in the presence of node failures, when the overall
infrastructure is managed by a human administrator versus
Jade. Under human administration (c.f. Fig. 7 (b)), when
a failure occurs on the system (at time 440 seconds), the
auction site becomes unavailable and all new client requests
result in an Http error. To handle the failure, the operator
must react as follows: (1) first, failure must be detected; (2)
the operator needs to know in detail the system architec-
ture; (3) based on this knowledge, he should diagnose the
node failure and infer what reconfiguration is needed (which
software need to be redeployed and which software configu-
ration need to be updated); (4) the operator has to log on
remote machines and manually perform these reconfigura-
tion tasks. During this time, client requests (18700 requests
until the end of the recovery) cause an Http error. On
the other hand, when Jade is used (see Fig. 7 (a)), only
1900 failed client requests have been submitted by recovery-
time. In our experiment, the human administrator was an
expert and was waiting for a failure during all the experi-
ment (that is why the MTTR is so low). Oppenheimer et
al. have shown in [19] that in real conditions, operator error
is the largest contributor to MTTR, which could reach up
to 9 hours.

6. RELATED WORK
Jmx [18] is a de facto standard for administering Java

applications such as J2ee application servers. It defines a
three-layered management architecture, in which the lower
layer is composed of components, called MBeans, represent-
ing the Java objects to manage. The Mbeans provide in-
strumentation interfaces, allowing mainly updating the con-
figuration attributes and getting statistics and performance
information. The JSR77 standard defines the MBeans at-
tributes according to a hierarchical information model of
J2ee managed objects. According to the requirements pre-
sented in this paper, the main limitation of Jmx is that
it does not expose the dependencies (in terms of bindings
and containment) between the managed objects. Building
sophisticated management services requiring the knowledge
of the current overall architecture of a J2ee server (e.g.,
current number of replicates) is not possible, unless this ar-
chitecture is immutable.

Models for distributed applications management have been
considered by the DMTF (Distributed Management Task
Force) [1] through the definition of the CIM (Common Infor-
mation Model) / WBEM (Web-Based Enterprise Manage-
ment). CIM is an object-oriented information model that
provides a conceptual view of physical and logical system
components through the classical abstractions provided by
object models. A managed element is represented by an
object which can have different kinds of relations (associa-
tions) with other objects. However, no uniform management
interface is defined (management operations are provided as
specific object methods).

SmartFrog [15] is a framework for the management of
configuration-driven systems. It defines a system as a collec-
tion of software components with certain properties (i.e., at-
tributes). The framework provides mechanisms for describ-
ing these component collections and for deploying and man-
aging their life cycle. The SmartFrog component model
defines the interfaces that a software component should im-
plement (or that can be provided by a management adapter).
These are based on three main abstractions: attributes, life
cycle and containment. A limited notion of binding between
components is however provided through the concept of link,
which allows to manage a dependency between two compo-
nents attributes values. The containment abstraction is de-
fined as a way of providing a hierarchical naming scheme by
which attributes may be referenced. It is not clear whether
and how containment relationships can be introspected and
manipulated dynamically. Moreover, while the life cycle op-
erations are specializable, this is not the case for the other
kinds of operations (dynamic attributes or containment ma-
nipulation). Finally, like in the previous component models,
no non-functional property is provided.

Lira [10] is a lightweight infrastructure for managing dy-
namic reconfiguration that applies and extends the concepts
of network management to distributed software systems. In-
dividual managed entities are under the control of agents
which perform basic reconfiguration functions on them. The
main abstractions and operations provided by an agent are
(1) a life cycle state machine, which is manipulated through
an extensible and specializable set of predefined functions
such as start/stop; (2) a setter/getter interface allowing to
attributes to be manipulated; and (3) a call operation that
may invoke any specific method defined by the agent. There
are no explicit containment and binding notions. The Lira
infrastructure was experienced with the automatic failure-
repair of Siena [9], a distributed, content-based, publish-
subscribe event notification service. It is not clear how the
repair manager can get, after the failure, the necessary in-
formation allowing the system to be repaired in a generic
manner.

[12] proposes an infrastructure for creating architecture-
based self-healing systems. Event-based software architec-
tures are targeted, because the managed software elements
are loosely coupled (an element can be replaced without im-
pacting the other elements). They use a component- and
message-based runtime infrastructure to represent and man-
age the running legacy system. The main provided abstrac-
tions are based on the notions of component, ports (i.e.,
interfaces), connectors (i.e., bindings), and messages (rep-
resenting requests or notifications). Dynamic addition or
removal of components is supported. The aspects related to
the reliability of the components are presented as a future

work.
[11] proposes a self-repair management framework based

on architectural styles. An architectural style defines a set
of formally specified constraints over an architecture (a con-
straint violation being a cause for inducing a repair), as well
as how to carry out repair in terms of high-level architec-
tural operators. A style-specific translation service maps
the high-level architecture operations into lower-level sys-
tems operations acting on runtime components. Architec-
tural styles can be used complementary to the principles of
architecture-based management framework exposed in this
paper, as a way of (1) constraining the dynamic evolution
of an architecture; and (2) specializing some high level man-
agement functions.

Architectural styles are also considered in the Plastik in-
frastructure [5], where the approach consist in building gen-
eral invariants into the specification of a component-based
system and to accept any change as long as the invariants are
not violated. The component model is based on OpenCom,
whose main abstractions are: interfaces, bindings, contain-
ment, attributes and the notion of component framework
corresponding to tightly coupled clusters of components co-
operating toward a common functional goal. The OpenCom

runtime supports reflective meta-models which provides ba-
sic introspection and reconfiguration facilities and allows
specializing these operations. The introspection facilities
maintain an architectural view of an application, which is
used to perform reconfiguration operations. This approach,
as well as [11], conforms to [21], which exposes architec-
tural style requirements for building self-healing systems.
These requirements are refined by those exposed in this pa-
per which more specifically consider management systems
based on runtime components.

[14] proposes a component model including self-organising
properties. Components are associated with constraints that
define their behavior according to the architectural evolution
of the global system. Components are containers of provided
and required interfaces, which can be connected through
bindings. Hierarchical component composition is supported.
The basic management operations are adding/removing a
component, as well as adding/removing a binding. Spe-
cialization of these operations on a component-basis is sup-
ported. Moreover, each component holds a checkpoint of
the current architectural state of the global system, allow-
ing it to adjust its current configuration in accordance with
this state. The checkpoint views are managed through a
group protocol, which tolerates the failure of individual com-
ponents. The component model proposed by [14] partially
overlaps the requirements expressed in this paper. However,
abstractions such as attributes or life cycle state are not
mentioned.

Finally, [6] considers the use of reflective middleware to
develop self-managing systems as a challenging research di-
rection. They more specifically target platforms where both
middleware and applications are built with reflective auto-
nomic components. Like us, they put a particular emphasis
on the role of components and reflection and their use to
provide general introspection and adaptation capabilities.

7. CONCLUSION
Components provide a way of building architecture-based

management systems, which exhibit the software architec-
ture of a managed application and provide a way of adapting

it to changing environments. More precisely, the compo-
nents are used to represent the architecture of a managed
application as an assembly of components providing a uni-
form management interface. They may also be used for im-
plementing management services.

However, based on our experience in building an auto-
nomic repair service in the context such systems, we ob-
served that the properties expected from the component
model are strong, and seldom entirely satisfied by the exist-
ing component models. An autonomic repair service must
not only repair the applications that it manages but also
demonstrate a self-healing behavior meaning that it is able
to repair itself. The required properties are summarized as
follows:

• To build an autonomic repair service, the component
model should (1) provide five main runtime abstrac-
tions: attributes, interfaces, life cycle state, binding
and containment; and (2) provide a way to manip-
ulate these abstractions through specializable meta-
operations (e.g., addSubComponent, bind, etc.).

• To enhance the repair service with self-healing behav-
ior, the components have to support two non-func-
tional properties: a checkpointed property, allowing a
component’s meta-data to be checkpointed (e.g., con-
tainments, bindings, etc.), and a replicated property
allowing components to be replicated.

Our experience has showed the importance of non-fonctional
aspects of the component model such as meta-data check-
pointing and replication.

The soundness of our findings has been validated through
several large experiments on successful middleware platforms.
One is a clustered J2ee Web server and the other is a Jms

message server.

Acknowledgments.
We would like to acknowledge Prof. Sacha Krakowiak and

Prof. Olivier Gruber from University Grenoble 1 for their
help in reviewing this paper.

8. REFERENCES
[1] DMTF (Distributed Management Task Force).

http://www.dmtf.org/home.

[2] EGA (Enterprise Grid Alliance), Reference Model and
Use Cases v1.5, 2006. http://www.gridalliance.org.

[3] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and
W. Zwaenepoel. Specification and Implementation of
Dynamic Web Site Benchmarks. In IEEE 5th Annual
Workshop on Workload Characterization (WWC-5),
Austin, TX, November 2002.

[4] A. Avizienis, J.C. Laprie, B. Randell, and
C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing,
01(1), 2004.

[5] T. Batista, A. Joolia, and G. Coulson. Managing
Dynamic Reconfiguration in Component-based
Systems. In European Workshop on Software
Architectures, Pisa, Italy, June 2005.

[6] G.S. Blair, G. Coulson, and P. Grace. Research
directions in reflective middleware: the Lancaster

experience. In Proceedings of the 3rd Workshop on
Adaptive and Reflective Middleware (ARM’04), New
York, NY, USA, 2004. ACM Press.

[7] S. Bouchenak, F. Boyer, D. Hagimont, and
S. Krakowiak. Architecture-Based Autonomous Repair
Management: An Application to J2EE Clusters. In
24th IEEE Symposium on Reliable Distributed Systems
(SRDS-2005), Orlando, FL, October 2005.

[8] É. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.B. Stefani. The Fractal Component Model and
its Support in Java. Software – Practice and
Experience (SP&E), 36(11-12), September 2006.
Special issue on “Experiences with Auto-adaptive and
Reconfigurable Systems”.

[9] A. Carzaniga, M. J. Rutherford, and A.L. Wolf. A
Routing Scheme for Content-Based Networking. In
Proceedings of IEEE INFOCOM 2004, Hong Kong,
China, March 2004.

[10] M. Castaldi, A. Carzaniga, P. Inverardi, and A. Wolf.
A Lightweight Infrastructure for Reconfiguring
Applications. In Springer-Verlag, editor, 11th
International Workshop on Software Configuration
Management, Berlin, 2003.

[11] S.W. Cheng, D. Garlan, B. Schmerl, J.P. Sousa,
B. Spitznagel, and P. Steenkiste. Using Architectural
Style as a Basis for Self-repair. In Proceedings of the
3rd Working IEEE/IFIP Conference on Software
Architecture (WICSA 2002), Montreal, 2002.

[12] E.M. Dashofy, A. van der Hoek, and R.N. Taylor.
Towards Architecture-based Self-Healing Systems. In
Proceedings of the First ACM SIGSOFT Workshop on
Self-healing Systems, Charleston, 2002.

[13] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-Based Self
Adaptation with Reusable Infrastructure. IEEE
Computer, 37(10), October 2004.

[14] I. Georgiadis, J. Magee, and J. Kramer.
Self-organising software architectures for distributed
systems. In 1st Workshop on Self-Healing Systems
(WOSS’02), New York, NY, 2002.

[15] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau,
P. Murray, and P. Toft. Configuration and Automatic
Ignition of Distributed Applications. In HP OVUA
2003 - HP OpenView University Association, 2003.

[16] G. Kiczales and J. Des Rivieres. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA,
USA, 1991.

[17] A.I. Kistijantoro, G. Morgan, S.K. Shrivastava, and
M.C. Little. Component Replication in Distributed
Systems: A Case Study Using Enterprise Java Beans.
In 22th IEEE Symposium on Reliable Distributed
Systems (SRDS-2003), 2003.

[18] Sun Microsystems. Java(TM) Management Extensions
(JMX TM). http://java.sun.com/javase/
technologies/core/mntr-mgmt/javamanagement/.

[19] D. Oppenheimer, A. Ganapathi, and D. Patterson.
Why do Internet services fail, and what can be done
about it? In USENIX Symposium on Internet
Technologies and Systems (USITS’03), 2003.

[20] JOnAS Project. Java Open Application Server.
http://jonas.objectweb.org.

[21] M.M. Rakic, N. Mehta, and N. Medvidovic.
Architectural style requirements for self-healing
systems. In Proceedings of the First Workshop on
Self-healing Systems (WOSS’02), New York, NY,
USA, 2002. ACM Press.

[22] SmartFrog. SmartFrog: Smart Framework for Object
Groups. HP Labs.
http://www.hpl.hp.com/research/smartfrog/.

[23] BEA Systems. Achieving Scalability and High
Availability for E-Business, January 2004.
http://dev2dev.bea.com/pub/a/2004/01/WLS_81\

_Clustering.html.

[24] C. Szyperski. Component software: beyond object
oriented programming. ACM Press Addison-Wesley
Publishing Co., New York, NY, USA, 1998.

