
Virtual Network Functions Orchestration in
Wireless Networks

Roberto Riggio∗, Abbas Bradai§, Tinku Rasheed∗, Julius Schulz–Zander†, Slawomir Kuklinski‡, Toufik Ahmed¶
∗CREATE-NET, Italy; Email: rriggio,trasheed@create-net.org

§CNRS, Grenoble Informatics Laboratory UMR 5217, France; Email: bradai@imag.fr
†TU-Berlin, Berlin, Germany; Email: julius@inet.tu-berlin.de

‡Orange Polska, Warsaw, Poland; Email: slawomir.kuklinski@orange.com
¶CNRS-LaBRI, University of Bordeaux, France; Email: tad@labri.fr

Abstract—Network Function Virtualization (NFV) is emerging
as one of the most innovative concepts in the networking
landscape. By migrating network functions from dedicated mid-
dleboxes to general purpose computing platforms, NFV can
effectively reduce the cost to deploy and to operate large
networks. However, in order to achieve its full potential, NFV
needs to encompass also the radio access network allowing Mobile
Virtual Network Operators to deploy custom resource allocation
solutions within their virtual radio nodes. Such requirement
raises several challenges in terms of performance isolation and
resource provisioning. In this work we formalize the Virtual
Network Function (VNF) placement problem for radio access
networks as an integer linear programming problem and we
propose a VNF placement heuristic. Moreover, we also present
a proof–of–concept implementation of an NFV management and
orchestration framework for Enterprise WLANs. The proposed
architecture builds upon a programmable network fabric where
pure forwarding nodes are mixed with radio and packet process-
ing nodes leveraging on general computing platforms.

I. INTRODUCTION

Network Function Virtualization (NFV) promises to reduce
the cost to deploy and operate large networks by migrating
network functions from dedicated hardware appliances to
software instances running on general purpose virtualized
networking and computing infrastructures. This in time shall
improve the flexibility and the scalability of the mobile net-
work in that the deployment of new features and services will
be quicker (software vs hardware life–cycles) and different
network functions can share the same computing resources
paving the way to further economies of scale. However an ef-
fective management and orchestration framework is needed if
the virtual resources made available by the NFV Infrastructure
are to be used efficiently.

In this work, we set to investigate the concept of VNF
management and orchestration in the radio access network
(RAN) domain. In this scenario we expect mobile virtual
network operators (MVNO) to specify their requests in terms
of a chain, or a graph, of VNFs. Such VNF chain can
include functions such as load–balacing and firewall, as well
as virtual radio nodes. The latter type of components, i.e.
virtual radio nodes, imposes several requirements. MVNOs
must be allowed to deploy custom resource allocation schemes
within their virtual radio nodes while the system shall both
enforce strict performance isolation between MVNOs and
ensure efficient resource utilization across the network.

This paper extends our previous work [1] by: (i) formalizing
the Virtual Network Function placement problem for radio
access networks as an integer linear programming problem
(ILP); and (ii) proposing a new scalable VNF placement
heuristic. Moreover, we report on a updated proof–of–concept
VNF management and orchestration framework for enterprise
WLANs and on the implementation and evaluation of a few
VNFs. To the best of the authors knowledge, this is the first
attempt at providing a formulation of the VNF placement prob-
lem for radio access networks in such a way that performance
isolation between multiple MVNOs is accounted for from the
resource request phase.

The reminder of this paper is structured as follows. In Sec. II
we discuss the related work. The physical network model,
the VNF request model, and ILP problem formulation are
presented in Sec. III. The VNF placement heuristic and its
evaluation are presented in, respectively, in Sec IV and in
Sec. V. The proof–of–concept is presented in Sec VI while
a few sample VNFs and their evaluation are presented in
Sec. VII Finally, Sec. VIII draws the conclusions pointing out
the future work.

II. RELATED WORK

The recent advances in general purpose computing plat-
forms paved the way to a new generation of software routers.
However, many of these solutions focus on improving the pure
raw packet processing speed [2], [3], [4] but do not tackle the
problem of deploying and orchestrating VNFs. In parallel there
are significant efforts toward VNF management and orchestra-
tion. In particular the European Telecommunications Standards
Institute (ETSI) has recently tackled the NFV concept [5]
while the OPNFV project [6] and the MANO [7] are working
toward an open source carrier grade platform for NFV.
- Virtual Network Embedding: The amount of literature
on virtual network embedding (VNE) topic is considerable.
Seminal works in this domain include VINEYard [8] for single
domain VNE and PolyVINE [9] for multi–domain VNE. For
a comprehensive survey on VNE algorithms we point the
reader to [10]. However, to the best of the authors knowledge,
none of these works formulate the VNE problem for hybrid
wired/wireless networks with the goal of ensuring performance
isolation between tenants.

- VNF Placement: The VNF placement problem is con-
ceptually similar to component placement in data–centers
and clouds. The amount of literature in this domain is thus
humbling [11], [12], [13]. In [11] the authors study the
problem of placing virtual machine instances on physical
containers in such a way to reduce communication overhead
and latency. In [12] the author propose a novel design for
a scalable hierarchical application components placement for
cloud resource allocation. The proposed solution operates in
a distributed fashion, ensuring scalability, while providing
performances very close to that of the centralized algorithm.
This work is extended in [13] where several algorithms for
efficient data management of component-based applications
in cloud environments are proposed. A survey on resource
management in cloud computing environments can be found
in [14]. In [15] a joint node and link mapping algorithm is
proposed. While the authors of [16], [17] tackle the problem
of dynamic VNF placement. Targeting resource allocation
in data-centers, these works do not tackle the problem of
virtualized radio function placement.
- Wireless & Mobile Networks: The topic of radio resources
virtualization has received significant attention in the literature.
In [18], a WLAN virtualization approach named Virtual WiFi
is proposed extending the virtual network embedding from the
wired to the wireless domain. Kernel–based virtual machines
are used as a virtual wireless LAN devices. Time domain
multiplexing is used in order to provide isolation between
the virtual wireless devices. In [19], [20], wireless network
virtualization is applied to wireless mesh networks. A virtual
network traffic shaper is introduced in [21], [22] for air time
fairness in 802.16e networks. In [23], [24] the problem of
virtualizing OFDMA–based wireless networks (i.e. WiMAX
and LTE) is studied. The authors tackle the problem both at the
radio and the core network level opening the way to interesting
infrastructure sharing scenarios. Similar consideration can be
also made for [25] where a framework for sharing a single
WiMAX base station is proposed. Wireless Virtualization of
802.11 devices is the focus of [26]. In all the cases above,
however, the channel–aware placement of VNFs over radio
and wired resources is not formulated nor is the performance
isolation challenge between multiple MVNOs tackled.

III. NETWORK MODEL

In the VNF placement problem the input consists of Service
Function Chains (SFC) consisting of a variable number of
VNFs, whereas the substrate network, called Network Func-
tion Virtualization Infrastructure (NFVI), provides the physical
constraints in terms of bandwidth and capacity. In this context
the term capacity is not related only to pure computational
resources, such as number of CPU cores and memory, instead
it refers also to packet forwarding and radio processing capa-
bilities. Before introducing the proposed solution we need to
detail specific notations for the NFVI and the SFC requests.

A. Network Function Virtualization Infrastructure Model

Let Gnfvi = (Nnfvi, Enfvi) be a directed graph modeling
the physical network, where Nnfvi is the set of n = |Nnfvi|

TABLE I: Substrate network parameters

Variable Description

Gnfvi Substrate network graph.
Nnfvi Substrate nodes in Gnfvi.
Nnfvi Substrate link in Gnfvi.
ωs
c(n) Available CPU resources at node n ∈ Nnfvi.

ωs
m(n) Available memory resources at node n ∈ Nnfvi.

ωs
s(n) Available storage resources at node n ∈ Nnfvi.

ωs
r(n) Available radio resources at node n ∈ Nnfvi.

ωs
e(enm) Available resources (e.g. bandwidth) of link enm ∈ Enfvi.

Λc,m,s,r
n Cost for each unit of node resources.

Λe Cost for each unit of link resources.
∆n Fixed cost of using a node n ∈ Nnfvi.
∆enm Fixed cost of using a link enm ∈ Enfvi.

physical nodes that compose the substrate network and Enfvi

is the set of edges or links. An edge enm ∈ Enfvi if and only
if a point–to–point connection exists between n ∈ Nnfvi and
m ∈ Nnfvi. With respect to the physical network, links are
actual wiring media, e.g., an Ethernet cable interconnecting
the two nodes1. Four weights, ωs

c(n), ωs
m(n), ωs

s(n), ωs
r(n),

are assigned to each node n ∈ Nnfvi : ωs
c,m,s(n) ∈ N+ and

ωs
r(n) ∈ R+, 0 ≤ ωs

r(n) ≤ 1 representing the packet and
radio processing resources available on that node. Nodes with
all weights equal to 0 (zero) are assumed to be pure packet
forwarding nodes. Nodes with ωs

c > 0, ωs
m > 0, ωs

s > 0,
and ωs

r = 0 are assumed to be pure packet processing nodes.
Finally, nodes with ωs

c = ωs
m = ωs

s = 0 and ωs
r > 0 are

assumed to be pure radio access nodes.
Another weight ωs

e(enm) assigned to each link enm ∈
Enfvi : ωs

e(enm) ∈ N+ represents the capacity of the
link connecting two nodes. In order to avoid exceeding the
nominal capacity of the substrate links, traffic shaping is
implemented at the nodes with packet and/or radio processing
capabilities. Finally, let Pnfvi be the set of all substrate paths
and Pnfvi(s, t) the shortest path between nodes s, t ∈ Nnfvi.
Table I summarizes the NFVI parameters.

The weights ωs
c,m,s(n) associated with the packet process-

ing nodes represent, respectively, the amount of CPU, memory,
and storage resources available on that node, while the weights
ωs
r(n) are specific to the radio access nodes and represent

the normalized amount of wireless resources available at that
node. Notice, how with radio access nodes we refer to the
generic nodes providing end–users terminals with wireless
connectivity, e.g. Access Points (APs) in a 802.11 network
or cellular eNodeBs (eNBs) in an LTE network.

For the sake of simplicity and without any loss of generality
in this work we assume that all radio–enabled nodes initially
have the same amount of resources ωs

r(n) = 1,∀n ∈ Nnfvi.
Notice how in this model we make no assumption on the type
of radio resources that can be available at a certain node. In
a 802.11–based network ωs

r(n) could model the amount of
airtime available for transmission in the downlink direction.
Similarly, in an OFDMA–based network (e.g. LTE), ωs

r(n)
could be used to model the available radio resources in time

1In this work we consider undirected links for simplicity.

Forwarding +
Processing

Forwarding

Forwarding +
Radio Access

50,50,50 50,50,50

Fig. 1: NFVI network model. The figure shows the three basic virtual
resources: forwarding, packet processing, and radio access.

and frequency on both the uplink and downlink directions.
A sample substrate network is sketched in Fig. 1. The

network is composed by 10 nodes interconnected together. In
order to improve readability link weights have been omitted.
The substrate network in this example consists of 6 radio
access nodes (at the bottom of the picture), and 4 switches, 2
of which supporting just basic forwarding capabilities.

B. Service Function Chain Requests

Users are allowed to request SFCs as a directed and acyclic
graphs Gsfc = (Nsfc, Esfc). Where Nsfc denotes the set
of nodes (i.e. VNFs) and Esfc ⊆ Nsfc × Nsfc denotes the
set of virtual links. An edge enm ∈ Esfc if the and only
if the packets from VNF n ∈ Nsfc must be forwarded to
the VNF m ∈ Nsfv Notice that as opposed to the previous
NFVI model, nodes in SFC requests represent virtual network
functions through which packets must undergo before leaving
the network. Packet processing nodes and links in the SFC
request shares the same weights as for the NFVI substrate
network (ωv

c , ω
v
m, ω

v
s , ω

v
e). On the other hand, provisioning

of radio resources can be made either in terms of fraction
of available resources (ωv

r) or in terms of total aggregate
bandwidth (ωv

b). A single SFC request can mix bandwidth–
based and resource–based provisioning models.

Due to their stochastic nature, available bandwidth is a
time–varying quantity in wireless networks. Channel fading,
but also to the distribution of end–users, can greatly influence
the network performance. For example, users at the center of
the cell will be, in general, able to use more efficient modu-
lations and coding schemes thus achieving higher throughput
for a fixed amount of radio resources than users at the edges of
the cell. As a result, when the bandwidth–based provisioning
model is employed, also the actual channel conditions experi-
enced by the end–users must be taken into account.

Let us call b(n) the actual aggregate throughput of the vir-
tual radio node n ∈ Nsfc in the fraction of resources currently
assigned the the node. We can then introduce an additional
parameter named reference throughput Ωv

b (n) ≥ ωv
b (n) upon

which the bandwidth reservation ωv
b (n) is enforced. If we

name ω̃v
b (n) the effective target bandwidth for virtual radio

TABLE II: Service function chain request parameters

Variable Description
Gsfc Service function chain graph.
Nsfc Virtual nodes in Gsfc.
Nsfc Virtual links in Gsfc.
ωv
c (n) Requested CPU resources at node n ∈ Nsfc.

ωv
m(n) Requested Memory resources at node n ∈ Nsfc.

ωv
s (n) Requested Storage resources at node n ∈ Nsfc.

ωv
r (n) Requested Radio resources at node n ∈ Nsfc.

ωv
b (n) Requested Bandwidth at node n ∈ Nsfc.

Ωv
b (n) Reference bandwidth at node n ∈ Nsfc.

ωv
e (enm) Requested resources (e.g. bandwidth) of link enm ∈ Esfc.

node n, then we have:

ω̃v
b (n) =

{
ωv
b (n) if b(n) ≥ Ωv

b (n)

ωv
b (n) b(n)

Ωv
b (n) if b(n) < Ωv

b (n)
(1)

The parameter Ωv
b (n) represents a threshold above which

the bandwidth reservation is respected. Otherwise ωv
b (n) is

linearly scaled down. Choosing a small value for Ωv
b (n) means

that the network can utilize more resource in order to satisfy
the bandwidth requirement, which in time could result in an
higher pricing. Conversely, a high value for Ωv

b (n) means that
the network will try to satisfy the bandwidth requirements only
for the users that are experiencing good channel conditions.

If we define ωv
r (n) =

ω̃v
b (n)
b(n) , then, in order for the SFC

request to be feasible, it must hold:∑
n∈Nb

sfc

ω̃v
b (n)

b(n)
+

∑
n∈Nr

sfc

ωv
r (n) ≤ ωv

r (m) = 1 (2)

Which means that the sum of the fractions of radio resources
allocated to virtual nodes must be less or equal to the resources
available at the substrate node m. Table II summarizes the SFC
request parameters. A practical example for both the resource
allocation model and the performance isolation mechanism can
be found in Sec. VII-B.

A few sample SFC requests are sketched in Fig. 2. Notice
that wireless terminals are not represented in that they are
outside the control of the orchestration framework. The SFC
request in Fig. 2b consists of three VNFs including a WiFi
hotspot, a firewall, and a load balancer. The WiFi hotspot
request will also include parameters such as the name of
the network and the authentication parameters (e.g. type of
encryption, RADIUS server to be used, etc.) however these
kind of information are purely functional and are thus omitted
in this section. The SFC request in Fig. 2a and 2c represents
respectively a performance enhancing VNF and a wireless
channel monitoring VNF. Notice how the SFC request in
Fig. 2b is using bandwidth–based provisioning while the
SFC request in Fig. 2a is using resource–based provisioning.
Finally, being a pure passive SLA monitoring SFC, the request
in Fig. 2c requires zero resources on the radio nodes.

C. Virtual Network Function Placement

In this section we shall provide the optimal ILP formulation
for the SFC embedding problem, then in the next section we

Duplicate Filter

WANWiFi Hotspot

WiFi Hotspot

6, 10

6, 10

50,0,0

(a) Uplink/Downlink decoupling.

Load Balancer

WAN

WANWiFi Hotspot Firewall

6, 10 50,0,0 50,0,0

(b) Radio access network sharing.

TX StatisticsPacket Sniffer

TX StatisticsPacket Sniffer Frame Counter

0

0

50,10,25

WAN

50,0,0

50,0,0

(c) SLA monitoring.

Fig. 2: Sample Service Function Chains Requests.

will present an approximation algorithm. The overall objective
is to periodically compute a new placement based on the
estimation of the available radio resources while minimizing
the cost of mapping virtual functions to substrate nodes. The
chosen objective function is the following:

min
(∑

n∈Nnfvi

[
∆nΨn+

∑
n′∈Nsfc

(
wv

c (n′)Λc
n+wv

m(n′)Λm
n +

wv
s (n′)Λs

n+wv
r (n′)Λr

n

)
Φn′

n

]
+
∑

e∈Enfvi

∑
e′∈Esfc

ωv
e (e′)ΛeΦ

e′

e

)
where Ψn ∈ 0, 1 is a binary variable indicating if the physical
node n ∈ Nnfvi is used in the mapping. Similarly, Φn′

n , Φe′

e ∈
0, 1 are two binary variables indicating respectively if the VNF
n′ ∈ Nsfv has been mapped to node n ∈ Nnfvi and if the
virtual link e′ ∈ Esfc has been mapped to the substrate link
e ∈ Enfvi.

A valid solution is the one where the resources utilized by
the SFC request are at most equal to the available resources
on the substrate network nodes:∑

n′∈Nsfc

ωv
c (n′)Φn′

n ≤ ωs
c(n) ∀n ∈ Nnfvi (3)

∑
n′∈Nsfc

ωv
m(n′)Φn′

n ≤ ωs
m(n) ∀n ∈ Nnfvi (4)

∑
n′∈Nsfc

ωv
s (n′)Φn′

n ≤ ωs
s(n) ∀n ∈ Nnfvi (5)

∑
n′∈Nsfc

ωv
r (n′)Φn′

n ≤ ωs
r(n) ∀n ∈ Nnfvi (6)

Algorithm 1 Compute list of candidate substrate nodes
1: procedure FindCandidates(Nnfvi, Nsfc)
2: for n ∈ Nsfc do
3: for p ∈ Nnfvi do
4: if ωs

c,m,s,r(p) >= ωv
c,m,s,r(n) then

5: n.candidates.add(p)
6: end if
7: end for
8: end for
9: end procedure

and links: ∑
e′∈Esfc

ωv
e (e′)Φe′

e ≤ ωs
e(e) ∀e ∈ Enfvi (7)

Every VNF in the SFC request is mapped to a different
substrate node: ∑

n′∈Nsfc

Φn′

n ≤ 1 ∀n ∈ Nnfvi (8)

Every VNF in the SFC request is mapped only once:∑
n∈Nnfvi

Φn′

n = 1 ∀n′ ∈ Nsfc (9)

In terms of radio resources requirements, the following con-
strain, deriving from (1) and (2), enforces that for every radio
processing node n ∈ Nnfvi a feasible request has been made:∑
n′∈Nb

sfc

ωv
b (n′)

Ωv
b (n′)

Φn′

n +
∑

n′∈Nr
sfc

ωv
r (n′)Φn′

n ≤ 1 ∀n ∈ Nnfvi

(10)
Finally, the following constraint enforces that for each link
enm ∈ Esfc there must be a continuous path allocated between
the pair of physical nodes on top of which the VNFs n,m ∈
Nsfc have been mapped.

j>i∑
j∈Nnfvi

Φenm

eij −
j<i∑

j∈Nnfvi

Φenm

eji = Φn
i − Φm

i (11)

∀i ∈ Nnfvi ∀enm ∈ Esfc

IV. HEURISTIC

The ILP formulation described in the previous section
cannot be applied to realistic scenarios due to its limited
scalability. For example, embedding an SFC request composed
of 6 VNFs arranged in linear topology over a k = 4 fat–
tree can take up tp 30 seconds of time on Intel Core i7
laptop (2.2 GHz CPU, 8Gb RAM) using the Matlab ILP solver
(intlinprog). In this section we present an effective heuristic
that can handle more complex requests in almost real–time.

The proposed heuristic is composed of three steps. In the
first step for each virtual node n ∈ Nsfc, the heuristic
computes the list of candidate substrate nodes (see Alg. 1).
In the second step, the virtual nodes n ∈ Nsfc are sorted
according to the number of candidate substrate nodes (see
Alg. 2). The list is sorted in decreasing order, i.e. virtual nodes
with the smallest number of candidate nodes are put on top.

Algorithm 2 Sort list of candidate substrate nodes
1: procedure SortCandidates(Nsfc)
2: sort(Nsfc)
3: end procedure

Algorithm 3 Nodes and links assignment
1: procedure NodeAndLinkAssignment(Gnfvi, Gsfc)
2: for n ∈ Nsfc do
3: for p ∈ vi.candidates do
4: if p.used then
5: continue
6: end if
7: for m ∈ vi.neighbors do
8: cost = +∞
9: if m.mapped then

10: cost = W (enm, p,m.mapped)
11: else
12: for q ∈ m.candidates do
13: cost = min(cost,W (enm, p, q))
14: end for
15: end if
16: mapping cost(p)+ = cost
17: end for
18: end for
19: p← argmin(mapping cost(p))
20: n.mapped← p
21: p.used← True
22: for m ∈ n.neighbors do
23: if m.mapped then
24: Allocate path Pnfvi(n.mapped,m.mapped)
25: end if
26: end for
27: end for
28: end procedure

We define the virtual edge mapping cost W : Esfc×Nnfvi×
Nnfvi → R between a virtual edge enm ∈ Esfc and a pair of
substrate nodes p, q ∈ Nnfvi as follows:

W (enm, p, q) =∆p + ωs
c,m,s,r(p)ωv

c,m,s,r(n)+

∆q + ωs
c,m,s,r(q)ωv

c,m,s,r(m)+∑
e∈Pnfvi(p,q)

ωs
e(e)ωv

e (enm)

In the third step, for each virtual node n ∈ Nsfc and for
each candidate substrate node m ∈ n.candidates the heuristic
considers all the neighboring nodes m ∈ n.neighbors. The
heuristic then computes how much it would cost to embed
each virtual node pairs n,m including the cost to embed the
virtual edge enm ∈ Esfc. The heuristic then assigns the node
n to the substrate node m ∈ n.candidates with the lowest
virtual edge mapping cost (see Alg. 3).

V. EVALUATION

The goal of this section is to compare the relative perfor-
mance of the ILP–based placement algorithm with the per-
formance of our placement heuristic using different synthetic
substrate network and different SFC requests. In this section
we shall first describe the simulation environment and then the

4 6 8
0

50

100

A
c
c
e
p
te

d
 S

F
C

s
 [
%

]

Fat−tree size (k)

ILP
Heuristic

(a) Linear.

4 6 8
0

50

100

A
c
c
e
p
te

d
 S

F
C

s
 [
%

]

Fat−tree size (k)

ILP
Heuristic

(b) Bifurcated.

Fig. 3: Number of successful embedding using the ILP–based algo-
rithm and the heuristic with different virtual and substrate topologies.

performance metrics. Simulations are carried out in a discrete
event simulator implemented in Matlab R©.

A. Simulation Environment
The ILP–based placement algorithm and the proposed

placement heuristic are evaluated in two different scenarios.
In the first scenario, linear VNF requests, similar to the ones
depicted in Fig. 2b, are considered. Conversely, in the second
scenario, bifurcated VNF requests, similar to the ones depicted
in Fig. 2a, are considered. The number of VNFs in each SFC
request as well as the actual amount of radio, computational,
memory, storage, and link resources are randomly generated
for each request.

In this study we assume that SFC requests are embedded
sequentially until the substrate network resources are ex-
hausted. The reference substrate network is k–ary fat–tree with
k = 4, 6, 8, where leaf nodes are WiFi Access Points (APs)
rather than hosts. This results in a total of, respectively, 16,
54, and 128 WiFi APs. The computational, memory, storage,
radio, and link resources for the substrate network are initially
set to, respectively, 100, 100, 100, 1, 100. The fixed cost of
using a node ∆n is set to 10 while the cost of using each unit
of node Λc,m,s,r

n and link Λe resources is set to 1.
The number of VNFs in each SFC request is uniformly

distributed between [3, 6]. The computational, memory, stor-
age, radio, and link requirements for each SFC requests are
uniformly distributed between, respectively, [1, 5], [1, 5], [1, 5],
[0.1, 0.5], and [1, 5].

The metrics used in this study are standard ones adopted
in several other related works (see, e.g., [8], [27], [28]). For
each scenario the number of accepted requests, the average
embedding cost, and the execution time using either the ILP–
based placement or the proposed heuristic are considered.
Reported results are the average of 10 simulations.

B. Simulation Results
Figure 3 and Fig. 4 shows the percentage of accepted SFC

requests for different substrate networks and the average em-
bedding cost. As expected the ILP–based placement algorithm
is more efficient than the proposed heuristic in mapping the
incoming requests. This can be seen in terms of both a higher
number of successful embedding as well as a lower average
embedding cost.

On the other hand, Fig. 5 shows that the average amount
of time required to embed a single SFC request using the

4 6 8
0

10

20

30

40

E
m

b
e
d
d
in

g
 C

o
s
t

Fat−tree size (k)

ILP
Heuristic

(a) Linear.

4 6 8
0

20

40

60

E
m

b
e
d
d
in

g
 C

o
s
t

Fat−tree size (k)

ILP
Heuristic

(b) Bifurcated.

Fig. 4: Average embedding cost using the ILP–based algorithm and
the heuristic with different virtual and substrate topologies.

4 6 8
0

20

40

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Fat−tree size (k)

ILP
Heuristic

(a) Linear.

4 6 8
0

20

40

60

80

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Fat−tree size (k)

ILP
Heuristic

(b) Bifurcated.

Fig. 5: Average execution time using the ILP–based algorithm and
the heuristic with different virtual and substrate topologies.

ILP–based placement algorithm is significantly higher than the
time required to embed the same request using our heuristic.
The ILP problem becomes essentially intractable for substrate
networks with more than a few tens of nodes (irrespective
of the the number of VNFs in the request), while using our
heuristic we can effectively embed complex SFC requests
on substrate networks with hundreds of nodes in a limited
amount of time. For example embedding a linear SFC request
composed of 10 VNFs over a k = 24 fat–tree network (214
nodes) takes less than 30 seconds using our heuristic.

VI. IMPLEMENTATION

We implemented the VNF placement heuristic presented
in this work in a proof–of–concept NFV management and
orchestration framework. Notice that the prototype currently
targets only wireless access networks based on the 802.11
family of standards and as a consequence the applications
described in the next section targets mainly typical Enterprise
WLAN and Campus network scenarios. Nevertheless, as seen
in the previous section the provisioning model does not make
any assumption about the particular link–layer technology and
can be as well applied to any kind of radio access network
including OFDMA networks such as LTE and LTE–Advanced.

The prototype architecture is loosely modeled after the
ETSI reference NFV Architecture [5]. As it can be seen
in Fig. 6, the architecture is conceptually divided into three
layers. The bottom layer represents the NFVI which includes
both the physical resources as well as the virtualized resources
exposed by a virtualization layer. In the second layer we
have the actual VNFs which are the software implementation
of a particular network function which is capable of being
executed over the NFVI. Finally, in the third layer we have the

Service Function Chains

Management and
Orchestration

Network Function Virtualization Infrastructure

Physical Infrastructure

Packet
Processing

Infrastructure

Switching
Infrastructure

Radio Access
Infrastructure

Virtualization Layer

Computing
Infrastructure

Virtual
Computing

Computing
Infrastructure

Virtual
Networking

Computing
Infrastructure

Virtual Radio
Access Network

VNF 1 VNF 2 VNF N

Virtual
Infrastructure
Manager (s)

VNF
Manager (s)

OrchestratorOSS / BSS

Fig. 6: Reference network function virtualization architecture [5].

Operational Support System (OSS) and the Business Support
System (BSS) used by the network administrators to operate
and manage their virtual networks. The Management and Or-
chestration plane covers the orchestration and the management
of physical and/or virtual resources that support the NFVI as
well as the life–cycle management of the VNFs, i.e. creation,
configuration, monitoring, and destruction.

Our architecture currently accounts for three kinds of NFVI
resources, namely: basic forwarding nodes (i.e. OpenFlow
switches), packet processing nodes, and radio access nodes.
The latter, in addition to the features supported by the packet
processing node, also embed specialized hardware in the form
of one or more 802.11 Wireless NICs.

A. Management plane
As Virtual Infrastructure Managers (VIMs) we use a com-

bination of frameworks. POX is used in order to configure
resources in the switching fabric. The SD–RAN controller
proposed by the authors in [29] is used for the wireless access
nodes. A dedicated controller, named Programmable Network
Fabric Controller, is used to manage the Packet Processors.
All three VIMs expose a RESTful interface implementing
basic CRUD (Create, Read, Update, Delete) operations.

B. Orchestrator
From an architectural standpoint, the VNF placement al-

gorithm resides in the Orchestrator which is in charge of
deciding whether a particular request can be accepted or if it
must be refused. If a request is accepted, then the Orchestrator
is in charge of mapping the request onto the substrate network,
i.e., network resources must be allocated and configured on
both the substrate nodes and the substrate links and the VNFs
must be instantiated on the selected nodes.

C. Programmable Network Fabric
We name Programmable Network Fabric the set of all

packet processing nodes in the NFVI. As it can be seen in

Packet Processor

Pass through
(ASIC)

Click
(x86)

Programmable Network Fabric Controller

REST API

VNF
Monitoring

Tornado Web Framework

VNF
Management

Performance
Management

VNF n (Click)

OpenVSwitch

Ethernet

VNF 1 (Click)

Packet Processor Agent

...

Fig. 7: Programmable Network Fabric Controller.

Fig. 7 each packet processing node includes an OpenVSwitch
instance, one or more VNFs, and one Packet Processor Agent.
The latter is in charge of monitoring the status of each
VNF as well as handling CRUD requests coming from the
Programmable Network Fabric Controller. In the current
implementation the monitoring features includes: number of
packets/bytes transmitted and received as well as the amount of
resources utilized (cpu time, memory, storage) by each VNF.
Notice how wireless access is also a VNF.

In our prototype we use Click [30] as a single solution for
advanced packet processing. Click allows to build complex
VNFs using simple and reusable components, called elements.
Click includes over 300 elements supporting functions such as
packet classification, access control, deep packet inspection.
Elements can be composed in order to realize complex VNFs.
Finally, Click is easily extensible with custom processing
elements making it possible to support features that are not
provided by the standard elements.

The Programmable Network Fabric Controller is build on
top of the Tornado Web Framework. Communications between
packet processors and the Programmable Network Fabric
Controllers take place over a persistent TCP connection. The
Programmable Network Fabric Controller can run multiple
SFC requests on top of the same physical infrastructure. An
SFC request consists of multiple VNFs deployed at one or
more packet processors. Each VNF is defined by a number of
attributes including: amount of allocated resources, the Click
Graph, the OpenVSwitch port(s) to which the VNF should be
connected, and the physical packet processor on top of which
the VNF shall be deployed.

Finally, we implemented the packet processing nodes on
top of general purpose and off–the–shelf components. In
particular the packet processing capabilities are provided by
embedded nodes based on the Soekris net6501–70 platform.
Such platform consists of a standard Intel Atom CPU (x86
architecture, single core 1.6 GHz, 2 Gb RAM) equipped with
24 Ethernet ports and running a standard Linux OS.

VII. APPLICATIONS

In this section we shall describe three SFCs implemented
and tested over a small scale testbed deployed at CREATE–
NET premises. The testbed, depicted in Fig. 1, consists of
two OpenFlow–switches, two packet processing nodes, and
20 programmable WiFi APs.

A. Uplink/Downlink Decoupling
Wireless, and in particular mobile networks, have been so

far been designed around the requirements of the downlink
(i.e. cell or access point selection is performed using downlink
signal strength measurements). In the recent years, however,
we have witnessed a mushrooming of new uplink–centric
applications such as Machine Type Communications (MTC),
Internet of Things (IoT), and Vehicle to Infrastructure (V2I)
as well as of symmetric mobile applications. This calls for
a paradigm shift where the traffic originated from a wireless
client is received by one node while the traffic destined to
the same client is transmitted by another node. This kind
of network setup is usually referred to as uplink/downlink
decoupling and, in its most general form, can consists of two
non overlapping sets of transmitting and receiving nodes.

The previously introduced EmPOWER platform [29] allows
for mobility management policies whereby a wireless client
downlink can be scheduled on one WiFi AP while the uplink
can be scheduled on one or more WiFi APs. This feature
allows to exploit the broadcast nature of the wireless medium
and to opportunistically receive the same transmission at
multiple in–range APs. However, if not properly controlled
such a feature can lead to an overload in the network core.
For example, a wireless client scheduled on N APs in the
uplink direction could increase the load on the network core
by a factor of N . Moreover, a straightforward implementation
of such a mechanism could generated a significant increase in
the number of duplicate packets which in time could trigger
at the transport layer.

In order to address this issue we implemented a VNF which
filters out duplicate 802.11 frames based on their sequence
number. Traffic originated from clients is received at one or
more APs where it is encapsulated (802.11 over Ethernet)
and then forwarded to a packet processing node where the
frame filtering VNF is deployed. This VNF is also responsible
for decapsulating the 802.11 frame and LLC header and
encapsulation in an Ethernet header before forwarding it to
its intended destination. The Click script implementing the
duplicate filtering VNF is reported in the listing below2.
FromHost (vnf0)
−> i n : : Coun te r
−> S t r i p (1 4)
−> dupe : : W i f i D u p e F i l t e r ()
−> decap : : Wif iDecap ()
−> o u t : : Coun te r
−> ToHost (vnf0) ;

Listing 1: Duplicate filtering VNF.

In order to evaluate this VNF we exploited a network setup
composed of a single client and three APs. Traffic is injected
from the wireless client as a single UDP stream. Packet
transmission rate and payload are kept fixed at, respectively,
100 packets/s and 1472 bytes. Impairments on the link between
client and APs are simulated by randomly dropping received
frames with probability p at all receiving APs. For all mea-
surements a total of 6000 frames were generated. Confidence

2vnf0 is a virtual interface attached to the OpenVSwitch instance running
on the packet processing node

1 2 3
0

50

100

D
e
liv

e
ry

 R
a
ti
o
 [
%

]

Number of uplinks

PL=0.05 PL=0.2 PL=0.8

(a) Packet Loss.

1 2 3
0

1

2

3

B
a

n
d

w
id

th
 [
M

b
p

s
]

Number of uplinks

PL=0.05 PL=0.2 PL=0.8

(b) BW w/o VNF.

1 2 3
0

0.5

1

B
a
n
d
w

id
th

 [
M

b
p
s
]

Number of uplinks

PL=0.05 PL=0.2 PL=0.8

(c) BW w/ VNF.

Fig. 8: Packet loss (a) and network utilization (b and c) for a single
client scheduled on multiple APs on the uplink direction.

intervals were very small for all the data points and have
therefore be omitted in order to improve readability. Measure-
ments have been taken using three packet dropping probability,
namely: 0.05 (good channel conditions), 0.2 (medium channel
conditions), and 0.8 (poor channel conditions)

As if can be seen from Fig. 8a, the end–to–end packet
delivery ratio increases with the number of available uplinks.
The proposed uplink/downlink decoupling solution can pro-
vide a small performance improvement even when the channel
conditions are good (PL = 0.05). On the other hand the
performance improvements are significant when the channel
condition get worse. In particular this solution allows to turn an
essentially broken channel (4 out of 5 dropped packet) into an
usable channel (1 out of 2 dropped packets). Finally, in Fig. 8b
and Fig. 8c we can see the impact of the duplicate filtering
VNF on the bandwidth utilization. As expected without the
VNF the bandwidth utilization increases with the number of
uplink, while using the VNF filtering the bandwidth utilization
does not exceed the nominal goodput.

B. Radio Access Network Sharing

In this use case we aim at demonstrating the traffic isolation
features enabled by our resource provisioning model. We
consider two tenants each requesting an SFC similar to the
one depicted in Fig. 2b. The bandwidth request coming from
Tenant 1 and 2 is, respectively 4 and 2 Mb/s, while the
reference bandwidth (Ωv

b) was set to 6 Mb/s for both tenants.
The network setup used for the measurements consists of

3 clients. Clients 1 and 2 are using the Tenant’s 1 network,
while Client 3 is in using Tenant’s 2 network. Traffic is
generated from a server sharing the same backhaul with the
AP and consists of three UDP stream (one for each client).
Each stream has constant inter–departure time and packet size
resulting in a transmission rate of 10 Mb/s for each stream.
In order to simulate an hotspot with limited capacity the rate
control algorithm used by the access point has been modified
in order to always use the lowest transmission rate (6 Mb/s).
Measurements have been carried in two different scenarios
differentiated by the channel condition experienced by client
number 1 which is positioned in such a way to experience
channel condition raging from Good to Poor.

As it can be seen from Fig. 9a, when Client 1 is experiencing
good channel conditions the proposed resource provisioning
method is able to satisfy the bandwidth request for both
tenants (notice that Tenant 1 request of 4 Mb/s has been
equality partitioned among the two clients). On the other hand,
when Client 1 starts experiencing poor channel conditions (see

1 2 3
0

0.5

1

1.5

2

G
o
o
d
p
u
t
[M

b
/s

]

Client

Legacy
Channel Aware

(a) Good channel.

1 2 3
0

0.5

1

1.5

2

G
o
o
d
p
u
t
[M

b
/s

]

Client

Legacy
Channel Aware

(b) Poor channel.

Fig. 9: Isolation across clients in different networks. Client 1 and 2
are in Tenant 1’s network, while Client 3 is in Tenant 2’s network.

Fig. 9b) the legacy resource provisioning mechanism allocates
the same bandwidth to all the clients. This behavior, know as
IEEE 802.11 performance anomaly [31], allows a node which
experiences poor channel conditions to monopolize the wire-
less medium lowering the performance of the whole system.
Conversely, the proposed resource provisioning mechanism
can meet the bandwidth reservations made by the two tenants
by linearly scaling down the amount of resources allocated to
the tenant that is experiencing poor channel conditions.

C. Service Level Agreement Monitoring
In this use case we aim at demonstrating basic SLA moni-

toring capabilities. The SFC is depicted in Fig. 2c. A Packet
Sniffer VNF is deployed on radio nodes. Notice that, since
the packet sniffing VNF is not allowed to transmit traffic, the
radio resource requirements for this VNF are set to zero. The
Packet Sniffer collects all transmissions within decoding range
of the radio node and forwards them to a single TX Statistics
VNF which tracks the meta–data associated to transmissions,
in particular the following information are monitored: RSSI (in
dB), Transmission Rate (in Mb/s), Length (in bytes), Duration
(in µsec), and the number of retransmissions. The collected
frames are then forwarded to a common Frame Counter VNF
which computes aggregate statistics. This VNF could serve as
a basis for a QoE management solution.

VIII. CONCLUSIONS

Network function virtualization is rapidly emerging as a
flexible solution to deploy and operate network services.
However, in order to fully exploit the benefits of this paradigm,
the concept of virtual network function must be extended
to include also the radio access network, providing MVNOs
with the highest level of flexibility in the definition of virtual
radio access functions while at the same time allowing for
an efficient use of the substrate network. In this paper we
tackled this challenge by presenting a novel formulation of
the VNF placement problem which encompass also the radio
access network. We present then a ILP–based optimal solution
for small networks and a scalable heuristic for larger de-
ployments. We also report on a preliminary proof–of–concept
implementation of a NFV Management and Orchestration
framework for Enterprise WLANs and on a few VNFs. As
future work we plan to investigate resiliency properties of such
NFV architecture, VNF migration, and joint RAN resource
allocation and VNF orchestration strategies.

REFERENCES

[1] R. Riggio, T. Rasheed, and R. Narayanan, “Virtual Network Functions
Orchestration in Enterprise WLANs,” in Proc. of IEEE ManFI, Ottawa,
ON, Canada, 2015.

[2] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting
parallelism to scale software routers,” in Proc. of ACM SOSP, 2009.

[3] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A gpu-
accelerated software router,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 195–206, Aug. 2010.

[4] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner, “Hyper-switch: A
scalable software virtual switching architecture,” in Proc. of USENIX
ATC, 2013.

[5] E. T. S. I. (ETSI), ETSI GS NFV 002 Network Functions Virtualisation
(NFV); Architectural Framework, December 2014.

[6] “OPNFV: Open Platform for Network Function Virtualization.”
[Online]. Available: https://www.opnfv.org/

[7] “OpenMANO.” [Online]. Available:
https://github.com/nfvlabs/openmano

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206
–219, February 2012.

[9] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in Proc. of ACM
VISA, 2010.

[10] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[11] D. Breitgand, A. Epstein, A. Glikson, A. Israel, and D. Raz, “Network
aware virtual machine and image placement in a cloud,” in Proc. of
IEEE CNSM, 2013.

[12] M. Barshan, H. Moens, and F. De Turck, “Design and evaluation of
a scalable hierarchical application component placement algorithm for
cloud resource allocation,” in Proc. of IEEE CNSM, 2014.

[13] M. Barshan, H. Moens, S. Latre, and F. De Turck, “Algorithms for
efficient data management of component-based applications in cloud
environments,” in Proc. of IEEE NOMS, 2014.

[14] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
pp. 1–53, 2014.

[15] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “A novel approach to virtual networks
embedding for sdn management and orchestration,” in Proc. of IEEE
NOMS, 2014.

[16] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Proc. of IEEE
NOMS, 2014.

[17] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Proc. of IEEE CNSM, 2014.

[18] L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S. Schoenberg,
and X. Guo, “Virtual wifi: Bring virtualization from wired to wireless,”
SIGPLAN Not., vol. 46, no. 7, pp. 181–192, Mar. 2011. [Online].
Available: http://doi.acm.org/10.1145/2007477.1952706

[19] P. Lv, X. Wang, and M. Xu, “Virtual access network
embedding in wireless mesh networks,” Ad Hoc Netw.,
vol. 10, no. 7, pp. 1362–1378, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2012.03.016

[20] P. Lv, Z. Cai, J. Xu, and M. Xu, “Multicast service-oriented virtual net-
work embedding in wireless mesh networks,” Communications Letters,
IEEE, vol. 16, no. 3, pp. 375–377, March 2012.

[21] G. Bhanage, R. Daya, I. Seskar, and D. Raychaudhuri, “Vnts: A virtual
network traffic shaper for air time fairness in 802.16e systems,” in
Communications (ICC), 2010 IEEE International Conference on, May
2010, pp. 1–6.

[22] G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri, “Splitap: Lever-
aging wireless network virtualization for flexible sharing of wlans,”
in Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE, Dec 2010, pp. 1–6.

[23] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “Nvs: A substrate
for virtualizing wireless resources in cellular networks,” Networking,
IEEE/ACM Transactions on, vol. 20, no. 5, pp. 1333–1346, Oct 2012.

[24] ——, “Cellslice: Cellular wireless resource slicing for active ran shar-
ing,” in Proc. of IEEE COMSNETS, 2013.

[25] G. Bhanage, I. Seskar, R. Mahindra, and D. Raychaudhuri, “Virtual
basestation: Architecture for an open shared wimax framework,” in Proc.
of ACM VISA, 2010.

[26] G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless vir-
tualization on commodity 802.11 hardware,” in Proc. ACM WinTECH,
2007.

[27] Y. Minlan, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: substrate support for path splitting and migration,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar.
2008.

[28] Y. Zhu. and M. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components,” in Proc. of IEEE INFO-
COM, Barcelona, Spain, April 23-29 2006.

[29] R. Riggio, M. Marina, J. Schulz Zander, S. Kuklinski, and T. Rasheed,
“Programming abstractions for software–defined wireless networks,”
Network and Service Management, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2015.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[31] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Per-
formance anomaly of 802.11b,” in Proc. of IEEE INFOCOM, San
Francisco, California, USA, 2003.

