
On the Optimal Scheduling in Pull-based Real-Time
P2P Streaming Systems: Layered and Non-Layered

Streaming

Abbas Bradai, Toufik Ahmed
CNRS-LaBRI University of Bordeaux-1

351, Cours de la libération
Talence, 33405

{bradai, tad} @labri.fr

Abstract—During the last decade, we witnessed a rapid growth in
deployment of pull-based P2P streaming applications. In these
applications, each node selects some other nodes as its neighbors
and requests streaming data from them. This scheme allows
eliminating data redundancy and recovering from data loss, but
it pushes the complexity to the receiver node side. In this paper,
we theoretically study the scheduling problem in Pull-based P2P
video streaming and we model it as an assignment problem.
Then, we propose AsSched, new scheduling algorithm for layered
streaming, in order to optimize the throughput and the delivery
ratio of the system. In second time, we derive an optimal
algorithm (NAsSched) for non layered streaming.
The results of simulations show that our algorithms significantly
outperform classic scheduling strategies especially in stern
bandwidth constraints.

Keywords- P2P; scheduling; layered streaming; non-layered
streaming; QoS

I. INTRODUCTION

Peer-to-Peer (P2P) architecture is considered as an
attractive and scalable solution for video streaming. It does not
require internet infrastructure changes and it helps eliminating
bandwidth bottleneck at the content source. Nevertheless, P2P
systems, especially for real time video streaming (live and
video-on-demand), cope with many challenging issues such as
overlay construction [1], content retrieval mechanisms
(scheduling) [2], and content adaptation [3].

In P2P video streaming systems, the content retrieval
mechanism allows a user to receive streaming data blocks
(chunks) from other nodes using the constructed overlay. This
mechanism plays a leading role in the video streaming process
and its efficiency influences the global performance. Two
main approaches have been proposed: the pull and the push
mechanisms. The pull mechanism is based on the chunks
availability at peers: what chunks are available from which
neighbor? Thus, a receiver node has to locate the missing
chunks and to request them from the appropriate nodes. On the
other hand, in the push mechanism, it is the sender nodes
which crowd the chunks to the receiver node without any
action from this later.
The pull mechanism is considered as very simple and suitable
approach as it allows the receiver to cope with two main

challenges: eliminating chunks redundancy and recovering
from chunks loss. However, it adds complexity to the receiver
side because it is responsible for selecting the appropriate
chunks to be selected from the appropriate neighbor.

In the context of multi-source overlay network named mesh
network, the overlay construction strategy satisfies some
quality requirements, such us minimizing delay, maximizing
throughput or resiliency, but does not impose how to use the
overlay [4]. For example, when maximizing throughput, a node
may have parents with high available upload bandwidth, but if
they don’t have enough or suitable content to send (chunks
having past playback deadline for e.g.), the observed
throughput will be lower than expected, or useless data will be
received by the receiver node. Moreover, when a receiver node
requests most parts of chunks from only one of its parents, it
will be sensitive to departure or failure of this parent and then
may experience significant quality degradation. Hence the
system has a weak resiliency. Once the overlay is built, the
next step is the scheduling. In this step, the receiver node
exchanges information about the available chunks with its
neighbors and assigns the task of providing each chunk to a
neighbor node. To be efficient, the scheduling has to make the
best use of the available bandwidth taking into consideration
the availability of chunks in the neighborhood.

The scheduling task is complicated in the context of video
streaming since chunks received after their playback deadline
are not played and considered as useless chunks. Moreover, in
the context of layered video, the task becomes more and more
complicated, since an additional constraint should be taken
into consideration, namely the layers’ dependency. Hence, in
layered video coding, video is encoded into a base layer and
several enhancement layers, where a higher layer can be
decoded only if all related lower layers are available. This is
what we call the layers’ dependency.

In the literature, the most of related research work tackles the
overlay construction problem to improve its efficiency and
robustness [5, 6, 7]. But although several schemes were
proposed to address the scheduling problem in the context of
pull-based architectures. Most of these works are empirical
studies or based on queues theories. Indeed, the scheduling
strategies adopted in most of the pioneering works mainly
include pure random strategy [8], Local Rarest First (LRF)

strategy [9] and Round Robin strategy [10] or the queue
theory [11]. Furthermore, a few theoretical studies in the
literature tackle the optimal stream scheduling. In [12],
authors deal with the scheduling problem in data-driven
streaming system. They model it as a complicated min-cost
network flow problem, and propose a distributed heuristic
algorithm to optimize the overall system throughput. In [13],
authors propose a 3-stages scheduling approach to request
missed chunks, in case of layered streaming.

In this paper we present a new analytical model and its
corresponding algorithms to deal with the chunks scheduling
problem in Pull-based P2P video streaming, both in case of
layered and non-layered video streaming. First, we propose a
chunks prioritization strategy in order to represent the urgency
of chunks and its layers dependency. Then, we model the
problem as an assignment problem and we propose new
algorithms to resolve it in order to fully take advantage of
bandwidth capacity of the network and to meet the availability
of chunks in neighborhood. The rest of this paper is organized
as follows: section II formulates the scheduling problem in
P2P video streaming, section III models and presents the
solution that we propose, section IV presents and discusses the
performance evaluation results, and finally, section IV
concludes the paper.

II. CHUNKS SCHEDULING: PROBLEM STATEMENT AND

FORMULATION

The basic idea in Pull-based P2P Video Streaming is that
the overlay is constructed in such a way to optimize some
parameters such as the delay, the bandwidth, etc. Each node in
the overlay is connected to a set of neighbors but it is up to the
receiver node to ask the chunks from its neighbors. In this
paper we assume that the chunks are organized into a sliding
window (Figure 1) where chunks beyond the playhead
position form the exchanging window. Only these chunks are
requested if they are not yet received. The missed chunks
before playhead position will be no more requested while the
chunks received after their playback deadline are not played
and considered as useless. Every node periodically sends to all
its neighbors a bit vector called buffer map (Figure 2), in
which each bit represents the availability of a chunk in the
sliding window, to announce chunks that it holds. Each node
periodically sends requests to its neighbors for the missed
chunks in its exchanging window. When a chunk is not
received after its request is issued and is still in the exchanging
window, it should be requested in the following request period
again.

Time

Time

Playhead

position

New playhead

position

Exchanging window

Sliding window

New Sliding window position

1 1 1 1 1 1 0 1 1 0

Sliding window

Received block Missed blocks

playhead

position

Time

Figure 1: Sliding window mechanism Figure 2: Buffer map

In order to maximize the throughput of the system, our
approach aims to fully take advantage of the receiver nodes’
download bandwidth by maximizing the number of chunks that
are requested within each scheduling period. Figure 3
illustrates an example of the optimal scheduling problem (in
terms of bandwidth utilization). Node 1 is the receiver node. It
tries to request missed chunks from its neighbors: nodes 2, 3, 4.
Each neighbor expresses the chunks that it holds via a buffer-
map. The numbers on the arcs denote the amount of bandwidth
that the neighbor node is willing to provide to the receiver node
(Node 1) in terms of chunks per unit time. An optimal
scheduling schema of this example is represented in Figure 4
where rows represent the nodes and the columns represent the
chunks numbers. Chunk 1 is requested from node 4, chunks 2
and 3 from node 2, while chunks 4 and 5 are requested from
node 3. This strategy takes full advantage of the available
bandwidth of the network. In Figure 5, we represent the result
of Round Robin scheduling strategy, described in [14], and
applied to the same example. On the contrary of the optimal
scheduling strategy, only 4 chunks from 5 can be requested in
one unit time in the case of the Round Robin strategy.

2

34

1

1 1 1 0 1

0 0 0 0 0

0 0 0 1 11 0 0 1 0

2

21

Figure 3: Example of the optimal chunk scheduling problem

In addition to fully take advantage of the network capacity, our
goal is to ask, in each request period, for chunks having nearest
playback deadline first, while taking into consideration the
layers dependency of these chunks. The basic idea of our
approach is to define priority for each chunk related to its
playback deadline and its layers’ dependency (in case of
layered streaming) and ask in each period for the most priority
chunks first, while fully exploiting the receiver node download
capacity.
In Table 1 we summarize notations used in the rest of this
paper.

Notation Description
N The set of receivers’ nodes in the overlay
NBR(i) The set of all neighbors of node i
M(i) The set of missed chunks in node i

 Chunks
Nodes

1 2 3 4 5

2 1 1 1 0 1

3 0 0 0 1 1

4 1 0 0 1 0

 Chunks
Nodes

1 2 3 4 5

2 1 1 1 0 1

3 0 0 0 1 1

4 1 0 0 1 0

Figure 4: Optimal Chunk
scheduling example

Figure 5: Round robin scheduling
example

Ci The current clock on node i
i
jD The playback time of chunk j on node i

ijP The priority of the chunk j when it is
requested from the node k. j∈M(i)

k
ijR Boolean variable. 1=k

ijR in case of the

node i requests the chunk j from the node k,

0=k
ijR otherwise.

L The maximum layer number supported by a
node

Bi
Vector of download bandwidths between a
node i and all its neighbors, Bi= (b1, b2, …,
bn)

r Layers blocks’ rate vector, r= (r1, r2, …, rn)
bi,j Integer, represents the download bandwidth

between node i and j (Chunks/time unit) in
case of equal size blocks

Table 1: Notations

III. MODEL AND SOLUTION

a) Model
The main goal of our scheduling approach is to optimally

request the missed chunks in the sliding window of a receiver
node from its neighbors. The optimality concerns the request
of the higher priority chunks first then the less priority chunks
while fully taking advantage of the network capacity. Since in
the P2P streaming systems the chunks received after their
playback deadline are useless and not played (by consequence
the quality of the stream degrades), the priority of the chunk
should be closely related to this factor. Initially we consider
the emergency priority (EP) of a chunk defined as its playback
deadline. Hence, a chunk with near playback deadline is
higher priority than a chunk with far playback deadline.
Intuitively because the chunk that is in danger of being
delayed beyond the deadline should be more priority than the
one just entering the sliding window. The layers dependency
is another crucial parameters to be taken into consideration
when requesting chunks from neighbors. Indeed, a high layer
chunk received without its related lower layers chunks will not
be played and considered as useless. Thus, each chunk has an
additional key priority, namely the layer priority (LP).
Therefore, we define chunk j ’s priority function for the multi-
layer scenario as follows:

)()(j
i
jiij lLPDCEPP θ+−= (1)

Where EP denotes the emergency priority function related to
the remaining time of chunk j∈M(i) till its playback deadline
()i

ji DC − . The function LP represents the layer priority of the

layer l j chunk and the factor θ is a parameter that can be
adjusted for different layers prioritization strategies. Indeed,
setting θ to very low value leads to the prioritization schema
represented in Figure 6(a), or the conservative chunk
scheduling, where the receiver requests always chunks of
lower layers first. On the contrary, setting θ to enough large

value, leads to the aggressive chunk scheduling schema
represented in Figure 6(b). This scheme requests chunks of all
layers with lowest time stamp preemptively. While adjusting
the value of θ to a proper value leads to the zigzag chunk
scheduling in Figure 6(c), which is a trade-off between the two
extreme previous schemes.

Layers

(a) (b) (c)
Time

Layers

Time

Layers

Time

 Figure 6: Scheduling strategies in case of layered streaming

We define the Boolean variablek
ijR to denote whether the

node i requests the chunk j from the neighbor k:

{=k
ijR

Request the most priority chunks first in each request period
can be seen as the maximization of the total priority of
requested chunks within each request period, i.e.

)(
)()(

max Ni
iMj iNBRk

k

ijij RP ∈

∑ ∑
∈ ∈

 (2)

Subject to:

,
)(

k
i

iMj

k
ij CR ≤∑

∈

)(1
)(

M(i)j
iNBRk

k

ijR ∈≤∑
∈

(3, 4)

Where:
k
iC : Download capacity of the link between the receiver node i

and its neighbor k.
. nodein chunks Missed:)(iiM

Constraint (3) ensures that the links capacity is not violated,
while constraint (4) ensures that a chunk j will be requested
from at most one neighbor and no duplicated chunk will be
requested to the same neighbor node.

b) Solution
The problem as presented in the previous section can be

naturally transformed into an Assignment Problem (AP) [15]
where a set of missed chunks b∈M(i) in node i are to be
assigned to a set of its neighbors NBR(i) while maximizing the
priority sum of the chunks with respect to the download
capacity between the receiver node and each of its neighbors.
The set of chunks refers to a set of tasks which should be
assigned to a set of agents (neighbors nodes) while optimizing
the overall cost, which refer to the priority sum of the chunks.
In its original version, the AP involves assigning each task to a
different agent, with each agent being assigned at most one
task, i.e. one-to-one assignment. The other category of the
model does assign multiple tasks to the same agent, i.e. one-
to-many assignment. In our case, we want to assign one or
more chunks to each neighbor, this is why the scheduling in
layered streaming matches with the second category of
assignment problem, more specifically with the Generalized
Assignment Problem (GAP) [15]. This model assumes that

1, node i should request chunk j from neighbor k
0, otherwise

each task will be assigned to one agent, but it allows for the
possibility that an agent may be assigned more than one task,
while recognizing how much of an agent’s capacity to do
those tasks. Thus, the scheduling problem in layered streaming
can be modeled as a GAP and the scheduling of m chunks to n
nodes (m ≥ n) can be represented by the assignment matrix in
Figure 7.

 Chunk
Node 1 2 … m-1 m

1 Pi1 Pi2 … Pi(m-1) Pim
2 Pi1 Pi2 … Pi(m-1) Pim
… … … … … …
n-1 Pi1 Pi2 … Pi(m-1) Pim
n Pi1 Pi2 … Pi(m-1) Pim
Figure 7: assignment matrix -GAP

The GAP is known to be NP-hard problem. In the
following section we propose a new heuristic (AsSched) to
resolve it and perform the chunk scheduling in Pull-based P2P
streaming architectures.

Algorithm
In order to construct a solution for the scheduling problem in
layered video, modeled as GAP, we consider an algorithm A
for the knapsack problem (Let be the Harmony-search
algorithm[16]). First, we reorganize the rows of the
assignment matrix based on neighbors’ reliability (Figure 7) in
order to assign chunks to the higher reliable nodes first then
the lower reliable ones.
Since our algorithm modifies the assignment matrix, we use
the notation Mj to note the assignment matrix at the j th
recursive call (j initialized to 0) of the following
LineProcessing (j) procedure:

1. Run the Algorithm A on the row j with respect to the
download bandwidth of the node i (bi) and chunks’
size r, and let Sj be the set of selected chunks
returned.

2. Set all the priorities of the chunks corresponding to
the selected chunks to -M (M is a large positive
number), i.e. MkxMxSk ij −=∀∈∀),(:,

3. If j<n (with n=card (NBR(i)))
- Remove the row of the node j from Mj and

set Mj+ 1=Mj
- Perform LineProcessing (j+1) and let Sj+1 be

the returned chunks list, and let 1+= jj SSS U

- Return S
 Else return S

The solution, for the layered video, proposed in this
section, can be easily extended to the non-layered video, by
considering the number of layers equal to one and setting the
dependency priority function EP = 0. But, can we do better?

c) Special case: Non-layered streaming

In this section we propose to adapt and to simplify the
solution presented in the last section to the non-layered video

streaming. Initially, the priority function Pij is simplified to the
emergency priority EP. In addition, we assume that the non-
layered video is subdivided into chunks of equal size. It is
hard to consider this assumption in the case of layered video,
especially in the case of SVC [17] where the video stream is
subdivided into NALs (Network Abstraction Layer) of
different sizes. Consequently, the scheduling problem in
layered video streaming can be modeled as one-to-one
assignment problem, more especially as m-cardinality
assignment problem [15], defined as the assignment of m jobs
among n to m agents. To do that, each neighbor node is
represented in the assignment matrix of the receiver node i by
bi,j rows, i.e. for each node corresponds bi,j virtual nodes, each
one with a capacity of one chunk per time unit (Figure 8).

2

34

1

1 1 1 0 1 1

0 0 0 0 0 0

0 0 1 1 1 10 0 0 0 0 1

2

21

 Chunks
 Nodes 1 2 3 4 5 6

2 Pi1 Pi2 Pi3 -M Pi5 Pi6

2 Pi1 Pi2 Pi3 -M Pi5 Pi6

3 -M -M Pi3 Pi4 Pi5 Pi6

3 -M -M Pi3 Pi4 Pi5 Pi6

4 -M -M -M -M -M Pi6

Figure 8: m-cardinality assignment matrix example

In order to resolve this problem we propose to transform it,
first, to a one-to-one classic assignment problem (square
matrix: Figure 10), and then apply the Hungarian algorithm
[18] to get the optimal scheduling. The Hungarian algorithm is
a powerful combinatorial optimization algorithm, which
solves a classical AP in polynomial time. It is applicable,
exclusively, to square assignment matrix.

 Chunks
Nodes 1 2 … l

1 Pi1 Pi2 … Pim
2 Pi1 Pi2 … Pim
… … … … …
n Pi1 Pi2 … Pim

 Chunks
“Nodes” 1 2 … l

1 Pi1 Pi2 … Pil
2 Pi1 Pi2 … Pil
… … … … …
n Pi1 Pi2 … Pil

n+1 L L L L
… L L L L
l L L L L

Figure 9: m-cardinality assignment
matrix

Figure 10: Transformed m-cardinality
assignement matrix

Transformation rules

The following steps are performed to build the new square
assignment matrix (Figure 10) of a receiver node i:

a) For each nodes j∈NBR(i) add bi,j rows to the matrix,

(matrix of m rows, where ∑
∈

=
)(
,

iNBRj
jibm)

b) For each missed chunk in node i add a column to the
matrix (matrix of l columns)

c) The value of Cell(k, j) is the chunk i’ s priority, i.e.
Cell(k,j) =Pij, if the node k holds the chunk j, -M
otherwise (M is a big positive number).

d) If the matrix is not square, i.e. l > m: append x = l-m
virtual nodes to the assignment matrix. Set the Cell(k, j)
value to L for each row k∈{ l-m+1, l-1}, where L is a
positive number (Figure 10).

Nodes’
 reliability

After applying these rules, we transform the formulation (2)
into its corresponding assignment problem represented by a
square matrix (l X l) composed of l chunks to be assigned to l
”nodes”. Hence, the Hungarian algorithm can be applied to get
the optimal chunk scheduling.
Formally, the assignment problem (2) can be rewritten into the
following assignment problem:

+ ∑ ∑∑∑

=

+=

=

=

=

=

=

=

lk

mk

lj

j

k
ij

k
ij

mk

k

lj

j

k
ij LRRPMax

1 11 1

)(Ni ∈ (5)

Subject to

),(1 1
k

1k

k
ij ljR

l

≤≤=∑
=

=
)(1 1

j

1j

k
ij liR

l

≤≤=∑
=

=

 (6)

Theorem
Let ()lj,kR k

ij ≤≤1 be an optimal solution to the assignment

problem (5), then k
ijR is an optimal solution to the m-

cardinality assignment problem (2).

Proof.

Suppose that l)kj(≤≤ ,1 Rk
ij is not an optimal solution to the

m-assignment problem (2), then there exists a feasible solution

m)kl, j (Rk
ij ≤≤≤≤ 11ˆ of (2) which verifies:

∑∑
=

=

=

=

k
ij

mk

k

lj

j
ij RPMax ˆ

1 1

>

∑∑

=

=

=

=

k
ij

mk

k

lj

j

k
ij RPMax

1 1

Without loss of generality, we assume that

mR
mk

k

mj

j

k
ij =∑∑

=

=

=

=1 1

ˆ

And

1ˆˆˆ
2211 ==== ++++

k
ll

k
))(m(m

k
))(m(m R...RR

Since the cost ljlkmLPij ≤≤≤≤+= 1 and 1for , we

have:

>

−+∑∑

=

=

=

=
LmlPMax

mk

k

lj

j

i
j)(R̂ k

ij
1 1

−+∑∑

=

=

=

=
LmlPMax

mk

k

lj

j

k
ij)(R k

ij
1 1

Which is in contradiction with that l)i,j (Rk
ij ≤≤1 is an optimal

solution to the assignment problem (5).

IV. PERFORMANCE EVALUATION

As abovementioned, there are three main steps for building
streaming applications in overlay networks. In this paper we
focus on the streaming scheduling step. For that reason we use
in all our simulation a simple algorithm for overlay
construction: each node randomly selects its neighbors so that
a random graph is constructed. The overlay is composed of
500 nodes and each node has 15 neighbors. Each node
estimates the bandwidth allocated from a neighbor with the
traffic received from it in previous 5 periods using Adaptive

Linear Prediction method [19]. We have performed extensive
simulations using Simulink-Matlab simulations [20].

The performance of our algorithm is compared to the
performance of the three scheduling methods described earlier
in section II, namely Random strategy (RND), Local Rarest
First (LRF) and Round Robin (RR). We consider three
categories of peers: 40% users with 512Kbps, 30% with
1Mbps and 30% with 2Mbps, and for all users, the upload
bandwidth capacity is half of the download bandwidth.
To evaluate the performance under multilayer scenario, we
define the delivery ratio at layer l as the average delivery ratio
at layer l among all the nodes that can play layer l. A chunk of
layer l is considered as well received if and only if all its
related chunks of lowers layers to l are already received no
later than the playback deadline. We set the emergency

priority defined in (1) as

)(
10)(

i
ji DCi

jiij DCEP
−=− and we set

the layer priority as PL(l j)=10(L-lj) to ensure that the lower
layers have much larger priority than the upper layers. For the
four methods, we adopt the conservative approach described
in section III. This is why we set the parameter θ to a very low
value θ =10-L.
We first encode the video into 12 layers and set the rate of
each layer at 100 Kbps. Figure 11 describes the delivery ratio
at each layer. We note that AsSched is fairly good. In lower
layers, most of the delivery ratio is nearly 1 and most in higher
layers is also above 0.9. The RR has much more better
delivery ratio at lower layers than higher layers. But, the
delivery ratio at all layers is not so good as the proposed
algorithm. We note that the LRF strategy has even higher
delivery ratio than the RR strategy. Finally, the random
strategy has the poorest performance. As shown in Figure 11,
our algorithm outperforms other strategies with a gain of 10%-
50% in most layers.
In order to show the importance of different layers encoding
schemes, we encode the video into 6 layers. In Figure 12, we
note that the delivery ratio of each layer is nearly similar to
that in 12 layers encoding scenario. AsSched is still the best
among all the three others methods. However, we note that the
delivery ratio of all the methods is little higher than in the case
of 12 layers. This is due to the fact that encoding the video
into six layers allows nodes to allocate all their bandwidth to
lower layers, however in the second case, some bandwidth
will be dedicated to the higher layers (higher than 6).

To evaluate the performances under single layer scenario,
we define the delivery ratio to represent the number of chunks
that arrive at each node before their playback deadline over
the total number of chunks encoded. The average delivery
ratio represents the throughput of the whole system and
reflects the average quality observed by users.
In Figure 13 we study the performance of NAsSched
compared to RR, LRF and RND under different streaming rate
conditions. We set the exchanging window size to 10 seconds
and the video chunks have the same size of 10 Kbits.
We note that when the streaming rate is low (250Kbps for
e.g.), all the algorithms have high delivery ratio. We explain
this by the fact that a stream chunk has more chance to be re-
scheduled before the playback deadline in the case of low

streaming rate. However, when the streaming rate increases,
the performance of the three compared algorithms decreases
fast. At the rate of 500Kbps, our algorithm has a delivery ratio
of 95% which outperforms the other three methods by gains of
about 15% and 60%.
In Figure 14 we set the exchanging window size to 3 seconds.
We note that with a smaller window size, the delivery ratio of
all algorithms decreases. Since the request period is set to 1
second, most of the chunks can only be requested repeatedly
for 3 times. Our proposed algorithm outperforms the others
because it fully takes advantage of the network capacity and

chooses the most appropriate neighbors to ask from in each
period.

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10 11

D
e

liv
e

ry
 r

a
ti

o

Layer

AsSched

RR

LRF

RND

Figure 11: Multi-layer scheduling - 12 layers

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5

D
e

liv
e

ry
ra

ti
o

Layer

AsSched

RR

LRF

RND

Figure 12: Multi-layer scheduling - 6 layers

0,4

0,5

0,6

0,7

0,8

0,9

1

250 300 350 400 450 500

D
e

liv
e

ry
 r

a
ti

o

Streaming rate (Kbps)

NAsSched

RR

LRF

RND

Figure 13: Single layer scheduling - exchanging
windows of 10 seconds

0,4

0,5

0,6

0,7

0,8

0,9

1

250 300 350 400 450 500

d
e

liv
e

ry
 r

a
ti

o

Streaming rate (Kbps)

NAsSched

RR

LRF

RND

 Figure 14: Single layer scheduling - exchanging
windows of 3 seconds

V. CONCLUSION

In this paper, we tackle the optimal scheduling problem in
pull-based real-time streaming systems in multilayer
streaming scenarios. We model the problem as a Generalized
Assignment Problem and we propose a heuristic to resolve it.
Then, in second time, we adapt the solution to non-layered
streaming and we model it as m-cardinality assignment
problem and we propose a new solution for this problem. The
simulation results show that the proposed solutions outperform
the traditional strategies by about 15 to 60 percent both in
single and multilayer streaming.

References

[1] Z. Li, G. Xie, K. Hwang, Z. Li, "Churn-Resilient Protocol for Massive

Data Dissemination in P2P Networks," IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 8, pp. 1342-1349, Jan. 2011,

[2] I. Filali, F. Bongiovanni, F. Huet and F. Baude, " A Survey of
Structured P2P Systems for RDF Data Storage and Retrieval," Lecture
Notes in Computer Science, vol. 6790/2011, 20-55, 2011

[3] N. Ramzan, E. Quacchio, T. Zgaljic, S. Asioli, L. Celetto, E.; Rovati,
F. Izquierdo, "Peer-to-peer streaming of scalable video in future
Internet applications," Communications Magazine, IEEE , vol.49,
no.3, pp.128-135, March 2011

[4] Ouali, B. Kerherve, and B. Jaumard. Toward Improving Scheduling
Strategies in Pull-based Live P2P Streaming Systems. In CCNC,
2009.

[5] V. Venkataraman and P. Francis, “Chunkyspread: Multi-Tree
Unstructured End System Multicast,” Proc. Int’l Workshop Peer-to-
Peer Systems (IPTPS ’06), Feb. 2006.

[6] V. Venkataraman and P. Francis, “On Heterogeneous Overlay
Construction and Random Node Selection in Unstructured
P2PNetworks,” Proc. IEEE INFOCOM’06, Apr. 2006.

[7] J. Jiang and K. Nahrstedt, “Randpeer: Membership Management for
QoS Sensitive Peer-to-Peer Applications,” Proc. IEEE INFOCOM’06,
Apr. 2006

[8] V. Pai et al., “Chainsaw: Eliminating Trees from Overlay Multicast,”
Proc. IEEE INFOCOM ’05, Feb. 2005.

[9] V. Agarwal and R. Rejaie, “Adaptive Multi-Source Streaming in
Heterogeneous Peer-to-Peer Networks,” Proc. Multimedia
Computing and Networking (MMCN ’05), Jan. 2005.

[10] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “Coolstreaming/Donet: A
Data-Driven Overlay Network for Efficient Media Streaming,” Proc.
IEEE INFOCOM ’05, Mar. 2005.

[11] Y. Guo, C. Liang, and Y. Liu, “AQCS: Adaptive Queue-based Chunk
Scheduling for P2P Live Streaming,” in Proceedings of IFIP
Networking, 2008

[12] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, "Optimizing the
throughput of data-driven peer-to-peer streaming," IEEE Transactions
on Parallel and Distributed Systems, vol.20, no.1, 2009.

[13] X. Xiao, Y. Shi, and Y. Gao. On optimal scheduling for layered video
streaming in heterogeneous peer-to-peer networks. In Proc. of ACM
Multimedia Conference (MM'08), Vancouver, BC, Canada, October
2008

[14] X. Zhang, J. Liu, B. Li, and Y. Yum, “CoolStreaming/DONet: A
data- driven overlay network for peer-to-peer live media streaming,”
in Proceedings of IEEE INFOCOM, 2003, pp. 2102–2111.

[15] D.W. Pentico, Assignment problems: A golden anniversary survey,
European Journal of Operational Research 176 (2007) 774–793.

[16] Z.W. Geem, J.-H. Kim and G.V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation 76 (2001)(2),
pp. 60–68

[17] http://tools.ietf.org/html/draft-ietf-avt-rtp-svc-06#page-15
[18] Harold W Kuhn, “The Hungarian method for the assignment

problem”, Naval Research Logistics Quarterly, 2:83-97, 1955.
[19] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-

Hall, 1991.
[20] SIMULINK, http://www.mathworks.com/products/simulink/

