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ABSTRACT 

Dynamic platforms where components can be loaded at runtime 
can introduce risks to applications stability if components are not 
previously known before deployment. It may be needed anyway to 
execute such untrustworthy code, even if it is not malicious. The 
OSGi platform presents such a scenario where components can be 
installed, started, stopped, updated or uninstalled during 
application execution. In this paper we describe how we 
introduced dependability and monitoring as crosscutting concerns 
in the OSGi platform for improving applications resistance to 
such risks. These concerns crosscut different software layers 
which are well defined in the OSGi specification but scattered 
over different places in the OSGi API. We also created a level of 
indirection by representing software layers as aspects, enhancing 
the API’s modularity as well as reuse by avoiding redundant 
pointcut definitions. The dependability aspects helped us 
validating the layer aspect abstraction reuse. Since the aspects 
targeted the OSGi API, it was possible to weave our solution into 
distinct versions of three different OSGi implementations, namely 
Apache Felix, Equinox and Knopflerfish. We validate our 
approach on all of the woven platforms in a simulation of an 
RFID and sensor-based application that uses untrustworthy 
components. 

Categories and Subject Descriptors 

D.1.m [Software]: Programming techniques – miscellaneous 

General Terms 

Reliability, Experimentation 

1. INTRODUCTION 
The ability to dynamically load components during application 
execution in platforms such as Java and .NET introduces a lot of 
flexibility gained with late binding but at the same time, it may 
introduce potential risks for applications.  Testing becomes 
difficult if the runtime deployed assemblies are not known in 
advance. Performing tests against all sets of possible components 

from which the application may be composed is a hard task that is 
not cost effective. Dynamically loaded code —even if it is not 
intentionally malicious— that is not known in advance may 
introduce risks to applications since the behavior of such code in 
the application has not been previously tested. Java and .NET 
platforms run managed and type safe code, having features such 
as bounds checking and garbage collection (preventing errors 
such as buffer overflows and memory leaks, respectively). It 
minimizes a range of errors, but applications and components are 
not free from naïve programming errors that under certain 
circumstances could lead to problems like excessive memory or 
CPU consumption. Also, the need to load native libraries into 
such managed environments opens breaches that can lead to 
application crashes in case of severe errors caused by the 
underlying native library. Centralized component-based 
frameworks do not provide isolation boundaries that ensure fault 
containment, rendering an application vulnerable to such threats, 
which are not necessarily malicious. Besides such boundaries, 
purging a misbehaving component and restarting it without 
stopping the application is an interesting feature to have. 

The possibility of dynamically loading components at runtime can 
be found, for example, in DynamicTAO [25], targeting CORBA, 
as well as in SOFA/DCUP [34] and OSGi [31][30], for the Java 
platform. Our study focuses on OSGi, which is currently seen by 
industry as a de facto standard for constructing modular and 
dynamic Java applications. In OSGi, components can be 
dynamically installed, started, stopped, updated and uninstalled 
during application execution, but since all objects share the same 
memory space, a crash or malfunction in a component may affect 
the whole application. In previous work [14], we have developed 
a self-healing sandbox for hosting third-party OSGi components 
in order to enhance applications dependability. In our solution we 
allow the transparent deployment of components into an isolated 
sandbox, based on isolation policies dynamically checked against 
components (e.g., components provided by an unknown vendor 
should be placed in the sandbox). OSGi components communicate 
via service objects, and our sandbox mechanism still allows the 
components in the main application to communicate with isolated 
sandboxed components (and vice-versa) by using dynamic proxies 
that seamlessly utilize inter-process communication (IPC). 

Our solution was initially coded as a set of patches to Apache 
Felix1 version 1.4, which is an open source implementation of the 
OSGi specification. Attempts to port that solution to a more recent 
version of Apache Felix would require manual work of copying 
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and pasting the patches that are scattered across different classes. 
Migrating to another OSGi implementation (e.g., Eclipse 
Equinox2, Knopflerfish3) requires a deep analysis of the target 
implementation source code and migration of the patches. To ease 
the burden of applying such patches manually, we have extracted 
and refactored them into aspects, which was a good choice for 
modularizing the dependability crosscutting concerns. This 
refactoring approach enables better code evolution and can also 
be found in other domains such as software product lines [2]. In 
our case, it allows us to easily apply the extracted crosscutting 
concerns over two dimensions: 1) across different versions of a 
given OSGi implementation, and 2) across different OSGi 
implementations (i.e., different vendors), thus enhancing the 
maintainability of our solution and its applicability.  

We have identified the points of interest of the OSGi API where 
our dependability aspects should be applied. The API is 
standardized and the common point to all implementations, 
therefore the aspects targeting the API are applicable to any of the 
implementations. However, during our work we have noted that 
useful concepts described in the OSGi specification are not well 
represented in its API, making it difficult to distinguish abstract 
concepts in the specification from their counterparts in the API. 
For instance, the software layers specified by OSGi are scattered 
over different interfaces, which accumulate roles from different 
layers. There are no single entities to describe individual layers 
neither there is a single access point for accessing the services of 
each layer.  Software layers are abstractions to enhance modular 
design. Therefore, if such layer concept is lost when a 
specification is translated into an API, we lose modularity as well. 

Providing reusable abstractions for these concepts improves 
modularity and allows better comprehension of the API from an 
architectural point of view. We have analyzed the OSGi API and 
used aspects to reify these abstract software layers, distributing the 
resulting code in the form of an aspects library. Layers can be 
crosscut by different concerns which are aspects of more specific 
purpose (e.g. logging, dependability). In this case, instead of 
applying the specific aspects directly to the OSGi API, we add 
another level of indirection through layers that are “aspectized”. 
The specific aspects can reuse the pointcut definitions of these 
layer aspects, giving us two advantages: better readability with a 
clear understanding of which layers are crosscut by which aspects; 
and reuse of pointcut definitions, which need be define only once 
in the layer aspect thus avoiding redundancy. We demonstrate 
such reuse by refactoring our OSGi dependability patches as 
aspects that reuse these new layer abstractions. Although we 
concentrate on dependability aspects this approach could use the 
same strategy for introducing any aspect addressing the OSGi 
framework by means of the layer aspects.  

To the best of our knowledge no previous studies have refactored 
software layers as aspects or addressed dependability as aspects in 
the context of dynamic component platforms. The main 
contribution of this paper lies on the usage of aspects for 
disentangling software layers from an API, representing them as 
aspects and allowing their pointcuts to be reused by other aspects 
that provide more specific crosscutting concerns, like logging or 
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dependability, improving modularity for better abstractions and 
reuse. A secondary contribution of this paper is the usage of 
aspects for enhancing dependability in the OSGi platform. This is 
demonstrated by providing dependability aspects constructed on 
top of this newly introduced abstraction of layers. Although the 
solution is specific to the OSGi platform, our approach is useful in 
any application framework that has similar conceptual gaps 
between specification and implementation. 

The remainder of the paper is organized as follows: section 2 
gives background and motivations, followed by the abstractions of 
OSGi layers in section 3. Implementations of the dependability 
aspects on top of the layer aspects are explained in section 4 and 
the validation described and discussed in section 5. Section 6 
comments on related work followed by conclusions and 
perspectives in section 7. 

2. BACKGROUND AND MOTIVATIONS 
The next subsections provide a brief overview on the OSGi 
Service platform and the issues, especially those resulted from 
component dynamism, that motivate us to introduce dependability 
cross-cutting concerns in that platform. 

2.1 OSGi 
The OSGi Service Platform targets the construction of dynamic 
and modular Java applications, allowing strong decoupling 
between components in a service-oriented fashion. The OSGi 
specification defines a framework that allows the dynamic 
deployment and undeployment of components and services. It 
leverages Java’s dynamic class loading feature for enhancing 
modularization and also introduces a runtime where software 
components can be installed, started, stopped, updated or 
uninstalled without halting the application.  

The deployment unit in OSGi is called bundle, which is an 
ordinary compressed jar file containing classes, resources and an 
extended manifest file. This manifest contains OSGi specific 
attributes providing metadata about the bundle dependencies (e.g., 
a list of imported and exported class packages). A bundle can be 
dynamically loaded or unloaded on the OSGi framework and can 
optionally provide or consume services, which are ordinary Java 
objects. Services need to be registered in the OSGi service registry 
as providers of the specified interfaces. Service-oriented 
principles provide strong decoupling between components in 
OSGi. As described in [33], in a basic Service-Oriented 
Architecture (SOA) there are three types of participants: service 
provider, service discovery agency and the service requestor (i.e. a 
client).  Their interactions involve publish, find and bind 
operations. In the case of the OSGi framework, those participants 
take the form of a bundle that provides a service, the OSGi service 
registry and a bundle that requests a service, respectively. The 
interactions are centered on the service registry which notifies 
interested parties about service publications or withdrawals. 

The dynamic composition mechanisms rely on a service-oriented 
composition approach. Different service-based component models 
have been constructed on top of the OSGi service registry helping 
manage the complexity and minimize the burden of service 
registration and unregistration that govern the service 
dependencies and bindings. However, such models are not enough 
for guaranteeing the mishandling of references. Stale references 
[12] are a typical problem in OSGi applications when the 



dynamicity of bundle substitution or uninstallation is mishandled. 
It is characterized by references to services that should no longer 
be available (i.e., they are unregistered), and generally by objects 
provided by the classloader of a bundle that has been stopped or 
uninstalled still being referenced. The usage of unregistered 
services may introduce silent faults in the application (e.g., 
inconsistent cached data from a stale service) that are hard to find 
and may propagate throughout the system. 

The functionality provided by the OSGi framework is divided in 
different layers as illustrated by the gray boxes in Figure 1, which 
is based on a picture from the OSGi specification [32]. The 
module layer provides rules for sharing packages between 
bundles; the lifecycle layer provides a runtime model for bundles; 
the service layer specifies the programming model that ensures 
loose decoupling between bundles; and the bundles layer are the 
actual OSGi components to be deployed on the framework. The 
security layer is based on Java mechanisms with some extensions, 
but it is an optional layer in OSGi. 
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Figure 1. OSGi layers detailed in gray. 

 

2.2 Issues with Third-Party Code Execution 
The dynamic replacement of bundles in OSGi is not always 
effective since the correct removal of a bundle (e.g., uninstall) 
requires the dereferencing of its objects and types from other 
bundles, which is not ensured by the framework but is based on 
good programming practices. For instance, if the framework is 
told to update a bundle, it will roughly: send a stop notification to 
BundleListeners, stop the bundle’s execution (i.e., call its 
BundleActivator stop method), reload the bundle, send a start 
notification to BundleListeners, and then start the new bundle 
version. There is no command or method for actually purging a 
component from memory. In order to clear a bundle’s set of 
objects, classes and its classloader from memory, good practices 
call for the following: the stopping bundle must terminate its 
spawned threads, it must remove objects from registries external 
to OSGi (e.g., removing a JMX4 MBean from an MBeanserver), 
consumers of the bundle’s services must release references to the 
servant objects from that bundle. Such component removal 
limitations occur, in part, due to the fact that the only isolation 
provided to objects is that of namespace, which is done using 
individual per-bundle classloaders.  

This limitation in isolation also has consequences when a 
component crashes the application (e.g., due to an unstable native 
driver). In fact, these risks are common to most centralized 
component-based applications where all objects share the same 
memory space. Problems may include mishandling dynamicity 
(e.g., stale references), excessive resource consumption, among 
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others reasons that may halt or significantly degrade an 
application. Importing or wrapping native libraries (e.g., a device 
driver) also increases the risk of an application crash, since they 
are unmanaged code. 

3. MAPPING LAYERS TO ASPECTS 
Layers [3] are a widely used architectural pattern for grouping 
different levels of abstraction in a system. In layered architectures, 
it is a good practice to design a flat interface that offers all 
services from a given layer. If we consider a purist layer design, a 
layer of a system should only communicate with its adjacent 
layers, via such flat interfaces. A relaxed layered system, also 
mentioned in [3], is less restrictive in the sense that a layer may 
directly use all layers below it, which is the case in the OSGi 
platform where the bundles layer freely accesses the other three 
layers, as illustrated in Figure 1. But in practice such access in 
OSGi is not done through a single interface per layer. Actually, 
there is no such flat interface for explicitly representing layers in 
OSGi’s API. The functionality of each layer is scattered over 
different interfaces which may accumulate roles from other layers. 

To illustrate this, we analyze how the bundle layer accesses the 
other layers. The BundleContext interface has responsibilities in 
the service and lifecycle layers. The OSGi API centralizes 
operations in the BundleContext, where we find different layers 
entangled and several non-related responsibilities. The 
BundleContext is an interface that works as a sort of Façade that 
exposes varied framework functionality to a bundle. Through its 
BundleContext instance, a bundle directly accesses operations of 
the service layer and part of the lifecycle layer. A bundle is 
represented by an instance of the Bundle interface, which provides 
lifecycle transitions (not all of them) and gives access to other two 
layers: service and module layers. An important principle 
described in [3] says that layers should be separated from each 
other, having no component spread over more than one layer. 
However, in OSGi a bundle has different points of access to each 
layer, and each point of access does not work in a per-layer basis 
since they are entangled with code from different layers.  

We use aspects to create a flat interface vision for each layer, 
making explicit a sort of central weaving point of access to the 
services of a given layer. These layering abstractions are 
fundamental for adding crosscutting concerns in a more structured 
way, providing a clear architectural vision of the layers affected 
by a crosscutting concern that reuses such abstractions. Another 
advantage of this approach is that the pointcuts that define the 
layers can be reused. For example, if two different aspects need to 
intercept lifecycle transitions the pointcut definitions need not be 
repeated. If a developer needs to think in terms of OSGi layers for 
applying aspects (e.g., service layer monitoring), the task becomes 
easier by using our approach. The principles documented here 
serve as a contribution to others needing this form of abstraction 
for adding crosscutting concerns to application frameworks, like 
the OSGi framework, in the same structured way as we did. 

In OSGi, our approach focuses on code that lies in-between the 
interaction of the bundle layer (the components deployed at 
runtime) with the lower layers. The aspects would use the OSGi 
framework as the point of interception. Code that concerns the 
internals of bundles implementation does not interest us. 
Therefore, pointcuts are defined using join points of the OSGi 
API. For that reason we weave only the framework and not the 
OSGi bundles.  



We have left the security layer out of our scope since it is an 
optional layer according OSGi’s specification. Besides clearly 
crosscutting all layers, as illustrated in Figure 1, the join points 
related to security are easily identifiable in the OSGi specification, 
which details all methods and corresponding interfaces that need 
to perform security verifications in each of the layers. In addition, 
existing work [38] already has contributions handling security as 
aspects in OSGi.  

The next subsections detail the layer aspects, followed by a 
discussion on their reusability. We kept the pointcuts of the layer 
aspects as simple as possible, defining kinded pointcuts (in our 
case, execution and call) using join points in methods and 
constructors. Refinements of such pointcuts such as the 
combination with non-kinded pointcuts (e.g., control flow) were 
left to the specific aspects definitions that reuse the layer aspects. 

3.1 Lifecycle Aspect 
The methods and transitions that concern bundle lifecycle are 
scattered across four interfaces (Bundle, BundleContext, 
BundleActivator, PackageAdmin) that already have roles other 
than lifecycle management. Figure 2 shows the states and their 
respective transitions concerning a bundle’s lifecycle in OSGi. 
The install state transition is actually fired in the BundleContext 
(BC in the figure) interface. The resolve transition is defined in 
the PackageAdmin (PA) service interface, while the update and 
uninstall can be found in the Bundle (B) interface. The refresh 
transition is part of the package admin, which is not part of the 
core API but rather declared in the PackageAdmin (PA). The start 
and stop transitions are both located in the Bundle and 
BundleActivator (BA) interfaces. In case of a Bundle having a 
BundleActivator, those calls are delegated to the activator. In the 
LifeCycle aspect we have rather called it as activation and 
deactivation, respectively. 
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Figure 2. OSGi bundle lifecycle state transitions scattered over 

several interfaces: BundleContext (BC), Bundle (B), 

BundleActivator (BA), PackageAdmin (PA). 

 

Figure 3 shows the LifeCycle aspect containing the corresponding 
pointcuts. Most of the pointcuts have used join point definitions 
that concerned interfaces whose implementations are provided by 
any OSGi framework. Only the activate and deactivate pointcuts, 
respectively, have been defined using call join points. This 
happens due to the fact that an OSGi framework implementation 
itself does not provide implementors of the BundleActivator 
interface. BundleActivators are rather provided by bundles that 

will be loaded by the framework. Calls to start and stop lifecycle 
transitions are done toward the framework, which performs its 
work and then delegates the calls to the start and stop methods of 
the BundleActivator from the corresponding bundle. Because we 
weave only the framework, not applying aspects to a bundle’s 
code, we cannot apply execution join points in such transition. 
Instead, we use a call join point on the OSGi framework side. 

 

 

Figure 3. Aspect defining bundle lifecycle pointcuts. 

 

3.2 Service Layer Aspect 
According to its specification, the service model in OSGi is based 
on a publish, find and bind model. All of these operations are 
centered around the service registry, which actually does not have 
a standard class or interface representing it in the API. The 
methods that give access to the service registry can be found 
scattered in different interfaces. In addition, implementations of a 
service registry may be completely different from one OSGi 
implementation to another. We reified the service registry as the 
aspect that represents the OSGi service layer, since we are mostly 
interested in the methods that concern the three operations of the 
OSGi’s service model. The pointcuts that group the join points 
giving access to the service layer were grouped in the 
ServiceRegistry aspect, which is detailed in Figure 4. 

Most of the pointcuts were defined using execution join points. 
However, similar to the join points used in the activate and 
deactivate pointcuts of the lifecycle layer, the join points 
concerning the ServiceFactory were declared as call join points 
since a ServiceFactory is an interface whose implementations are 
provided by bundles that are dynamically deployed instead of 
being provided by OSGi implementations. As a practical example 

public aspect LifeCycle { 
  

 pointcut install():  

     execution(Bundle 

BundleContext+.installBundle(String,..)); 
  

  pointcut stop():  

     execution(void Bundle+.stop(..)); 
  

  pointcut start():  

     execution(void Bundle+.start(..)); 
  

  pointcut uninstall():  

     execution(void Bundle+.uninstall()); 
  

  pointcut update():  

     execution(void Bundle+.update(..)); 
  

  pointcut resolve(): 

     execution(boolean 

     PackageAdmin+.resolveBundles(Bundle[])); 
  

  pointcut refresh(): 

     execution(void 

    PackageAdmin+.refreshPackages(Bundle[])); 
  

  pointcut activate(): 

     call(void 

      BundleActivator+.start(BundleContext)); 
  

  pointcut deactivate(): 

     call(void 

       BundleActivator+.stop(BundleContext)); 

} 



for using the service layer aspect, we could implement a service 
interception mechanism more powerful than the standard service 
hooks provided by the OSGi framework, which are very limited. 

 

Figure 4. Aspect that abstracts the service layer. 

 

3.3 Module Layer Aspect 
Although scattered in different interfaces that accumulate roles 
from different layers, the functionality of both service and 
lifecycle layers can be well identified in the OSGi API. However, 
we cannot say the same concerning the module layer. All the 
classloading and package visibility requirements are well defined 
in the OSGi core specification, but they are not explicit in the 
API. Also, most of the runtime behavior concerns implementation 
specific code, which may differ from one implementation to 
another. For example, the classloading mechanism of the Module 

Loader [18], used in both Oscar5 and Felix OSGi 
implementations, differs from those of Equinox and Knopflerfish, 
but they must all comply with the OSGi specification. 

One of the few methods of the module layer that are explicit in the 
API can be found in the Bundle.loadClass method. However, 
typical code does not necessarily use that method explicitly. It 
rather relies on Java’s transparent classloading mechanism (e.g., 
automatically performed when instantiating a class for the first 
time).  We have only defined three classloading related pointcuts, 
as detailed in Figure 5. Given that a bundle is the unit of 
modularization in OSGi, we also have included a pointcut that 
uses a join point for bundle construction. 

 

 

Figure 5. Module layer abstraction. 

 

The OSGi Package admin service stores metadata concerning 
packages and their bundle dependencies, which are related to the 
module layer. The module layer aspect is useful, for example, for 
tracking bundle creation or as an alternative mechanism for 
intercepting class loading for performing custom bytecode 
manipulations on classes known only at runtime (the typical case 
in a dynamic platform such as OSGi). Other less intrusive usages 
could be fine grained tracing of the classloading process (an 
alternative to the general command line –verbose:class 

option); tracking the creation of new classloaders provided to 
bundles; and so forth. 

3.4 Reusable pointcuts  
Hanenberg et al. propose the separate pointcut [20] aspect-
oriented refactoring for avoiding redundant anonymous pointcut 
declarations. Indeed, separate pointcut declarations are a good 
practice for reusability. The typical solution proposed in [19] is to 
inherit from an abstract aspect and to provide the advice code 
referring to the inherited pointcuts. However, we have chosen to 
use the design principle of favoring composition instead of 
inheritance, taken from object-oriented design [15]. This choice 
was mainly due to inheritance limitations in AspectJ. Instead of 
creating an abstract aspect to be extended so it can be reused, we 
rather defined the pointcuts in reusable library aspects that map 
the points of interest of each of the corresponding target OSGi 
layers (i.e.  Lifecycle, Service and Module layers), reusing them in 
the advices of our aspects, as illustrated in Figure 6.  
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public aspect ServiceRegistry { 
 

  pointcut registration(): 

     execution(ServiceRegistration  

      BundleContext+.registerService(..)); 

 

  pointcut unregistration(): 

     execution(void  

          ServiceRegistration+.unregister()); 

 

  pointcut retrieval(): 

     execution(Object  

      BundleContext+.getService( 

               ServiceReference ))  

     || call(Object   

          ServiceFactory+.getService(Bundle,               

                ServiceRegistration)); 

 

  pointcut release():  

     execution(boolean 

BundleContext+.ungetService(ServiceReference)) 

     || call(void    

     ServiceFactory+.ungetService(Bundle,   

                ServiceRegistration, 

                Object)); 

 

  pointcut referenceQuery():  

     execution(ServiceReference[] 

BundleContext+.getAllServiceReferences(..)) 

     || execution(ServiceReference  

 BundleContext+.getServiceReference*(..)); 

  

  pointcut bundleServices():  

     execution(ServiceReference[] 

      Bundle+.getRegisteredServices()); 

 

  pointcut usageQuery(): 

     execution(ServiceReference[] 

            Bundle+.getServicesInUse()); 

 

  pointcut addListener(): 

     execution(void 

      BundleContext+.addServiceListener( 

            ServiceListener)); 

   

  pointcut removeListener(): 

     execution(void 

        BundleContext+.removeServiceListener( 

             ServiceListener)); 

} 

public aspect ModuleLayer { 
 

 pointcut bundleInstantiation():  

  execution(Bundle+.new(..)); 
 

 pointcut classLoaderInstantiation():  

     execution(ClassLoader+.new(..)); 
 

 pointcut getResource():  

     execution(* Bundle+.getResource*(String)); 
 

  pointcut loadClass():  

     execution(Class 

          Bundle+.loadClass(String)) 

     || execution(Class  

          ClassLoader+.loadClass(String)); 

} 



If we analyze the semantics of an is-a relationship – which 
legitimates inheritance – between one concrete aspect and the 
library aspect that represents a layer, we do not have a 1 to 1 
cardinality, which would justify single inheritance in most of the 
cases. We rather have a concrete aspect that may crosscut multiple 
layers. As some concrete aspects may crosscut layers and layers 
have been abstracted as aspects, a concrete aspect may need to use 
code – in this case, pointcuts– inherited from different layers. In 
an illustrative example we can consider that a given concrete 
aspect (e.g., service monitoring) may affect two layers, (e.g., 
module and service layers) which are represented as aspects as 
well.  In cases like this we could see the single inheritance 
provided by AspectJ as a limitation, since we can only inherit 
from one aspect at a time. If AspectJ provided multiple 
inheritance it could be solved in a straightforward manner. 
However, by using composition we could easily workaround this 
issue, thus making possible to create aspects reusing pointcuts 
from different origins (i.e., the layer aspects). 

 

 

Figure 6. Diagram illustrating the weaver inputs and how the 

aspects are applied to different OSGi implementations. 

 

As shown in Figure 6, the aspects target the OSGi API without 
direct dependencies on any of the OSGi implementations 
(Knopflerfish, Apache Felix, Equinox). The specific aspects are 
the concrete aspects where we would implement the advices to the 
selected layer pointcuts, thus reusing their definition. The weaver 
would take any OSGi implementation as an input together with 
the layer aspects (used as library aspects) and the specific aspects 
(which reference the layer aspects), weaving them both into the 
OSGi implementation. The resulting woven OSGi 
implementations contain the code that handles the specific aspects 
that have been developed targeting the layers and the OSGi API.  

4. DEPENDABILITY ASPECTS 
The layer aspects described so far do not provide advices. This 
section is a showcase for illustrating the reuse of such abstractions 
in the creation of specific aspects that are concerned with 
dependability and monitoring. In our precedent work [14] we 
patch the OSGi framework in order to increase dependability by 

reducing the risk of problems previously mentioned. This is done 
by transparently providing infrastructure that would (a) deploy 
and execute untrustworthy third-party code in a fault contained 
environment, and (b) enable the automatic recovery of 
applications in case of faults or failures. We use a sandbox 
approach for introducing fault contained boundaries that prevent a 
component hosted in the sandbox from crashing or interfering the 
execution of the main application. If sandbox hosted code 
mishandles OSGi dynamicity we are able to purge the sandbox 
from memory by performing a full sandbox reset without needing 
to stop the main application. The recovery approach is based on a 
combination of techniques taken from autonomic computing [23] 
and recovery-oriented programming. The former strategy is the 
basis for introducing a self-healing approach (automatic detection 
diagnosis and repair of problems) to the sandbox, where 
components may present unstable behavior. The latter is realized 
by means of microreboots [4], which propose the individual 
reboot of fine-grained components. Microreboots achieve similar 
benefits to an application restart with less cost and without losing 
application availability. The repair strategy performs microreboots 
in two levels: components and sandbox (as a last resort). 

The code in our precedent solution was manually introduced as a 
patch on the implementation of Apache Felix v.1.4.0. We 
refactored these cross-cutting concerns into fine grained aspects, 
reusing our layer aspects abstraction. Figure 7 illustrates the reuse 
of the layer aspects in the creation of specific aspects concerned 
with dependability and monitoring. The layers avoided redundant 
pointcut definitions and allowed to explicitly identify which layers 
were being affected by an aspect. For example, the use stereotype 
clearly shows which aspects crosscut which layers. All of the 
instances of the dependability aspects did not need to have any 
particular association with classes, objects or control flow. 
Therefore, they have been implemented with the default 
issingleton() association. 

We implemented two groups of cross-cutting concerns: isolation 
and monitoring. The isolation mechanisms help enforcing 
dependability towards the problems we try to address, while 
monitoring gives application information that we can analyze for 
either automatic or manual decisions on autonomic management 
helping on the detection and prevention of faulty behaviour. 

 

 
Figure 7.  Layers (left side) abstracted as aspects whose 

pointcuts are reused by the dependability aspects (right side).  

 



4.1 Isolation 
By isolation we mean establishing boundaries that isolate one 
object from another, eliminating direct binding when it may bring 
risks such as using bindings to/from objects of a third-party 
component which is not known in advance, or which has not been 
exhaustively tested with the current set of components in a 
running application. We implemented two isolation levels: 
services and components. The first one is performed within the 
same application boundary (e.g., process, domain) and does not 
provide fault containment. It introduces proxies for isolating 
service consumer from service provider, ensuring that references 
to the servant object are not retained after it is unregistered. The 
second level concerns a sandboxing approach that hosts 
components in a fault contained boundary that can be fully 
restarted without interfering with the execution of the main 
application. Both of the isolation levels are resolved dynamically 
at runtime upon service retrieval or component start up. The 
decision is taken based on the analysis of a policy file that is 
defined using a domain-specific language that we have created for 
indicating services to be isolated (e.g., implements 

Foo.BarService) as well as components (e.g., providedby 

ComponentVendorA). The next subsections detail how the 

isolation strategies have been modularized as aspects. Due to 
space limitations, code snippets have been simplified for 
illustrative purposes. 

4.1.1 Component Isolation Aspect 
The sandboxing approach for isolating components has two 
techniques for isolation: domain based and operating-system 
based (i.e. process-based) which we compare against each other in 
our precedent work [14]. Both of these approaches provide fault 
contained entities –Java Isolates6 and JVM process, respectively – 
with strong isolation boundaries, therefore implying in IPC 
mechanisms for communicating across such boundaries. The 
architecture of the sandboxing solution, detailed in previous work 
[12], takes the form of two OSGi platforms:  a main OSGi 
platform where the trusted components execute, and a sandboxed 
OSGi where untrusted components are deployed and run, based 
on an isolation policy. 

The component isolation aspect crosscuts the different lifecycle 
transitions, and also the service registry for allowing services 
running in one isolated platform to be used in the other, across the 
isolation boundary. All of these adaptations are encapsulated in 
aspects that target the OSGi platform. The dynamically deployed 
components are not changed; therefore, from the components 
perspective, our approach provides seamless component isolation 
and communication. The communication between the two isolated 
OSGi framework instances (main platform and sandbox platform) 
is done through a class that acts as a transparent proxy to the 
isolated platform, allowing for instance one isolated OSGi 
platform (e.g. the main platform) to retrieve services located in the 
other isolated OSGi platform (e.g. the sandbox) via IPC. For 
example, when a component is installed in the main (trusted) 
platform the ComponentIsolation aspect installs it in the sandbox. 
At component startup, the corresponding advice verifies the 
policy and if necessary starts the component in the sandbox, as 
shown in the first advice described in Figure 8. 

                                                                 
6 Java Isolation API. http://jcp.org/en/jsr/detail?id=121 

We also had to avoid reentrant calls on the advices of some 
pointcuts. For instance, the implementations of Bundle.start() 
typically call Bundle.start(int), caught by the same pointcut. We 
simply added a cflowbelow construct, as described in that advice. 
Local queries to the service registry that bring no match are re-
routed to the isolated platform. If a match is then found, the aspect 
would return an IsolatedServiceReference. Retrieval of service 
objects using such references generate a proxy that transparently 
handles the communication between the two platforms, as 
depicted in the second advice of Figure 8. Every component 
isolation patch we made in the Felix implementation could be 
easily migrated to the ComponentIsolation aspect, except for one. 
The notification of service events from one platform to the other 
was implemented directly in the EventDispatcher class, which is 
specific to Felix. In this case we had to adapt a dispatcher that was 
registered as a ServiceListener in OSGi and was responsible for 
filtering and propagation of service events to the other platform. 
Listener registration is done on the initialization of the isolation 
library, done via a ModuleLayer.bundleInstantiation pointcut. 

 

Figure 8. Advices reusing pointcuts of different layer aspects. 

 

4.1.2 Service Isolation Aspect 
This aspect is responsible for replacing service objects by service 
proxies (when the isolation policy applies) that delegate the calls 
to the wrapped service object. By using this approach we can 
enforce that an untrustworthy service consumer does not directly 
reference service objects. It avoids cases of stale references to 
services that have already been unregistered (e.g. its bundle has 
been stopped). With this strategy, we can guarantee that service 
consumers will not prevent the garbage collection of unregistered 
services. In addition, the proxies are programmed to throw 
exceptions in cases of method calls when the underlying service 
object is unregistered. Figure 9 depicts the process of wrapping 
the service object in a proxy upon service retrieval. 

public aspect ComponentIsolation { 

... 

void around(Bundle b): LifeCycle.start()  

     && !cflowbelow(LifeCycle.start())&& this(b){ 

 if (!PlatformProxy.isSandbox() &&         

     PolicyChecker.checkIsolation(b)){ 

     PlatformProxy.start(b.getBundleId()); 

  } else { 

    proceed(); 

  } 

 } 

 

 Object around(ServiceReference ref):   

       ServiceRegistry.retrieval() && args(ref) { 

   Object service = null; 

   if (ref instanceof IsolatedServiceReference) { 

    Bundle b = ref.getBundle(); 

    service = getIsolatedProxyService(b, ref); 

   } else { 

    service = proceed(ref); 

  } 

  return service; 

 } 

... 

} 



 

Figure 9. Main advice of the ServiceIsolation aspect. 

 

4.2 Monitoring 
The other category of aspects that we have developed concerns 
monitoring. Although they do not enhance dependability by 
themselves, they help gathering information used for detecting as 
well as predicting faulty behaviour. 

4.2.1 Stale Services Monitoring Aspect 
We had previously used Aspect-oriented Programming (AOP) for 
monitoring in the ServiceCoroner tool [11] but in a less structured 
manner. That solution has been refactored and integrated to the 
OSGi dependability enhancements described here. We track 
service instances using Java weak references, in order to know if 
unregistered services are still referenced by other objects (when a 
weak reference returns null it means that the object it pointed to 

has been garbage collected). Classes or interfaces, both 
represented by java.lang.Class instances, that are no longer 
reachable can be reclaimed (when no instances of such classes are 
being referenced) and like so their classloader [16], as long as the 
classloader is no longer reachable and all of its loaded classes are 
no longer being used. We also track classloader instances with 
weak references, identifying which classloader objects still hang 
in memory after OSGi bundle updates. Our experiments show that 
when the objects and types of a given bundle are no longer 
referenced, the bundle classloader is garbage collected. The 
effectiveness of our approach using weak references has been 
detailed in the experiments presented in [11]. Figure 10 shows a 
simplified example of the aspect that forwards the service instance 
tracking to the ServiceCoroner API. 

 

 

Figure 10. Aspect for monitoring services garbage collection.  

 

If both component isolation and service monitoring aspects are 
used together, we must explicitly define the order of precedence 
so we can be sure that the service monitoring will track always the 
actual servant object instead of tracking a proxy to a service. 

4.2.2 Autonomic Management Aspect 
The self-healing capability of the sandbox is achieved via 
autonomic management which is actually provided by an external 
application that provides a control loop. It collects information 
from the sandbox via monitoring probes, analyzes the data and 
takes appropriate action (e.g., stopping a bundle, rebooting the 
sandbox) through effector probes implemented as Java MBean. 
The insertion of such probes is done by the sandbox monitoring 
aspect on the creation of the first bundle through the module 
layer, as depicted in the simplified example of Figure 11. 

The service layer is also used by this aspect, but in quite a similar 
way to the approach from section 4.1.2, based on proxies. The 
proxy enables, for instance, calculating service usage. A particular 
difference on this aspect is that it also weaves our own classes in 
order to monitor the interactions with the isolated platform via 
their proxies. The probe information also depends on our 
ServiceCoroner API (fed by the service monitoring previously 
describe), in order to take action against stale services. The fault 
prediction mechanisms are available for a set of patterns of errors: 
CPU hogging, stale service, excessive memory allocation; 
excessive thread instantiation; excessive invocation of services 
(Denial of Service); stale reference retention. The detection and 
handling of such faults was provided as customizable scripts that 
are loaded and executed by the sandbox autonomic manager. 

 

Figure 11. Creation of the sandbox monitoring probe aspect. 

 

5. VALIDATION 
Since we have not found similar solutions for isolation and 
monitoring in OSGi applications we could not compare our 
implementation against other approaches. This section explains 
the validation steps —weaving both layer and dependability 
aspects into different OSGi implementations; and validating the 
effectiveness of the dependability aspects in a test application— 
followed by limitations and benefits of our approach. 

5.1 Weaving different OSGi implementations 
We have successfully woven and tested different versions of three 
OSGi implementations (Apache Felix, Equinox, Knopflerfish) 
that are widely used in software industry. The weaving of layers 
and aspects happened with no problems, and the dependability 
aspects correctly worked, as detailed further. As part of our 
evaluation, we extracted some metrics (Table 1) concerning the 
layer abstraction through aspects, for each tested implementation. 
We verified how many join point shadows have been found in the 
classes affected by each of the layer aspects from section 3, so we 

public aspect ServiceMonitoring { 

... 

 Object around(ServiceReference ref):   

   ServiceRegistry.retrieval() && args(ref) { 

     Object result = proceed();          

     ServiceCoroner coroner =   

           ServiceCoroner.getInstance();    

     coroner.trackService(ref, result); 

     return result; 

   } 

... 

} 

public aspect SandboxMonitoring { 

... 

 void around(Bundle bundle) : 

ModuleLayer.bundleInstantiation()&& this(bundle){ 

 if (bundle.getBundleId() == 0) {          

  ObjectName name = new  

     ObjectName("fr.imag.adele:type=Touchpoint"); 

  Touchpoint mbean=new Touchpoint(); 

  mbean.setSystemBundle(bundle); 

ManagementFactory.getPlatformMBeanServer().regist

erMBean(mbean, name); 

 } 

} 

... 

} 

public aspect ServiceIsolation { 

... 

 Object around(ServiceReference ref):       

      ServiceRegistry.retrieval() && args(ref){ 

   Object s = proceed(ref); 

   if (!PlatformProxy.isSandbox()  

       && PolicyChecker.checkIsolation(s)) { 

    s = ProxyServiceStore.getProxy(s,ref); 

   } 

     return s; 

   } 

... 

} 



could have a perspective of the scattering phenomena in the 
analyzed OSGi implementations. Although the number of affected 
classes may seem small, we want to illustrate that there is no 
single point of access for layers. We also show that the layer 
concepts are lost in the API, since the classes that contain the join 
point shadows have other responsibilities than exposing layer 
services. Likewise, we find classes whose responsibilities overlap 
different layers. We collect such scattered concepts, and expose as 
an entity that contains the entry points to a given layer. Another 
observation that can be made is that Felix and Knopflerfish join 
point shadows remain stable across different versions, while 
Equinox shows a significant increase from one version to another. 

Concerning woven OSGi frameworks execution, two adjustments 
had to be done. First, to avoid issues with type visibility in OSGi, 
we embedded the AspectJ runtime classes in each one of the 
woven OSGi implementations. The second issue concerned the 
Equinox OSGi framework jar file which stores in its manifest an 
SHA1-Digest for each class present in the jar. After the weaving 
process, the woven classes had their hashes no longer valid and 
we had security verification errors at OSGi startup. The 
workaround was to remove such information from the framework 
bundle manifest file so it could be started up. However, the fact of 
having the OSGi framework bundle without SHA1 hashes does 
not influence in the verification process of any other loaded 
bundles that contains SHA1 hash information. It only means that 
the framework will not perform that verification against itself at 
startup, but other bundles will be verified. To illustrate that, the 
other two implementations (Felix and Knopflerfish) do not 
provide SHA1 hashes in their manifests but they are able to verify 
digitally signed jars that are loaded by the framework. 

 

Table 1. Layer scattering over OSGi API: total join point 

shadows (JPS), affected classes (C) and packages (P). 

JPS C P JPS C P JPS C P

Felix 1.4 22 5 2 15 4 1 10 4 2

Felix 2.0.4 22 5 2 14 3 1 7 3 1

Felix 3.0.3 22 5 2 14 3 1 8 3 1

Knopflerfish 2.3.1 17 4 1 15 6 1 7 3 1

Knopflerfish 3.0 18 5 2 18 7 2 12 5 2

Equinox 3.4 18 4 1 16 5 1 17 9 5

Equinox 3.6.1 38 9 4 20 9 4 33 16 9

Lifecycle Service Module

 

 

5.2 Effectiveness of the Dependability Aspects 
We have validated the aspects in a simulation of an RFID and 
sensor-based application, also used in [14]. The application 
consisted of an OSGi application that simulates the collection of 
RFID and sensor data with a total of 14 bundles. Sensors and 
RFID reader simulator components were hosted in the sandbox. 
One the motivating scenarios concerns applications that collect 
RFID and sensor data. The application illustrates a scenario where 
we typically use native drivers wrapped in Java components to 
access physical devices. Devices may be plugged and detected at 
runtime, as are their respective drivers. The interaction between 
the application components that consume data provided by the 
untrustworthy code is done through OSGi’s service layer. In case 

of an illegal operation or a severe fault in the native code, the 
whole application is compromised. In this use case the application 
must also run non-stop and be able to recover in case of such 
severe faults, therefore we employ different dependability aspects 
that are woven in the OSGi framework using our proposed 
approach. Since it is a dynamic component-based application, we 
could have three different applications (i.e. configurations) 
running: an RFID-only application, a sensor-only application, and 
a hybrid application where both types of devices provide data. 

Different test cases were executed for verifying: policy-based 
isolation of components and services; lifecycle operations on the 
isolated component; calls on services from isolated platform; stale 
service monitoring; sandbox monitoring. For testing the last two 
we had to deploy components that caused errors during their 
execution. Testing systems with faults injected in the interface 
level (e.g., invalid parameters) instead of faults injected in the 
component level (e.g. emulation of internal component errors) 
produces different behavior [30], which does not representing 
actual application usage. For that reason we have chosen to use 
component fault injection that could reflect possible faults, 
providing us with a realistic scenario. Therefore fault deployment 
would be a more appropriate term since the faulty components are 
deployed and started at runtime. 

The autonomic manager works as an external application that is 
not directly affected by the aspects. However, it collects data from 
the sandbox through the sandbox monitoring aspect. The 
autonomic manager, as expected, performed microreboots of the 
sandbox in different handled cases: when it was non-responsive 
(i.e. CPU hang); when it was crashed; when the monitored data 
collected indicated sandbox errors such as excessive thread 
instantiation, memory or CPU usage. In cases where the source 
bundle could be identified (stale service usage and excessive 
invocation of services), the autonomic manager performed 
microreboots on the offending bundle. Such automatic decisions 
are taken based on the event history of monitored data stored for 
each cycle of the autonomic manager’s control loop. 

5.3 Limitations 
Despite the single inheritance issue on AspectJ, we have not 
found any impeditive limitations concerning the usage of aspects. 
Performance overheads of the aspectized version in comparison to 
the patched by-hand version were not checked. However, we 
believe that the impact is minimal, based on studies [21] 
indicating that a woven application that captures a given 
crosscutting concern with AspectJ has performance comparable to 
the same implementation made by-hand. 

The limitations refer to the technical solution introduced by the 
dependability and monitoring aspects implementation. These 
limitations are of a fundamental nature and also concerning our 
current solution. For instance, trying to provide transparent IPC is 
still a challenging subject in systems engineering. For that reason 
we provide a restricted flavor of transparent communication where 
we do not deal with object serialization, so we can avoid the 
design decision of objects passed by-copy or by-ref. For such 
reasons, we restrict the usage of our approach to applications that 
comply with a set of assumptions [14]. In order to be sandboxed, 
a component needs to have services that are stateless (to avoid 
state loss in case of reboots) and that provide methods with 
signatures limited to Strings, primitive types and arrays of these 
two. In contrast, if a sandboxed component has services with 



signatures using objects it will not work with our approach, 
having runtime exceptions. Another drawback of our solution 
involves sharing of security permissions between the trusted 
platform and the sandbox, especially in the OS-based approach 
where OSGi platforms are separate processes. As the two 
platforms virtually constitute the same application, we consider 
the same level of security for both of them. However since 
potentially untrustworthy code can be executed, we should 
consider a way of restricting permissions to the sandbox. Other 
limitation of fundamental nature concerns OSGi technology itself, 
which does not provide resource consumption monitoring of 
individual bundles. At bundle level, we could only monitor 
precisely the service layer (e.g. service invocations) by means of 
our aspects for autonomic management. 

5.4 Benefits 
From a general perspective, we find that the strategies we have 
employed are useful to whoever needs to apply crosscutting 
concerns to the OSGi framework in a similar way. With the 
abstraction of OSGi layers as aspects we could identify concepts 
that were not clear in the OSGi API. It improved the 
understanding of the API and gives a better architectural 

perspective of which layers are being affected by a given 
crosscutting concern. We also gained reuse of the pointcut 
definitions from the layer aspects that were referenced by specific 
aspects (e.g. dependability, monitoring) that crosscut such layers, 
avoiding redundancy of such definitions. For different reasons, we 
believe that the aspectized solution of the dependability concerns 
was better than the version patched by-hand. The refactoring of 
our dependability crosscutting concerns into aspects helped 
improving the modularity of our solution. This explicit separation 
of concerns enhanced maintainability of the dependability 
concerns, facilitating their evolution with no need to manually 

change the target OSGi implementations’ source code. One may 
see this solution as invasive due to the changes performed in the 
OSGi implementations during the weaving process; however we 
gain portability across different OSGi frameworks. Also, 
separating our crosscutting concerns into distinct aspects brings 
flexibility, by having the possibility of combining different 
aspects, providing a sort of à la carte choices. For instance, the 
usage of the service layer monitoring without the isolation 
features. In that case, only the desired aspect and the layer aspects 
are needed to weave the target OSGi implementation. 

6. RELATED WORK 

6.1 Separation of Concerns and AOP in OSGi 
Handling service registration/unregistration consists of repetitive 
and error prone code. By using separation of concerns, different 
efforts try to tackle issues originated from OSGi’s dynamism. The 
Service Binder, presented in [5], keeps an engine for 
automatically handling service dependencies at runtime. Later, 
that research effort was enhanced and integrated to the OSGi 
specification as the Declarative Services standard. iPOJO [8] is a 
component model targeting the OSGi platform and, in relation to 
Service Binder, takes a step further for managing the dynamicity 
and other non-functional requirements in OSGi applications. 
iPOJO employs strategies such as method interception and 
bytecode manipulation which are both found in several AOP 
frameworks. By means of handlers, iPOJO tries to provide a clean 

separation of concerns keeping non-functional code (e.g., service 
provisioning, dependency management) outside components. 

To the best of our knowledge there were no other approaches in 
literature that introduce aspects directly to the OSGi framework. 
Our work focuses on transparent enhancements in OSGi 
frameworks (affecting different OSGi layers) in order to enhance 
dependability without needing to change the code of existing 
applications. Other efforts rather try to introduce aspects as part of 
OSGi bundles dynamically deployed, but that do not necessarily 
crosscut all OSGi layers. For example, Phung and Sands [35] use 
aspects for implementing different security policies such as 
actions suppression, insertion, truncation and replacement. They 
use AspectJ to weave the aspects into the bundle at 
download/installation time. The weaving is performed by a trusted 
control center who is asked for a given bundle. 

While we have focused on introducing crosscutting concerns into 
OSGi by means of aspects, Singh and Kiczales [38] have focused 
on refactoring existing crosscutting concerns in the Equinox 
OSGi implementation. That work was part of a refactoring of the 
Eclipse IDE, which is based on OSGi. Among their significant 
findings, they have treated security as a crosscutting concern. 
Typical security checks in OSGi handle conditional permission 
check concerning the rights of a bundle to access a given service 
or to load a given class, for example. They moved to an aspect all 
calls to the Security Manager (found in several methods that 
required permission). Lifecycle was handled in a way different 
than ours. In their case, the state transitions were identified as a 
finite state machine. The code that handled state transitions was 
moved to the corresponding aspect, and plugin state changes 
performed outside the aspect were declared as an error. Frei and 
Alonso [10] adapted an OSGi framework implementation in order 
to register services for using AOP through an AOPContext object 
instead of a BundleContext object. The AOP approach is based on 
proxies that would allow intercepting calls before and after 
method execution. The AOP library used needed some adaptation 
for dealing with multiple classloaders (one per bundle in OSGi).  

Lippert’s work concentrates on enabling the usage of AOP in 
OSGi bundles, providing load-time weaving. His initial work [27] 
on that context focused on enabling the usage of Aspect-J in the 
Eclipse runtime, before OSGi was adopted for the Eclipse 
platform. Right after OSGi was used as the Eclipse runtime, a new 
version of that work, called AJEER (Aspect-J Enabled Eclipse 
Runtime) [28], was adapted to that environment. It has evolved 
into the Equinox Aspects7 project [29], where aspects can be 
deployed either with the bundles that would be woven, or as 
separate bundles. Following the OSGi dynamics, deploying 
aspects as separate bundles would fire the update of affected 
bundles, which would have their classes reloaded and woven at 
load-time. It is also possible to uninstall the aspect bundles, which 
results in an update of the affected bundles so the classes without 
woven code can be reloaded. Although Equinox Aspects provides 
a powerful mechanism, it relies on features specific to the 
Equinox OSGi implementation that are not part of the OSGi 
specification. Thus, this approach is not portable to other OSGi 
implementations, contrasting to the portability we propose. Keuler 
and Kornev [24] also use Equinox’s class loader hook mechanism 
for manipulating the class loading performed in bundles. They 

                                                                 
7 http://eclipse.org/equinox/incubator/aspects 



replace the base class loader of all bundles by an intermediary 
class loader that allows the aspects to be loaded. Irmert et al [22] 
combine JBoss AOP with the classloading hook mechanism from 
Equinox for building a mechanism that deploys aspects as OSGi 
bundles. Like other approaches, the portability of both solutions is 
compromised as they depend on a proprietary mechanism. 

6.2 Autonomic Computing and AOP 
Broadly speaking, several efforts such as [36] and [40], to cite a 
few, have used AOP to address dynamic adaptation. By narrowing 
down the vision to autonomic computing we can still find works 
that take advantage of AOP for introducing autonomic managers 
and monitoring capabilities into systems. In [7], Engel and 
Freisleben see the autonomic computing principles as crosscutting 
concerns. Their toolkit deploys aspects into the operating system 
kernel, allowing the self-adaptation mechanisms to be based on 
system operation and resource usage. They illustrate their 
approach for achieving, at the kernel level, degrees of self-
optimization, self-configuration, self-healing and self-protection. 

Chan and Chieu [6] mention the monitoring function of an 
application as a crosscutting concern. In their work they describe 
an approach for building autonomic managers in legacy systems 
by using AOP techniques for weaving them. Alonso et al. [1] 
present what they have called AOP-monitoring framework. In 
their approach they use AOP for injecting into the system some 
monitoring code, implemented as probes which will capture 
resources consumed by components. A monitor manager collects 
information sent by probes, and depending on the analysis of that 
data it takes appropriate action based on the policies to follow. 
Grenwood and Blair [17] give an example usage of AOP for 
building an autonomic cache. They present aspects that monitor 
requests on a server application and in case of a response time 
threshold being reached the monitoring aspect dynamically 
weaves the application for introducing new aspects (e.g., a 
caching aspect for enhancing response time). 

6.3 Generally Related Approaches 
We have not found approaches targeting dependability by using 
aspects for isolating components and services in dynamic 
applications. Other efforts deal with dependability through AOP, 
but with different strategies and focused on different objectives. 
Error handling [9] [26] is one the most addressed dependability 
concerns using AOP. Other approaches try to handle more general 
dependability mechanisms, like Rouvoy et al [37] who use AOP 
for combining dependability concerns with self-adaptive 
applications. They present predefined dependability mechanisms – 
like a transactional content processor, or a replicated content 
repository – that are kept separate from the core application, but 
that are combined with it when necessary (e.g., based on Quality 
of Service dimensions). We can find other slightly similar 
approaches with overlapping interests, for example, Soares et al 
[39] handle distribution as aspects, which relates to our efforts for 
transparent communication, but they rather rely on adding remote 
interfaces via the AspectJ declare parents construct. 

7. CONCLUSIONS 
Executing code not previously known in advance which is 
deployed at runtime may introduce potential risks to applications. 
Like so, the dynamic loading and unloading of native libraries in 
platforms like Java also introduces risks. We try to address such 

issues in the OSGi Service Platform, which targets the 
construction of dynamic modular Java applications. We propose 
an approach for introducing mechanisms for enhancing 
dependability in that platform. These techniques have been 
implemented in previous work in a patch targeting the Apache 
Felix 1.4.0 OSGi implementation, but the code introduced was 
scattered over different classes. It made the solution hard to be 
ported and maintained, since we would need to copy and paste 
source code in the target OSGi implementation versions. 

We succeeded in separating crosscutting dependability concerns 
and refactoring them into aspects. During that process, we 
improved the modular representation of software layers of the 
OSGi platform, by abstracting them as an aspect library that 
provided reusable pointcuts. By using AOP we created better 
abstractions and achieved better expressiveness being able to 
represent concepts that were lost when the specification was 
translated into an API. We believe that such layer representation 
as aspects can help other developers that try to apply aspects to 
the OSGi API and may need such abstractions.  

The reusable layer representation also helped to better identify 
which layers were being crosscut by the dependability aspects, 
whose original crosscutting concerns were broken down into more 
granular aspects. The whole aspectization has lead to a cleaner 
solution and also portable across different OSGi implementations.  
We have successfully woven our aspects into different versions of 
three OSGi implementations: Apache Felix, Equinox and 
Knopflerfish. After running the test application in the different 
woven OSGi frameworks, the runtime behavior of the isolation 
policies worked as in the preexisting hard-coded solution. The 
aspect approach brought several advantages to the OSGi 
dependability enhancements we propose. We have gained easy 
portability across different OSGi frameworks; better modularity 
and maintainability of code, and flexibility through the possible 
combination of different fine grained aspects. 

We plan to evaluate the migration of certain aspects to be woven 
at runtime, and compare it to the weaving of OSGi framework 
implementations, since the portability of our solution across 
different OSGi implementations is one of our main objectives. 
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