
Applying Dependability Aspects on Top
of “Aspectized” Software Layers

Kiev Gama and Didier Donsez
LIG laboratory, University of Grenoble

Bat. C, 220 rue de la Chimie, Domaine Universitaire

Grenoble, France

{kiev.gama, didier.donsez}@imag.fr

ABSTRACT

Dynamic platforms where components can be loaded at runtime
can introduce risks to applications stability if components are not
previously known before deployment. It may be needed anyway to
execute such untrustworthy code, even if it is not malicious. The
OSGi platform presents such a scenario where components can be
installed, started, stopped, updated or uninstalled during
application execution. In this paper we describe how we
introduced dependability and monitoring as crosscutting concerns
in the OSGi platform for improving applications resistance to
such risks. These concerns crosscut different software layers
which are well defined in the OSGi specification but scattered
over different places in the OSGi API. We also created a level of
indirection by representing software layers as aspects, enhancing
the API’s modularity as well as reuse by avoiding redundant
pointcut definitions. The dependability aspects helped us
validating the layer aspect abstraction reuse. Since the aspects
targeted the OSGi API, it was possible to weave our solution into
distinct versions of three different OSGi implementations, namely
Apache Felix, Equinox and Knopflerfish. We validate our
approach on all of the woven platforms in a simulation of an
RFID and sensor-based application that uses untrustworthy
components.

Categories and Subject Descriptors

D.1.m [Software]: Programming techniques – miscellaneous

General Terms

Reliability, Experimentation

1. INTRODUCTION
The ability to dynamically load components during application
execution in platforms such as Java and .NET introduces a lot of
flexibility gained with late binding but at the same time, it may
introduce potential risks for applications. Testing becomes
difficult if the runtime deployed assemblies are not known in
advance. Performing tests against all sets of possible components

from which the application may be composed is a hard task that is
not cost effective. Dynamically loaded code —even if it is not
intentionally malicious— that is not known in advance may
introduce risks to applications since the behavior of such code in
the application has not been previously tested. Java and .NET
platforms run managed and type safe code, having features such
as bounds checking and garbage collection (preventing errors
such as buffer overflows and memory leaks, respectively). It
minimizes a range of errors, but applications and components are
not free from naïve programming errors that under certain
circumstances could lead to problems like excessive memory or
CPU consumption. Also, the need to load native libraries into
such managed environments opens breaches that can lead to
application crashes in case of severe errors caused by the
underlying native library. Centralized component-based
frameworks do not provide isolation boundaries that ensure fault
containment, rendering an application vulnerable to such threats,
which are not necessarily malicious. Besides such boundaries,
purging a misbehaving component and restarting it without
stopping the application is an interesting feature to have.

The possibility of dynamically loading components at runtime can
be found, for example, in DynamicTAO [25], targeting CORBA,
as well as in SOFA/DCUP [34] and OSGi [31][30], for the Java
platform. Our study focuses on OSGi, which is currently seen by
industry as a de facto standard for constructing modular and
dynamic Java applications. In OSGi, components can be
dynamically installed, started, stopped, updated and uninstalled
during application execution, but since all objects share the same
memory space, a crash or malfunction in a component may affect
the whole application. In previous work [14], we have developed
a self-healing sandbox for hosting third-party OSGi components
in order to enhance applications dependability. In our solution we
allow the transparent deployment of components into an isolated
sandbox, based on isolation policies dynamically checked against
components (e.g., components provided by an unknown vendor
should be placed in the sandbox). OSGi components communicate
via service objects, and our sandbox mechanism still allows the
components in the main application to communicate with isolated
sandboxed components (and vice-versa) by using dynamic proxies
that seamlessly utilize inter-process communication (IPC).

Our solution was initially coded as a set of patches to Apache
Felix1 version 1.4, which is an open source implementation of the
OSGi specification. Attempts to port that solution to a more recent
version of Apache Felix would require manual work of copying

1 Apache Felix. http://felix.apache.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03...$10.00.

and pasting the patches that are scattered across different classes.
Migrating to another OSGi implementation (e.g., Eclipse
Equinox2, Knopflerfish3) requires a deep analysis of the target
implementation source code and migration of the patches. To ease
the burden of applying such patches manually, we have extracted
and refactored them into aspects, which was a good choice for
modularizing the dependability crosscutting concerns. This
refactoring approach enables better code evolution and can also
be found in other domains such as software product lines [2]. In
our case, it allows us to easily apply the extracted crosscutting
concerns over two dimensions: 1) across different versions of a
given OSGi implementation, and 2) across different OSGi
implementations (i.e., different vendors), thus enhancing the
maintainability of our solution and its applicability.

We have identified the points of interest of the OSGi API where
our dependability aspects should be applied. The API is
standardized and the common point to all implementations,
therefore the aspects targeting the API are applicable to any of the
implementations. However, during our work we have noted that
useful concepts described in the OSGi specification are not well
represented in its API, making it difficult to distinguish abstract
concepts in the specification from their counterparts in the API.
For instance, the software layers specified by OSGi are scattered
over different interfaces, which accumulate roles from different
layers. There are no single entities to describe individual layers
neither there is a single access point for accessing the services of
each layer. Software layers are abstractions to enhance modular
design. Therefore, if such layer concept is lost when a
specification is translated into an API, we lose modularity as well.

Providing reusable abstractions for these concepts improves
modularity and allows better comprehension of the API from an
architectural point of view. We have analyzed the OSGi API and
used aspects to reify these abstract software layers, distributing the
resulting code in the form of an aspects library. Layers can be
crosscut by different concerns which are aspects of more specific
purpose (e.g. logging, dependability). In this case, instead of
applying the specific aspects directly to the OSGi API, we add
another level of indirection through layers that are “aspectized”.
The specific aspects can reuse the pointcut definitions of these
layer aspects, giving us two advantages: better readability with a
clear understanding of which layers are crosscut by which aspects;
and reuse of pointcut definitions, which need be define only once
in the layer aspect thus avoiding redundancy. We demonstrate
such reuse by refactoring our OSGi dependability patches as
aspects that reuse these new layer abstractions. Although we
concentrate on dependability aspects this approach could use the
same strategy for introducing any aspect addressing the OSGi
framework by means of the layer aspects.

To the best of our knowledge no previous studies have refactored
software layers as aspects or addressed dependability as aspects in
the context of dynamic component platforms. The main
contribution of this paper lies on the usage of aspects for
disentangling software layers from an API, representing them as
aspects and allowing their pointcuts to be reused by other aspects
that provide more specific crosscutting concerns, like logging or

2 Eclipse Equinox. http://eclipse.org/equinox/
3 Knopflerfish OSGi. http://www.knopflerfish.org

dependability, improving modularity for better abstractions and
reuse. A secondary contribution of this paper is the usage of
aspects for enhancing dependability in the OSGi platform. This is
demonstrated by providing dependability aspects constructed on
top of this newly introduced abstraction of layers. Although the
solution is specific to the OSGi platform, our approach is useful in
any application framework that has similar conceptual gaps
between specification and implementation.

The remainder of the paper is organized as follows: section 2
gives background and motivations, followed by the abstractions of
OSGi layers in section 3. Implementations of the dependability
aspects on top of the layer aspects are explained in section 4 and
the validation described and discussed in section 5. Section 6
comments on related work followed by conclusions and
perspectives in section 7.

2. BACKGROUND AND MOTIVATIONS
The next subsections provide a brief overview on the OSGi
Service platform and the issues, especially those resulted from
component dynamism, that motivate us to introduce dependability
cross-cutting concerns in that platform.

2.1 OSGi
The OSGi Service Platform targets the construction of dynamic
and modular Java applications, allowing strong decoupling
between components in a service-oriented fashion. The OSGi
specification defines a framework that allows the dynamic
deployment and undeployment of components and services. It
leverages Java’s dynamic class loading feature for enhancing
modularization and also introduces a runtime where software
components can be installed, started, stopped, updated or
uninstalled without halting the application.

The deployment unit in OSGi is called bundle, which is an
ordinary compressed jar file containing classes, resources and an
extended manifest file. This manifest contains OSGi specific
attributes providing metadata about the bundle dependencies (e.g.,
a list of imported and exported class packages). A bundle can be
dynamically loaded or unloaded on the OSGi framework and can
optionally provide or consume services, which are ordinary Java
objects. Services need to be registered in the OSGi service registry
as providers of the specified interfaces. Service-oriented
principles provide strong decoupling between components in
OSGi. As described in [33], in a basic Service-Oriented
Architecture (SOA) there are three types of participants: service
provider, service discovery agency and the service requestor (i.e. a
client). Their interactions involve publish, find and bind
operations. In the case of the OSGi framework, those participants
take the form of a bundle that provides a service, the OSGi service
registry and a bundle that requests a service, respectively. The
interactions are centered on the service registry which notifies
interested parties about service publications or withdrawals.

The dynamic composition mechanisms rely on a service-oriented
composition approach. Different service-based component models
have been constructed on top of the OSGi service registry helping
manage the complexity and minimize the burden of service
registration and unregistration that govern the service
dependencies and bindings. However, such models are not enough
for guaranteeing the mishandling of references. Stale references
[12] are a typical problem in OSGi applications when the

dynamicity of bundle substitution or uninstallation is mishandled.
It is characterized by references to services that should no longer
be available (i.e., they are unregistered), and generally by objects
provided by the classloader of a bundle that has been stopped or
uninstalled still being referenced. The usage of unregistered
services may introduce silent faults in the application (e.g.,
inconsistent cached data from a stale service) that are hard to find
and may propagate throughout the system.

The functionality provided by the OSGi framework is divided in
different layers as illustrated by the gray boxes in Figure 1, which
is based on a picture from the OSGi specification [32]. The
module layer provides rules for sharing packages between
bundles; the lifecycle layer provides a runtime model for bundles;
the service layer specifies the programming model that ensures
loose decoupling between bundles; and the bundles layer are the
actual OSGi components to be deployed on the framework. The
security layer is based on Java mechanisms with some extensions,
but it is an optional layer in OSGi.

Hardware/OS

Execution Environment

Module

S
e

c
u

ri
tyLife Cycle

Service
Bundles

Figure 1. OSGi layers detailed in gray.

2.2 Issues with Third-Party Code Execution
The dynamic replacement of bundles in OSGi is not always
effective since the correct removal of a bundle (e.g., uninstall)
requires the dereferencing of its objects and types from other
bundles, which is not ensured by the framework but is based on
good programming practices. For instance, if the framework is
told to update a bundle, it will roughly: send a stop notification to
BundleListeners, stop the bundle’s execution (i.e., call its
BundleActivator stop method), reload the bundle, send a start
notification to BundleListeners, and then start the new bundle
version. There is no command or method for actually purging a
component from memory. In order to clear a bundle’s set of
objects, classes and its classloader from memory, good practices
call for the following: the stopping bundle must terminate its
spawned threads, it must remove objects from registries external
to OSGi (e.g., removing a JMX4 MBean from an MBeanserver),
consumers of the bundle’s services must release references to the
servant objects from that bundle. Such component removal
limitations occur, in part, due to the fact that the only isolation
provided to objects is that of namespace, which is done using
individual per-bundle classloaders.

This limitation in isolation also has consequences when a
component crashes the application (e.g., due to an unstable native
driver). In fact, these risks are common to most centralized
component-based applications where all objects share the same
memory space. Problems may include mishandling dynamicity
(e.g., stale references), excessive resource consumption, among

4 Java Management Extensions - http://java.sun.com/jmx

others reasons that may halt or significantly degrade an
application. Importing or wrapping native libraries (e.g., a device
driver) also increases the risk of an application crash, since they
are unmanaged code.

3. MAPPING LAYERS TO ASPECTS
Layers [3] are a widely used architectural pattern for grouping
different levels of abstraction in a system. In layered architectures,
it is a good practice to design a flat interface that offers all
services from a given layer. If we consider a purist layer design, a
layer of a system should only communicate with its adjacent
layers, via such flat interfaces. A relaxed layered system, also
mentioned in [3], is less restrictive in the sense that a layer may
directly use all layers below it, which is the case in the OSGi
platform where the bundles layer freely accesses the other three
layers, as illustrated in Figure 1. But in practice such access in
OSGi is not done through a single interface per layer. Actually,
there is no such flat interface for explicitly representing layers in
OSGi’s API. The functionality of each layer is scattered over
different interfaces which may accumulate roles from other layers.

To illustrate this, we analyze how the bundle layer accesses the
other layers. The BundleContext interface has responsibilities in
the service and lifecycle layers. The OSGi API centralizes
operations in the BundleContext, where we find different layers
entangled and several non-related responsibilities. The
BundleContext is an interface that works as a sort of Façade that
exposes varied framework functionality to a bundle. Through its
BundleContext instance, a bundle directly accesses operations of
the service layer and part of the lifecycle layer. A bundle is
represented by an instance of the Bundle interface, which provides
lifecycle transitions (not all of them) and gives access to other two
layers: service and module layers. An important principle
described in [3] says that layers should be separated from each
other, having no component spread over more than one layer.
However, in OSGi a bundle has different points of access to each
layer, and each point of access does not work in a per-layer basis
since they are entangled with code from different layers.

We use aspects to create a flat interface vision for each layer,
making explicit a sort of central weaving point of access to the
services of a given layer. These layering abstractions are
fundamental for adding crosscutting concerns in a more structured
way, providing a clear architectural vision of the layers affected
by a crosscutting concern that reuses such abstractions. Another
advantage of this approach is that the pointcuts that define the
layers can be reused. For example, if two different aspects need to
intercept lifecycle transitions the pointcut definitions need not be
repeated. If a developer needs to think in terms of OSGi layers for
applying aspects (e.g., service layer monitoring), the task becomes
easier by using our approach. The principles documented here
serve as a contribution to others needing this form of abstraction
for adding crosscutting concerns to application frameworks, like
the OSGi framework, in the same structured way as we did.

In OSGi, our approach focuses on code that lies in-between the
interaction of the bundle layer (the components deployed at
runtime) with the lower layers. The aspects would use the OSGi
framework as the point of interception. Code that concerns the
internals of bundles implementation does not interest us.
Therefore, pointcuts are defined using join points of the OSGi
API. For that reason we weave only the framework and not the
OSGi bundles.

We have left the security layer out of our scope since it is an
optional layer according OSGi’s specification. Besides clearly
crosscutting all layers, as illustrated in Figure 1, the join points
related to security are easily identifiable in the OSGi specification,
which details all methods and corresponding interfaces that need
to perform security verifications in each of the layers. In addition,
existing work [38] already has contributions handling security as
aspects in OSGi.

The next subsections detail the layer aspects, followed by a
discussion on their reusability. We kept the pointcuts of the layer
aspects as simple as possible, defining kinded pointcuts (in our
case, execution and call) using join points in methods and
constructors. Refinements of such pointcuts such as the
combination with non-kinded pointcuts (e.g., control flow) were
left to the specific aspects definitions that reuse the layer aspects.

3.1 Lifecycle Aspect
The methods and transitions that concern bundle lifecycle are
scattered across four interfaces (Bundle, BundleContext,
BundleActivator, PackageAdmin) that already have roles other
than lifecycle management. Figure 2 shows the states and their
respective transitions concerning a bundle’s lifecycle in OSGi.
The install state transition is actually fired in the BundleContext
(BC in the figure) interface. The resolve transition is defined in
the PackageAdmin (PA) service interface, while the update and
uninstall can be found in the Bundle (B) interface. The refresh
transition is part of the package admin, which is not part of the
core API but rather declared in the PackageAdmin (PA). The start
and stop transitions are both located in the Bundle and
BundleActivator (BA) interfaces. In case of a Bundle having a
BundleActivator, those calls are delegated to the activator. In the
LifeCycle aspect we have rather called it as activation and
deactivation, respectively.

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

install

update
refresh

stop

startre
s
o
lv

e

re
fr

e
s
h

u
p

d
a
te

u
n
in

s
ta

llu
n
in

s
ta

ll

B

PA

BA

BC

B

B

BA

B

PA

PA

B

B

Figure 2. OSGi bundle lifecycle state transitions scattered over

several interfaces: BundleContext (BC), Bundle (B),

BundleActivator (BA), PackageAdmin (PA).

Figure 3 shows the LifeCycle aspect containing the corresponding
pointcuts. Most of the pointcuts have used join point definitions
that concerned interfaces whose implementations are provided by
any OSGi framework. Only the activate and deactivate pointcuts,
respectively, have been defined using call join points. This
happens due to the fact that an OSGi framework implementation
itself does not provide implementors of the BundleActivator
interface. BundleActivators are rather provided by bundles that

will be loaded by the framework. Calls to start and stop lifecycle
transitions are done toward the framework, which performs its
work and then delegates the calls to the start and stop methods of
the BundleActivator from the corresponding bundle. Because we
weave only the framework, not applying aspects to a bundle’s
code, we cannot apply execution join points in such transition.
Instead, we use a call join point on the OSGi framework side.

Figure 3. Aspect defining bundle lifecycle pointcuts.

3.2 Service Layer Aspect
According to its specification, the service model in OSGi is based
on a publish, find and bind model. All of these operations are
centered around the service registry, which actually does not have
a standard class or interface representing it in the API. The
methods that give access to the service registry can be found
scattered in different interfaces. In addition, implementations of a
service registry may be completely different from one OSGi
implementation to another. We reified the service registry as the
aspect that represents the OSGi service layer, since we are mostly
interested in the methods that concern the three operations of the
OSGi’s service model. The pointcuts that group the join points
giving access to the service layer were grouped in the
ServiceRegistry aspect, which is detailed in Figure 4.

Most of the pointcuts were defined using execution join points.
However, similar to the join points used in the activate and
deactivate pointcuts of the lifecycle layer, the join points
concerning the ServiceFactory were declared as call join points
since a ServiceFactory is an interface whose implementations are
provided by bundles that are dynamically deployed instead of
being provided by OSGi implementations. As a practical example

public aspect LifeCycle {

 pointcut install():

 execution(Bundle

BundleContext+.installBundle(String,..));

 pointcut stop():

 execution(void Bundle+.stop(..));

 pointcut start():

 execution(void Bundle+.start(..));

 pointcut uninstall():

 execution(void Bundle+.uninstall());

 pointcut update():

 execution(void Bundle+.update(..));

 pointcut resolve():

 execution(boolean

 PackageAdmin+.resolveBundles(Bundle[]));

 pointcut refresh():

 execution(void

 PackageAdmin+.refreshPackages(Bundle[]));

 pointcut activate():

 call(void

 BundleActivator+.start(BundleContext));

 pointcut deactivate():

 call(void

 BundleActivator+.stop(BundleContext));

}

for using the service layer aspect, we could implement a service
interception mechanism more powerful than the standard service
hooks provided by the OSGi framework, which are very limited.

Figure 4. Aspect that abstracts the service layer.

3.3 Module Layer Aspect
Although scattered in different interfaces that accumulate roles
from different layers, the functionality of both service and
lifecycle layers can be well identified in the OSGi API. However,
we cannot say the same concerning the module layer. All the
classloading and package visibility requirements are well defined
in the OSGi core specification, but they are not explicit in the
API. Also, most of the runtime behavior concerns implementation
specific code, which may differ from one implementation to
another. For example, the classloading mechanism of the Module

Loader [18], used in both Oscar5 and Felix OSGi
implementations, differs from those of Equinox and Knopflerfish,
but they must all comply with the OSGi specification.

One of the few methods of the module layer that are explicit in the
API can be found in the Bundle.loadClass method. However,
typical code does not necessarily use that method explicitly. It
rather relies on Java’s transparent classloading mechanism (e.g.,
automatically performed when instantiating a class for the first
time). We have only defined three classloading related pointcuts,
as detailed in Figure 5. Given that a bundle is the unit of
modularization in OSGi, we also have included a pointcut that
uses a join point for bundle construction.

Figure 5. Module layer abstraction.

The OSGi Package admin service stores metadata concerning
packages and their bundle dependencies, which are related to the
module layer. The module layer aspect is useful, for example, for
tracking bundle creation or as an alternative mechanism for
intercepting class loading for performing custom bytecode
manipulations on classes known only at runtime (the typical case
in a dynamic platform such as OSGi). Other less intrusive usages
could be fine grained tracing of the classloading process (an
alternative to the general command line –verbose:class

option); tracking the creation of new classloaders provided to
bundles; and so forth.

3.4 Reusable pointcuts
Hanenberg et al. propose the separate pointcut [20] aspect-
oriented refactoring for avoiding redundant anonymous pointcut
declarations. Indeed, separate pointcut declarations are a good
practice for reusability. The typical solution proposed in [19] is to
inherit from an abstract aspect and to provide the advice code
referring to the inherited pointcuts. However, we have chosen to
use the design principle of favoring composition instead of
inheritance, taken from object-oriented design [15]. This choice
was mainly due to inheritance limitations in AspectJ. Instead of
creating an abstract aspect to be extended so it can be reused, we
rather defined the pointcuts in reusable library aspects that map
the points of interest of each of the corresponding target OSGi
layers (i.e. Lifecycle, Service and Module layers), reusing them in
the advices of our aspects, as illustrated in Figure 6.

5 Oscar OSGi framework. http://oscar.ow2.org

public aspect ServiceRegistry {

 pointcut registration():

 execution(ServiceRegistration

 BundleContext+.registerService(..));

 pointcut unregistration():

 execution(void

 ServiceRegistration+.unregister());

 pointcut retrieval():

 execution(Object

 BundleContext+.getService(

 ServiceReference))

 || call(Object

 ServiceFactory+.getService(Bundle,

 ServiceRegistration));

 pointcut release():

 execution(boolean

BundleContext+.ungetService(ServiceReference))

 || call(void

 ServiceFactory+.ungetService(Bundle,

 ServiceRegistration,

 Object));

 pointcut referenceQuery():

 execution(ServiceReference[]

BundleContext+.getAllServiceReferences(..))

 || execution(ServiceReference

 BundleContext+.getServiceReference*(..));

 pointcut bundleServices():

 execution(ServiceReference[]

 Bundle+.getRegisteredServices());

 pointcut usageQuery():

 execution(ServiceReference[]

 Bundle+.getServicesInUse());

 pointcut addListener():

 execution(void

 BundleContext+.addServiceListener(

 ServiceListener));

 pointcut removeListener():

 execution(void

 BundleContext+.removeServiceListener(

 ServiceListener));

}

public aspect ModuleLayer {

 pointcut bundleInstantiation():

 execution(Bundle+.new(..));

 pointcut classLoaderInstantiation():

 execution(ClassLoader+.new(..));

 pointcut getResource():

 execution(* Bundle+.getResource*(String));

 pointcut loadClass():

 execution(Class

 Bundle+.loadClass(String))

 || execution(Class

 ClassLoader+.loadClass(String));

}

If we analyze the semantics of an is-a relationship – which
legitimates inheritance – between one concrete aspect and the
library aspect that represents a layer, we do not have a 1 to 1
cardinality, which would justify single inheritance in most of the
cases. We rather have a concrete aspect that may crosscut multiple
layers. As some concrete aspects may crosscut layers and layers
have been abstracted as aspects, a concrete aspect may need to use
code – in this case, pointcuts– inherited from different layers. In
an illustrative example we can consider that a given concrete
aspect (e.g., service monitoring) may affect two layers, (e.g.,
module and service layers) which are represented as aspects as
well. In cases like this we could see the single inheritance
provided by AspectJ as a limitation, since we can only inherit
from one aspect at a time. If AspectJ provided multiple
inheritance it could be solved in a straightforward manner.
However, by using composition we could easily workaround this
issue, thus making possible to create aspects reusing pointcuts
from different origins (i.e., the layer aspects).

Figure 6. Diagram illustrating the weaver inputs and how the

aspects are applied to different OSGi implementations.

As shown in Figure 6, the aspects target the OSGi API without
direct dependencies on any of the OSGi implementations
(Knopflerfish, Apache Felix, Equinox). The specific aspects are
the concrete aspects where we would implement the advices to the
selected layer pointcuts, thus reusing their definition. The weaver
would take any OSGi implementation as an input together with
the layer aspects (used as library aspects) and the specific aspects
(which reference the layer aspects), weaving them both into the
OSGi implementation. The resulting woven OSGi
implementations contain the code that handles the specific aspects
that have been developed targeting the layers and the OSGi API.

4. DEPENDABILITY ASPECTS
The layer aspects described so far do not provide advices. This
section is a showcase for illustrating the reuse of such abstractions
in the creation of specific aspects that are concerned with
dependability and monitoring. In our precedent work [14] we
patch the OSGi framework in order to increase dependability by

reducing the risk of problems previously mentioned. This is done
by transparently providing infrastructure that would (a) deploy
and execute untrustworthy third-party code in a fault contained
environment, and (b) enable the automatic recovery of
applications in case of faults or failures. We use a sandbox
approach for introducing fault contained boundaries that prevent a
component hosted in the sandbox from crashing or interfering the
execution of the main application. If sandbox hosted code
mishandles OSGi dynamicity we are able to purge the sandbox
from memory by performing a full sandbox reset without needing
to stop the main application. The recovery approach is based on a
combination of techniques taken from autonomic computing [23]
and recovery-oriented programming. The former strategy is the
basis for introducing a self-healing approach (automatic detection
diagnosis and repair of problems) to the sandbox, where
components may present unstable behavior. The latter is realized
by means of microreboots [4], which propose the individual
reboot of fine-grained components. Microreboots achieve similar
benefits to an application restart with less cost and without losing
application availability. The repair strategy performs microreboots
in two levels: components and sandbox (as a last resort).

The code in our precedent solution was manually introduced as a
patch on the implementation of Apache Felix v.1.4.0. We
refactored these cross-cutting concerns into fine grained aspects,
reusing our layer aspects abstraction. Figure 7 illustrates the reuse
of the layer aspects in the creation of specific aspects concerned
with dependability and monitoring. The layers avoided redundant
pointcut definitions and allowed to explicitly identify which layers
were being affected by an aspect. For example, the use stereotype
clearly shows which aspects crosscut which layers. All of the
instances of the dependability aspects did not need to have any
particular association with classes, objects or control flow.
Therefore, they have been implemented with the default
issingleton() association.

We implemented two groups of cross-cutting concerns: isolation
and monitoring. The isolation mechanisms help enforcing
dependability towards the problems we try to address, while
monitoring gives application information that we can analyze for
either automatic or manual decisions on autonomic management
helping on the detection and prevention of faulty behaviour.

Figure 7. Layers (left side) abstracted as aspects whose

pointcuts are reused by the dependability aspects (right side).

4.1 Isolation
By isolation we mean establishing boundaries that isolate one
object from another, eliminating direct binding when it may bring
risks such as using bindings to/from objects of a third-party
component which is not known in advance, or which has not been
exhaustively tested with the current set of components in a
running application. We implemented two isolation levels:
services and components. The first one is performed within the
same application boundary (e.g., process, domain) and does not
provide fault containment. It introduces proxies for isolating
service consumer from service provider, ensuring that references
to the servant object are not retained after it is unregistered. The
second level concerns a sandboxing approach that hosts
components in a fault contained boundary that can be fully
restarted without interfering with the execution of the main
application. Both of the isolation levels are resolved dynamically
at runtime upon service retrieval or component start up. The
decision is taken based on the analysis of a policy file that is
defined using a domain-specific language that we have created for
indicating services to be isolated (e.g., implements

Foo.BarService) as well as components (e.g., providedby

ComponentVendorA). The next subsections detail how the

isolation strategies have been modularized as aspects. Due to
space limitations, code snippets have been simplified for
illustrative purposes.

4.1.1 Component Isolation Aspect
The sandboxing approach for isolating components has two
techniques for isolation: domain based and operating-system
based (i.e. process-based) which we compare against each other in
our precedent work [14]. Both of these approaches provide fault
contained entities –Java Isolates6 and JVM process, respectively –
with strong isolation boundaries, therefore implying in IPC
mechanisms for communicating across such boundaries. The
architecture of the sandboxing solution, detailed in previous work
[12], takes the form of two OSGi platforms: a main OSGi
platform where the trusted components execute, and a sandboxed
OSGi where untrusted components are deployed and run, based
on an isolation policy.

The component isolation aspect crosscuts the different lifecycle
transitions, and also the service registry for allowing services
running in one isolated platform to be used in the other, across the
isolation boundary. All of these adaptations are encapsulated in
aspects that target the OSGi platform. The dynamically deployed
components are not changed; therefore, from the components
perspective, our approach provides seamless component isolation
and communication. The communication between the two isolated
OSGi framework instances (main platform and sandbox platform)
is done through a class that acts as a transparent proxy to the
isolated platform, allowing for instance one isolated OSGi
platform (e.g. the main platform) to retrieve services located in the
other isolated OSGi platform (e.g. the sandbox) via IPC. For
example, when a component is installed in the main (trusted)
platform the ComponentIsolation aspect installs it in the sandbox.
At component startup, the corresponding advice verifies the
policy and if necessary starts the component in the sandbox, as
shown in the first advice described in Figure 8.

6 Java Isolation API. http://jcp.org/en/jsr/detail?id=121

We also had to avoid reentrant calls on the advices of some
pointcuts. For instance, the implementations of Bundle.start()
typically call Bundle.start(int), caught by the same pointcut. We
simply added a cflowbelow construct, as described in that advice.
Local queries to the service registry that bring no match are re-
routed to the isolated platform. If a match is then found, the aspect
would return an IsolatedServiceReference. Retrieval of service
objects using such references generate a proxy that transparently
handles the communication between the two platforms, as
depicted in the second advice of Figure 8. Every component
isolation patch we made in the Felix implementation could be
easily migrated to the ComponentIsolation aspect, except for one.
The notification of service events from one platform to the other
was implemented directly in the EventDispatcher class, which is
specific to Felix. In this case we had to adapt a dispatcher that was
registered as a ServiceListener in OSGi and was responsible for
filtering and propagation of service events to the other platform.
Listener registration is done on the initialization of the isolation
library, done via a ModuleLayer.bundleInstantiation pointcut.

Figure 8. Advices reusing pointcuts of different layer aspects.

4.1.2 Service Isolation Aspect
This aspect is responsible for replacing service objects by service
proxies (when the isolation policy applies) that delegate the calls
to the wrapped service object. By using this approach we can
enforce that an untrustworthy service consumer does not directly
reference service objects. It avoids cases of stale references to
services that have already been unregistered (e.g. its bundle has
been stopped). With this strategy, we can guarantee that service
consumers will not prevent the garbage collection of unregistered
services. In addition, the proxies are programmed to throw
exceptions in cases of method calls when the underlying service
object is unregistered. Figure 9 depicts the process of wrapping
the service object in a proxy upon service retrieval.

public aspect ComponentIsolation {

...

void around(Bundle b): LifeCycle.start()

 && !cflowbelow(LifeCycle.start())&& this(b){

 if (!PlatformProxy.isSandbox() &&

 PolicyChecker.checkIsolation(b)){

 PlatformProxy.start(b.getBundleId());

 } else {

 proceed();

 }

 }

 Object around(ServiceReference ref):

 ServiceRegistry.retrieval() && args(ref) {

 Object service = null;

 if (ref instanceof IsolatedServiceReference) {

 Bundle b = ref.getBundle();

 service = getIsolatedProxyService(b, ref);

 } else {

 service = proceed(ref);

 }

 return service;

 }

...

}

Figure 9. Main advice of the ServiceIsolation aspect.

4.2 Monitoring
The other category of aspects that we have developed concerns
monitoring. Although they do not enhance dependability by
themselves, they help gathering information used for detecting as
well as predicting faulty behaviour.

4.2.1 Stale Services Monitoring Aspect
We had previously used Aspect-oriented Programming (AOP) for
monitoring in the ServiceCoroner tool [11] but in a less structured
manner. That solution has been refactored and integrated to the
OSGi dependability enhancements described here. We track
service instances using Java weak references, in order to know if
unregistered services are still referenced by other objects (when a
weak reference returns null it means that the object it pointed to

has been garbage collected). Classes or interfaces, both
represented by java.lang.Class instances, that are no longer
reachable can be reclaimed (when no instances of such classes are
being referenced) and like so their classloader [16], as long as the
classloader is no longer reachable and all of its loaded classes are
no longer being used. We also track classloader instances with
weak references, identifying which classloader objects still hang
in memory after OSGi bundle updates. Our experiments show that
when the objects and types of a given bundle are no longer
referenced, the bundle classloader is garbage collected. The
effectiveness of our approach using weak references has been
detailed in the experiments presented in [11]. Figure 10 shows a
simplified example of the aspect that forwards the service instance
tracking to the ServiceCoroner API.

Figure 10. Aspect for monitoring services garbage collection.

If both component isolation and service monitoring aspects are
used together, we must explicitly define the order of precedence
so we can be sure that the service monitoring will track always the
actual servant object instead of tracking a proxy to a service.

4.2.2 Autonomic Management Aspect
The self-healing capability of the sandbox is achieved via
autonomic management which is actually provided by an external
application that provides a control loop. It collects information
from the sandbox via monitoring probes, analyzes the data and
takes appropriate action (e.g., stopping a bundle, rebooting the
sandbox) through effector probes implemented as Java MBean.
The insertion of such probes is done by the sandbox monitoring
aspect on the creation of the first bundle through the module
layer, as depicted in the simplified example of Figure 11.

The service layer is also used by this aspect, but in quite a similar
way to the approach from section 4.1.2, based on proxies. The
proxy enables, for instance, calculating service usage. A particular
difference on this aspect is that it also weaves our own classes in
order to monitor the interactions with the isolated platform via
their proxies. The probe information also depends on our
ServiceCoroner API (fed by the service monitoring previously
describe), in order to take action against stale services. The fault
prediction mechanisms are available for a set of patterns of errors:
CPU hogging, stale service, excessive memory allocation;
excessive thread instantiation; excessive invocation of services
(Denial of Service); stale reference retention. The detection and
handling of such faults was provided as customizable scripts that
are loaded and executed by the sandbox autonomic manager.

Figure 11. Creation of the sandbox monitoring probe aspect.

5. VALIDATION
Since we have not found similar solutions for isolation and
monitoring in OSGi applications we could not compare our
implementation against other approaches. This section explains
the validation steps —weaving both layer and dependability
aspects into different OSGi implementations; and validating the
effectiveness of the dependability aspects in a test application—
followed by limitations and benefits of our approach.

5.1 Weaving different OSGi implementations
We have successfully woven and tested different versions of three
OSGi implementations (Apache Felix, Equinox, Knopflerfish)
that are widely used in software industry. The weaving of layers
and aspects happened with no problems, and the dependability
aspects correctly worked, as detailed further. As part of our
evaluation, we extracted some metrics (Table 1) concerning the
layer abstraction through aspects, for each tested implementation.
We verified how many join point shadows have been found in the
classes affected by each of the layer aspects from section 3, so we

public aspect ServiceMonitoring {

...

 Object around(ServiceReference ref):

 ServiceRegistry.retrieval() && args(ref) {

 Object result = proceed();

 ServiceCoroner coroner =

 ServiceCoroner.getInstance();

 coroner.trackService(ref, result);

 return result;

 }

...

}

public aspect SandboxMonitoring {

...

 void around(Bundle bundle) :

ModuleLayer.bundleInstantiation()&& this(bundle){

 if (bundle.getBundleId() == 0) {

 ObjectName name = new

 ObjectName("fr.imag.adele:type=Touchpoint");

 Touchpoint mbean=new Touchpoint();

 mbean.setSystemBundle(bundle);

ManagementFactory.getPlatformMBeanServer().regist

erMBean(mbean, name);

 }

}

...

}

public aspect ServiceIsolation {

...

 Object around(ServiceReference ref):

 ServiceRegistry.retrieval() && args(ref){

 Object s = proceed(ref);

 if (!PlatformProxy.isSandbox()

 && PolicyChecker.checkIsolation(s)) {

 s = ProxyServiceStore.getProxy(s,ref);

 }

 return s;

 }

...

}

could have a perspective of the scattering phenomena in the
analyzed OSGi implementations. Although the number of affected
classes may seem small, we want to illustrate that there is no
single point of access for layers. We also show that the layer
concepts are lost in the API, since the classes that contain the join
point shadows have other responsibilities than exposing layer
services. Likewise, we find classes whose responsibilities overlap
different layers. We collect such scattered concepts, and expose as
an entity that contains the entry points to a given layer. Another
observation that can be made is that Felix and Knopflerfish join
point shadows remain stable across different versions, while
Equinox shows a significant increase from one version to another.

Concerning woven OSGi frameworks execution, two adjustments
had to be done. First, to avoid issues with type visibility in OSGi,
we embedded the AspectJ runtime classes in each one of the
woven OSGi implementations. The second issue concerned the
Equinox OSGi framework jar file which stores in its manifest an
SHA1-Digest for each class present in the jar. After the weaving
process, the woven classes had their hashes no longer valid and
we had security verification errors at OSGi startup. The
workaround was to remove such information from the framework
bundle manifest file so it could be started up. However, the fact of
having the OSGi framework bundle without SHA1 hashes does
not influence in the verification process of any other loaded
bundles that contains SHA1 hash information. It only means that
the framework will not perform that verification against itself at
startup, but other bundles will be verified. To illustrate that, the
other two implementations (Felix and Knopflerfish) do not
provide SHA1 hashes in their manifests but they are able to verify
digitally signed jars that are loaded by the framework.

Table 1. Layer scattering over OSGi API: total join point

shadows (JPS), affected classes (C) and packages (P).

JPS C P JPS C P JPS C P

Felix 1.4 22 5 2 15 4 1 10 4 2

Felix 2.0.4 22 5 2 14 3 1 7 3 1

Felix 3.0.3 22 5 2 14 3 1 8 3 1

Knopflerfish 2.3.1 17 4 1 15 6 1 7 3 1

Knopflerfish 3.0 18 5 2 18 7 2 12 5 2

Equinox 3.4 18 4 1 16 5 1 17 9 5

Equinox 3.6.1 38 9 4 20 9 4 33 16 9

Lifecycle Service Module

5.2 Effectiveness of the Dependability Aspects
We have validated the aspects in a simulation of an RFID and
sensor-based application, also used in [14]. The application
consisted of an OSGi application that simulates the collection of
RFID and sensor data with a total of 14 bundles. Sensors and
RFID reader simulator components were hosted in the sandbox.
One the motivating scenarios concerns applications that collect
RFID and sensor data. The application illustrates a scenario where
we typically use native drivers wrapped in Java components to
access physical devices. Devices may be plugged and detected at
runtime, as are their respective drivers. The interaction between
the application components that consume data provided by the
untrustworthy code is done through OSGi’s service layer. In case

of an illegal operation or a severe fault in the native code, the
whole application is compromised. In this use case the application
must also run non-stop and be able to recover in case of such
severe faults, therefore we employ different dependability aspects
that are woven in the OSGi framework using our proposed
approach. Since it is a dynamic component-based application, we
could have three different applications (i.e. configurations)
running: an RFID-only application, a sensor-only application, and
a hybrid application where both types of devices provide data.

Different test cases were executed for verifying: policy-based
isolation of components and services; lifecycle operations on the
isolated component; calls on services from isolated platform; stale
service monitoring; sandbox monitoring. For testing the last two
we had to deploy components that caused errors during their
execution. Testing systems with faults injected in the interface
level (e.g., invalid parameters) instead of faults injected in the
component level (e.g. emulation of internal component errors)
produces different behavior [30], which does not representing
actual application usage. For that reason we have chosen to use
component fault injection that could reflect possible faults,
providing us with a realistic scenario. Therefore fault deployment
would be a more appropriate term since the faulty components are
deployed and started at runtime.

The autonomic manager works as an external application that is
not directly affected by the aspects. However, it collects data from
the sandbox through the sandbox monitoring aspect. The
autonomic manager, as expected, performed microreboots of the
sandbox in different handled cases: when it was non-responsive
(i.e. CPU hang); when it was crashed; when the monitored data
collected indicated sandbox errors such as excessive thread
instantiation, memory or CPU usage. In cases where the source
bundle could be identified (stale service usage and excessive
invocation of services), the autonomic manager performed
microreboots on the offending bundle. Such automatic decisions
are taken based on the event history of monitored data stored for
each cycle of the autonomic manager’s control loop.

5.3 Limitations
Despite the single inheritance issue on AspectJ, we have not
found any impeditive limitations concerning the usage of aspects.
Performance overheads of the aspectized version in comparison to
the patched by-hand version were not checked. However, we
believe that the impact is minimal, based on studies [21]
indicating that a woven application that captures a given
crosscutting concern with AspectJ has performance comparable to
the same implementation made by-hand.

The limitations refer to the technical solution introduced by the
dependability and monitoring aspects implementation. These
limitations are of a fundamental nature and also concerning our
current solution. For instance, trying to provide transparent IPC is
still a challenging subject in systems engineering. For that reason
we provide a restricted flavor of transparent communication where
we do not deal with object serialization, so we can avoid the
design decision of objects passed by-copy or by-ref. For such
reasons, we restrict the usage of our approach to applications that
comply with a set of assumptions [14]. In order to be sandboxed,
a component needs to have services that are stateless (to avoid
state loss in case of reboots) and that provide methods with
signatures limited to Strings, primitive types and arrays of these
two. In contrast, if a sandboxed component has services with

signatures using objects it will not work with our approach,
having runtime exceptions. Another drawback of our solution
involves sharing of security permissions between the trusted
platform and the sandbox, especially in the OS-based approach
where OSGi platforms are separate processes. As the two
platforms virtually constitute the same application, we consider
the same level of security for both of them. However since
potentially untrustworthy code can be executed, we should
consider a way of restricting permissions to the sandbox. Other
limitation of fundamental nature concerns OSGi technology itself,
which does not provide resource consumption monitoring of
individual bundles. At bundle level, we could only monitor
precisely the service layer (e.g. service invocations) by means of
our aspects for autonomic management.

5.4 Benefits
From a general perspective, we find that the strategies we have
employed are useful to whoever needs to apply crosscutting
concerns to the OSGi framework in a similar way. With the
abstraction of OSGi layers as aspects we could identify concepts
that were not clear in the OSGi API. It improved the
understanding of the API and gives a better architectural

perspective of which layers are being affected by a given
crosscutting concern. We also gained reuse of the pointcut
definitions from the layer aspects that were referenced by specific
aspects (e.g. dependability, monitoring) that crosscut such layers,
avoiding redundancy of such definitions. For different reasons, we
believe that the aspectized solution of the dependability concerns
was better than the version patched by-hand. The refactoring of
our dependability crosscutting concerns into aspects helped
improving the modularity of our solution. This explicit separation
of concerns enhanced maintainability of the dependability
concerns, facilitating their evolution with no need to manually

change the target OSGi implementations’ source code. One may
see this solution as invasive due to the changes performed in the
OSGi implementations during the weaving process; however we
gain portability across different OSGi frameworks. Also,
separating our crosscutting concerns into distinct aspects brings
flexibility, by having the possibility of combining different
aspects, providing a sort of à la carte choices. For instance, the
usage of the service layer monitoring without the isolation
features. In that case, only the desired aspect and the layer aspects
are needed to weave the target OSGi implementation.

6. RELATED WORK

6.1 Separation of Concerns and AOP in OSGi
Handling service registration/unregistration consists of repetitive
and error prone code. By using separation of concerns, different
efforts try to tackle issues originated from OSGi’s dynamism. The
Service Binder, presented in [5], keeps an engine for
automatically handling service dependencies at runtime. Later,
that research effort was enhanced and integrated to the OSGi
specification as the Declarative Services standard. iPOJO [8] is a
component model targeting the OSGi platform and, in relation to
Service Binder, takes a step further for managing the dynamicity
and other non-functional requirements in OSGi applications.
iPOJO employs strategies such as method interception and
bytecode manipulation which are both found in several AOP
frameworks. By means of handlers, iPOJO tries to provide a clean

separation of concerns keeping non-functional code (e.g., service
provisioning, dependency management) outside components.

To the best of our knowledge there were no other approaches in
literature that introduce aspects directly to the OSGi framework.
Our work focuses on transparent enhancements in OSGi
frameworks (affecting different OSGi layers) in order to enhance
dependability without needing to change the code of existing
applications. Other efforts rather try to introduce aspects as part of
OSGi bundles dynamically deployed, but that do not necessarily
crosscut all OSGi layers. For example, Phung and Sands [35] use
aspects for implementing different security policies such as
actions suppression, insertion, truncation and replacement. They
use AspectJ to weave the aspects into the bundle at
download/installation time. The weaving is performed by a trusted
control center who is asked for a given bundle.

While we have focused on introducing crosscutting concerns into
OSGi by means of aspects, Singh and Kiczales [38] have focused
on refactoring existing crosscutting concerns in the Equinox
OSGi implementation. That work was part of a refactoring of the
Eclipse IDE, which is based on OSGi. Among their significant
findings, they have treated security as a crosscutting concern.
Typical security checks in OSGi handle conditional permission
check concerning the rights of a bundle to access a given service
or to load a given class, for example. They moved to an aspect all
calls to the Security Manager (found in several methods that
required permission). Lifecycle was handled in a way different
than ours. In their case, the state transitions were identified as a
finite state machine. The code that handled state transitions was
moved to the corresponding aspect, and plugin state changes
performed outside the aspect were declared as an error. Frei and
Alonso [10] adapted an OSGi framework implementation in order
to register services for using AOP through an AOPContext object
instead of a BundleContext object. The AOP approach is based on
proxies that would allow intercepting calls before and after
method execution. The AOP library used needed some adaptation
for dealing with multiple classloaders (one per bundle in OSGi).

Lippert’s work concentrates on enabling the usage of AOP in
OSGi bundles, providing load-time weaving. His initial work [27]
on that context focused on enabling the usage of Aspect-J in the
Eclipse runtime, before OSGi was adopted for the Eclipse
platform. Right after OSGi was used as the Eclipse runtime, a new
version of that work, called AJEER (Aspect-J Enabled Eclipse
Runtime) [28], was adapted to that environment. It has evolved
into the Equinox Aspects7 project [29], where aspects can be
deployed either with the bundles that would be woven, or as
separate bundles. Following the OSGi dynamics, deploying
aspects as separate bundles would fire the update of affected
bundles, which would have their classes reloaded and woven at
load-time. It is also possible to uninstall the aspect bundles, which
results in an update of the affected bundles so the classes without
woven code can be reloaded. Although Equinox Aspects provides
a powerful mechanism, it relies on features specific to the
Equinox OSGi implementation that are not part of the OSGi
specification. Thus, this approach is not portable to other OSGi
implementations, contrasting to the portability we propose. Keuler
and Kornev [24] also use Equinox’s class loader hook mechanism
for manipulating the class loading performed in bundles. They

7 http://eclipse.org/equinox/incubator/aspects

replace the base class loader of all bundles by an intermediary
class loader that allows the aspects to be loaded. Irmert et al [22]
combine JBoss AOP with the classloading hook mechanism from
Equinox for building a mechanism that deploys aspects as OSGi
bundles. Like other approaches, the portability of both solutions is
compromised as they depend on a proprietary mechanism.

6.2 Autonomic Computing and AOP
Broadly speaking, several efforts such as [36] and [40], to cite a
few, have used AOP to address dynamic adaptation. By narrowing
down the vision to autonomic computing we can still find works
that take advantage of AOP for introducing autonomic managers
and monitoring capabilities into systems. In [7], Engel and
Freisleben see the autonomic computing principles as crosscutting
concerns. Their toolkit deploys aspects into the operating system
kernel, allowing the self-adaptation mechanisms to be based on
system operation and resource usage. They illustrate their
approach for achieving, at the kernel level, degrees of self-
optimization, self-configuration, self-healing and self-protection.

Chan and Chieu [6] mention the monitoring function of an
application as a crosscutting concern. In their work they describe
an approach for building autonomic managers in legacy systems
by using AOP techniques for weaving them. Alonso et al. [1]
present what they have called AOP-monitoring framework. In
their approach they use AOP for injecting into the system some
monitoring code, implemented as probes which will capture
resources consumed by components. A monitor manager collects
information sent by probes, and depending on the analysis of that
data it takes appropriate action based on the policies to follow.
Grenwood and Blair [17] give an example usage of AOP for
building an autonomic cache. They present aspects that monitor
requests on a server application and in case of a response time
threshold being reached the monitoring aspect dynamically
weaves the application for introducing new aspects (e.g., a
caching aspect for enhancing response time).

6.3 Generally Related Approaches
We have not found approaches targeting dependability by using
aspects for isolating components and services in dynamic
applications. Other efforts deal with dependability through AOP,
but with different strategies and focused on different objectives.
Error handling [9] [26] is one the most addressed dependability
concerns using AOP. Other approaches try to handle more general
dependability mechanisms, like Rouvoy et al [37] who use AOP
for combining dependability concerns with self-adaptive
applications. They present predefined dependability mechanisms –
like a transactional content processor, or a replicated content
repository – that are kept separate from the core application, but
that are combined with it when necessary (e.g., based on Quality
of Service dimensions). We can find other slightly similar
approaches with overlapping interests, for example, Soares et al
[39] handle distribution as aspects, which relates to our efforts for
transparent communication, but they rather rely on adding remote
interfaces via the AspectJ declare parents construct.

7. CONCLUSIONS
Executing code not previously known in advance which is
deployed at runtime may introduce potential risks to applications.
Like so, the dynamic loading and unloading of native libraries in
platforms like Java also introduces risks. We try to address such

issues in the OSGi Service Platform, which targets the
construction of dynamic modular Java applications. We propose
an approach for introducing mechanisms for enhancing
dependability in that platform. These techniques have been
implemented in previous work in a patch targeting the Apache
Felix 1.4.0 OSGi implementation, but the code introduced was
scattered over different classes. It made the solution hard to be
ported and maintained, since we would need to copy and paste
source code in the target OSGi implementation versions.

We succeeded in separating crosscutting dependability concerns
and refactoring them into aspects. During that process, we
improved the modular representation of software layers of the
OSGi platform, by abstracting them as an aspect library that
provided reusable pointcuts. By using AOP we created better
abstractions and achieved better expressiveness being able to
represent concepts that were lost when the specification was
translated into an API. We believe that such layer representation
as aspects can help other developers that try to apply aspects to
the OSGi API and may need such abstractions.

The reusable layer representation also helped to better identify
which layers were being crosscut by the dependability aspects,
whose original crosscutting concerns were broken down into more
granular aspects. The whole aspectization has lead to a cleaner
solution and also portable across different OSGi implementations.
We have successfully woven our aspects into different versions of
three OSGi implementations: Apache Felix, Equinox and
Knopflerfish. After running the test application in the different
woven OSGi frameworks, the runtime behavior of the isolation
policies worked as in the preexisting hard-coded solution. The
aspect approach brought several advantages to the OSGi
dependability enhancements we propose. We have gained easy
portability across different OSGi frameworks; better modularity
and maintainability of code, and flexibility through the possible
combination of different fine grained aspects.

We plan to evaluate the migration of certain aspects to be woven
at runtime, and compare it to the weaving of OSGi framework
implementations, since the portability of our solution across
different OSGi implementations is one of our main objectives.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions during both
submission rounds. Thanks also to Lionel Seinturier and Walter
Rudametkin for their important reviews and opinions. Part of this
work has been carried out in the scope of the ASPIRE project
(http://www.fp7-aspire.eu), co-funded by the European
Commission in the scope of the FP7 programme under contract
215417. The authors acknowledge help and contributions from all
partners of the project.

9. REFERENCES
[1] Alonso, J., Torres, J. Grith, R., Kaiser, G. and Silva, L..

Towards self-adaptable monitoring framework for self-
healing. In Proc. of the 3rd CoreGrid Workshop on
Middleware, June 2008.

[2] Alves, V., Matos, P., Cole, L., Vasconcelos, A., Borba, P.,
and Ramalho, G. 2007. Extracting and evolving code in
product lines with aspect-oriented programming. In

Transactions on Aspect-Oriented Software Development IV,
Lecture Notes In C. S., vol. 4640. Springer-Verlag, Berlin,
Heidelberg, pp. 117-142.

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
and Stal, M. Pattern-Oriented Software Architecture: A
System of Patterns. Wiley, 1996.

[4] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and
Fox, A. 2004. Microreboot — A technique for cheap
recovery. In Proc. of the 6th Conference on Symposium on
Operating Systems Design & Implementation – Vol. 6 (San
Francisco, CA, Dec. 2004). Operating Systems Design and
Implementation. USENIX Association, Berkeley, CA, 3-3.

[5] Cervantes, H. and Hall, R. S. 2004. Autonomous Adaptation
to Dynamic Availability Using a Service-Oriented
Component Model. In Proc. of the 26th International
Conference on Software Engineering (May 23 - 28, 2004).
IEEE Computer Society, Washington, DC, 614-623.

[6] Chan, H. and Chieu, T. C. 2003. An approach to monitor
application states for self-managing (autonomic) systems. In
Companion of the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (Anaheim, CA, USA, October 26 - 30, 2003).
OOPSLA '03. ACM, New York, NY, 312-313.

[7] Engel, M. and Freisleben, B. 2005. Supporting autonomic
computing functionality via dynamic operating system kernel
aspects. In Proc. of the 4th international Conference on
Aspect-Oriented Software Development (AOSD). Chicago,
Illinois, March 14 - 18, 2005. ACM, New York, NY, 51-62.

[8] Escoffier, C., Hall, R.S. and Lalanda, P. 2007. iPOJO: an
Extensible Service-Oriented Component Framework. In
Proc. of the IEEE International Conference on Services
Computing (July 09 - 13, 2007). IEEE Computer Society,
Washington, DC, 474-481.

[9] Filho, F. C., Garcia, A., and Rubira, C. M. 2007. Error
handling as an aspect. In Proc. of the 2nd Workshop on Best
Practices in Applying Aspect-Oriented Software
Development. vol. 211. ACM, New York, NY, 1

[10] Frei, A. and Alonso, G. 2005. A Dynamic Lightweight
Platform for Ad-Hoc Infrastructures. In Proc. of the Third
IEEE international Conference on Pervasive Computing and
Communications (March 08 - 12, 2005). PERCOM. IEEE
Computer Society, Washington, DC, 373-382.

[11] Gama, K. and Donsez, D. 2008. Service Coroner: A
Diagnostic Tool for Locating OSGi Stale References. In
Proc. of the 34th Euromicro Conference Software
Engineering and Advanced Applications (SEAA 2008).
IEEE Computer Society, Washington, DC, 108-115.

[12] Gama, K. and Donsez, D. 2008. A Practical Approach for
Finding Stale References in a Dynamic Service Platform. In
Proc. of the 11th Intl. Symposium on Component-Based
Software Engineering (CBSE 2008). Lecture Notes In C. S.,
vol. 5282. Springer-Verlag, Berlin, Heidelberg, 246-261

[13] Gama, K. and Donsez, D. 2009. Towards Dynamic
Component Isolation in a Service Oriented Platform. In
Proceedings of the 12th Intl. Symposium on Component-
Based Software Eng. (CBSE 2009). Lecture Notes In C. S.,
vol. 5582. Springer-Verlag, Berlin, Heidelberg, 104-120

[14] Gama, K. and Donsez, D. 2010. A Self-healing Component
Sandbox for Untrustworthy Third-party Code Execution. In
Proc. of the 13th Intl. Symposium on Component-Based
Software Engineering (CBSE 2010). Lecture Notes In C.S.,
vol. 6092. Springer-Verlag, Berlin, Heidelberg.

[15] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc.

[16] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java
Language Specification 3rd Edition. pp. 330--331, Addison-
Wesley, 2005

[17] Greenwood, P. and Blair, L. Using Dynamic AOP to
Implement an Autonomic System. In: Dynamic Aspects
Workshop. 2004. Lancaster, UK

[18] Hall, R.S. A Policy-Driven Class Loader to Support
Deployment in Extensible Frameworks. In Proc. of the
International Working Conference on Component
Deployment, pp 81--96. Springer, May 2004.

[19] Hanenberg, S. and Unland, R. Using and reusing aspects in
AspectJ. In Workshop on Advanced Separation of Concerns
in Object-Oriented Systems, OOPSLA '2001, Oct. 2001.

[20] Hanenberg, S., C. Oberschulte and R. Unland, Refactoring of
aspect-oriented software. In Proc. of Net.ObjectDays
Conference (NODe'03), 2003

[21] Hilsdale, E. and Hugunin, J. 2004. Advice weaving in
AspectJ. In Proc. of the 3rd international Conference on
Aspect-Oriented Software Development. AOSD '04. ACM,
New York, NY, 26-35

[22] Irmert, F., Lauterwald, F., Bott, M., Fischer, T., and Meyer-
Wegener, K. Integration of dynamic AOP into the OSGi
service platform. In Proc. of the 2nd Workshop on
Middleware-Application Interaction, vol. 306. ACM, 2008,
New York, NY, 25-30.

[23] Kephart, J. O. and Chess, D. M. 2003. The Vision of
Autonomic Computing. Computer 36, 1 (Jan. 2003), 41-50

[24] Keuler, T. and Kornev, Y. 2008. A light-weight load-time
weaving approach for OSGi. In Proc. of the 2008 Workshop
on Next Generation Aspect-oriented Middleware (Brussels,
Belgium, 2008). NAOMI '08. ACM, New York, NY, 6-10.

[25] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T.,
Magalhaes, L. and Campbell, R. 2000. “Monitoring,
Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB,” In Proc. of the Middleware 2000
Conference, ACM/IFIP.

[26] Lippert, M. and Lopes, C. V. 2000. A study on exception
detection and handling using aspect-oriented programming.
In Proc. of the 22nd international Conference on Software
Engineering. ICSE '00. ACM, New York, NY, 418-427.

[27] Lippert, M. 2003. An AspectJ-enabled eclipse core runtime
platform. In Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Anaheim, CA,
USA, 2003. ACM, New York, NY, 322-323.

[28] Lippert, M. 2004. AJEER: an AspectJ-enabled Eclipse
runtime. In Companion To the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems,

Languages, and Applications (Vancouver, BC, CANADA,
2004). OOPSLA '04. ACM, New York, NY, 23-24.

[29] Lippert, M. 2008. Aspect weaving for OSGi. In Companion
To the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming Systems Languages and Applications
(Nashville, TN, USA, October 19 - 23, 2008). OOPSLA
Companion '08. ACM, New York, NY, 717-718.

[30] Moraes, R., Barbosa, R., Duraes, J., Mendes, N., Martins, E.,
and Madeira, H. 2006. Injection of faults at component
interfaces and inside the component code: are they
equivalent?. In: 6th European Dependable Computing
Conference. IEEE Computer Society, Washington, DC 53-64

[31] OSGi Alliance. http://www.osgi.org

[32] OSGi Service Platform Release 4 Version 4.2 Core
Specification. http://www.osgi.org/Download/Release4V42

[33] Papazoglou, M. P. 2003. Service -Oriented Computing:
Concepts, Characteristics and Directions. In Proc. of the
Fourth international Conference on Web information
Systems Engineering (December 10 - 12, 2003). WISE.
IEEE Computer Society, Washington, DC.

[34] Plásil, F., Bálek, D., Janecek, R. 1998. SOFA/DCUP:
Architecture for Component Trading and Dynamic Updating.
In Proceeding of International Conference on Configurable
Distributed Systems. pp. 43

[35] Phung, P.H. and Sands, D. 2008. Security Policy
Enforcement in the OSGi Framework Using Aspect-Oriented
Programming. 32nd Annual IEEE Intl Computer Software
and Applications (COMPSAC 2008). pp.1076-1082

[36] Redmond, B. and Cahill, V. 2002. Supporting Unanticipated
Dynamic Adaptation of Application Behavior. In Proc. of the
16th European Conference on Object-Oriented Programming
(2002). Lecture Notes In Computer Science, vol. 2374.
Springer-Verlag, London, 205-230

[37] Rouvoy, R., Eliassen, F., and Beauvois, M. 2009. Dynamic
planning and weaving of dependability concerns for self-
adaptive ubiquitous services. In Proc. of the 2009 ACM
Symposium on Applied Computing (Honolulu, Hawaii).
SAC '09. ACM, New York, NY, 1021-1028.

[38] Singh, A. and Kiczales, G. 2007. The scalability of AspectJ.
In Proc. of the 2007 Conference of the Center For Advanced
Studies on Collaborative Research (Richmond Hill, Ontario,
Canada, October 22 - 25, 2007). CASCON '07. ACM, New
York, NY, 203-214.

[39] Soares, S., Laureano, E., and Borba, P. 2002. Implementing
distribution and persistence aspects with AspectJ. In Proc. of
the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(Seattle, Washington, USA, November 04 - 08, 2002).
OOPSLA '02. ACM, New York, NY, 174-190

[40] Yang, Z., Cheng, B. H., Stirewalt, R. E., Sowell, J., Sadjadi,
S. M., and McKinley, P. K. 2002. An aspect-oriented
approach to dynamic adaptation. In Proc. of the First
Workshop on Self-Healing Systems (Charleston, South
Carolina, November 18 - 19, 2002). D. Garlan, J. Kramer,
and A. Wolf, Eds. WOSS '02. ACM, New York, NY, 85-92

