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Abstract.  When dealing with dynamic component environments such as the 

OSGi Service Platform, where components can come from different sources 

and may be known only during runtime, evaluating third party components 

trustworthiness at runtime is difficult. The traditional namespace based isolation 

and the security mechanisms provided in the Java platform (the base platform 

for OSGi) can restrict the access of such components but can not provide fault 

isolation. In this paper we present a dynamic component isolation approach for 

the OSGi platform, based on a recently standardized Java mechanism. When an 

untrusted component is activated during runtime, it is isolated in a fault 

contained environment but it can still collaborate with the application. If it is 

observed that the untrusted code does not bring any threat to the application, at 

runtime it can be dynamically promoted to the safe environment. Tests have 

been performed in a controlled environment where misbehaving components 

hosted in the sandbox were not able to disturb the main application. 

1 Introduction 

In Component Based Software Development (CBSD) one may not know in advance 

the impacts (e.g. runtime incompatibilities, errors leading to application crashes) of 

integrating third party components into an application. During development 

components can be tested (e.g. unit testing) as individual blackbox entities but 

component vendors may face combinatorial explosions when trying to validate their 

products against possible system configurations, and these combinations still grow if 

components can still be integrated after deployment of the system [39]. This is exactly 

the case of dynamic platforms where one may not predict which components are 

going to be deployed during application execution. 

The OSGi Service Platform [29] is a component framework for the Java Platform, 

and is an example of such type of dynamic platform where components can be 

deployed, started, stopped or updated during runtime without stopping application 

execution. In dynamic environments as OSGi it is a frequent scenario having 

dependencies to service interfaces known at compile time but during runtime having 

the corresponding service implementations provided by possibly untrusted 

components dynamically deployed. The usage of OSGi in software industry has 

gained a strong momentum after the Eclipse Platform became one of its main adopters 

[10]. A large COTS market around OSGi is emerging [30] where third party 
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components are becoming available increasingly, but defining their quality and 

trustworthiness is not a precise task. COTS quality models do exist, but they are 

difficult to be used due to the large quantity of attributes to be measured and the lack 

of information provided by component vendors [20]. The reliability characteristic 

(maturity, recoverability and fault tolerance as sub-characteristics) of those models is 

indirectly one of the attributes of component trustworthiness, which can be defined as 

measured and perceived dependability (a combination of reliability, safety, 

robustness, availability and security) [34].  

As previously mentioned, fault isolation is an issue closely related to the reliability 

characteristic and can make composites stronger. It is indeed an essential theme in 

CBSD, since the strength of a composition is defined by its weakest component [39]. 

Since fault is a concept that has a very wide scope, we consider the concept from [23], 

which says that faults are the cause of errors (deviations from correct state) which 

may lead to system failures, thus being a threat to dependability. A detailed analysis 

[31] on component vulnerabilities in Java Service Oriented Platforms shows that 

some of them are caused by the lack of CPU and memory isolation between 

components, which is fundamental for fault isolation. OSGi uses class loader based 

namespace isolation, giving a sort of pseudo-isolation between components. 

However, namespace isolation is not robust enough for a multiple component vendor 

scenario where one cannot assure that such third party code behaves correctly. As all 

components and objects coexist in the same memory space without any mechanism 

that ensures object domains or other elaborate ways of isolation, components may 

introduce faults in applications: 

− Inconsistencies and silent errors in the system when dynamicity is mishandled by 

components [7], caused by different factors such as incorrectly refactored 

applications and components. 

− A component crash (e.g. stack overflow, out of memory exception) may bring the 

whole application down. 

The objectives of this paper are: to provide a review on standard isolation 

mechanisms in the Java platform; and to present a component isolation approach for 

OSGi, based in one of the analyzed Java isolation mechanisms. The proposed 

mechanism allows untrusted components to execute in a fault contained sandbox that 

allows clean termination of components preventing any harm to the core (trusted) 

components environment enhancing applications’ robustness and reliability. Our 

solution is based on a standardized Java Specification Request (JSR) that addresses 

isolation. However, by adding such isolation barriers, we are aware that a component 

communication overhead will be introduced. The intention is not to isolate each and 

every component since it would annihilate one of OSGi’s main advantages, which is 

the fast communication between services and components. 

The rest of this paper is organized as follows: section 2 details the standard 

isolation approaches in the Java Platform; section 3 analyzes the usage of those 

mechanisms for component isolation in different Java editions; section 4 highlights 

OSGi’s isolation limitations; section 5 presents our proposed model and its 

implementation; section 6 describes related work; and finally, section 7 concludes and 

presents our perspectives. 



Towards Dynamic Component Isolation in a Service Oriented Platform      3 

2 Standard Isolation Mechanisms in Java  

In this section we explore the standard isolation mechanisms that we have identified 

in the Java platform: namespace-based isolation, OS-based isolation and a relatively 

recent approach based on a sort of domain isolation. 

2.1 Namespace-based Isolation 

As explained in [24], the class loader mechanism in Java provides the ability to 

dynamically load classes during application execution enabling features such as lazy 

loading; unloading of classes; multiple namespaces; and user extensibility through 

user defined class loading policies. These multiple namespaces are the standard form 

for achieving isolation in Java, where a class type is uniquely determined by the 

combination of class name and class loader. To better illustrate namespaces with class 

loaders, consider that two class loaders A and B co-existing in the same running 

application can load different versions of a foo.Bar class. Each class loader can 

apparently provide instances of the same class but in fact the provided foo.Bar objects 

are of different classes. By considering a fully qualified name notation to differentiate 

each class, as the one used in [24], we have something like <foo.Bar, A> and 

<foo.Bar, B> which visibly do not correspond to the same class. 

The basic loading mechanism is based on a delegation principle inside a hierarchy. 

Before loading a given class, a child class loader asks its parent for that class. If the 

immediate parent can not find the class, this delegation continues until the top of the 

hierarchy. The hierarchy of class loaders defines that children can “see” the classes 

loaded by their parent, but not the contrary. Following that principle, sibling class 

loaders also can not share class definitions. However, this mechanism isolates code in 

different namespaces but does not ensure object instances living in isolated address 

spaces. Thus, namespaces do not bring the necessary robustness because faults in 

code residing in a class loader can affect other parts of the application.  

2.2 OS-based Isolation 

This type of isolation is enforced by Operating System protection boundaries (e.g. 

processes in separated memory spaces). In Java this can be done with a combination 

of techniques by breaking a single application into multiple pieces running on 

different VMs (i.e. different processes) allowing application to be located in separate 

address spaces managed by the OS. Such type of isolation enables fault containment, 

thus a crash in a component would not bring the whole system down. However, using 

separate address spaces requires using relatively expensive inter-process 

communication in order to allow collaboration between the isolated components. In 

the case of Java it can be achieved either through sockets or higher level protocols 

such as RMI-IIOP. A significant disadvantage of such approach is exactly such type 

of cross-boundary communication overhead, as well as the memory footprint for each 

VM instance. Also, in the case of a component bringing a part of the application 

down, the restart of the crashed part would need to wait for the whole bootstrap of the 
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VM and the component container/runtime. This solution may be resource consuming, 

especially in small devices, but in server application cases such as [22] the decision of 

isolating several web applications in different VMs had an acceptable performance 

overhead that was taken into account in their analysis. 

2.3 Domain Isolation 

The JSR 121 [15] is a relatively recent standardization effort for application isolation 

in Java. It defines the notion of Isolate, a first class representation of a strong isolation 

container with an API to control their lifecycle. The model proposed by the Isolate 

API does not specify how Isolates should be implemented. The strategy is 

implementation specific and could range, for example, from a per-isolate operating 

system process (e.g. using a standalone JVM) approach, to all-isolates in one process 

(i.e. same JVM) approach. The latter is used in the reference implementation provided 

by Sunlabs in the Multitasking Virtual Machine (MVM) [4], which realizes Isolates 

using a multitasking approach. The MVM allows several Java applications to run in 

the same OS process, where each isolate is a logical instance of the JVM, with 

logically separated heaps, and no objects that can be directly shared. A basic set of 

resources, like runtime classes and shared libraries, is shared by all isolates but 

applications run in complete isolation. In case of an application failure, only that 

application is impacted, not the JVM. Other applications are completely shielded from 

that application failure. Besides isolation, other advantages are the low memory 

footprint for multiple applications in the same VM and quick application startup. 

The isolation achieved with Isolates is completely transparent. Legacy Java 

applications can be executed in Isolates without needing any additional changes. 

However, applications can be aware of the existence of Isolates and explicitly use the 

API. Although isolated, Java applications can achieve collaboration through 

previously existing mechanisms such as sockets and Remote Method Invocation 

(RMI), or through Links, which are part of the Isolate API. They provide a low-level 

layer for communication through basic data types such as byte arrays, buffers, 

serialized objects and sockets. The usage of isolates can make applications more 

robust by adding fault containment and clean application termination, serving also as 

a basis for enabling other features such as the Resource Consumption Management 

API [19]. 

3 Component Isolation in the Java Platform 

Given the standardized mechanisms, we provide in this section a brief analysis of 

component isolation using such mechanisms in the Java Platform and the respective 

approaches for component collaboration across isolation boundaries. From the Java 

standard and enterprise editions we describe the isolation in Applets and Enterprise 

Java Beans (EJB), respectively; in the Java micro edition (ME) we show isolation in 
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two application models: Midlets and the Xlets, from the CLDC1 and the CDC2, 

respectively; and finally we see the isolation approaches in Java Card Applets. 

3.1 Applets 

The isolation achieved with class loaders combined with security policies is 

fundamental for guaranteeing a sandbox where applets have restricted visibility of 

other applications and controlled access to system resources, enforced by security 

verifications. This ensures that untrusted code (the applets) does not cause harm (e.g. 

accessing and damaging the file system) to the underlying system. The namespace 

based isolation through different class loaders guarantees that if a web page loads 

applets from different locations they do not have access to each other.  

Applets are present in Java since the initial versions, when composition models 

were rudimentary and in the case of applets it could be done by placing the applets in 

the same web page [39] and letting them communicate via the AppletContext object. 

This can be possible only in the case of applets from the same code base, that is, the 

same directory on the server. Such rudimentary composition can not be possible when 

applets come from different locations. 

3.2 Enterprise Java Beans 

Isolation of EJBs is usually done in two flavors: either through class loaders 

namespaces or by isolating components in different JVMs. In the former case, 

isolation fits in the class loading delegation principle previously described. Although 

there is no fixed structure for class loaders in Java EE, each vendor has its own 

implementation that follows the same principles. Fig. 1, based on an illustration from 

[1], illustrates a class loader hierarchy in Java EE. 

Class loaders in grey, on the top of the hierarchy on Fig. 1, are the standard Java 

class loaders provided by the platform. The other class loaders represent a general 

Java EE class loading scheme. Every Enterprise Application Archive (EAR) will have 

its own class loader that will provide each application with its own namespace [1]. All 

EJBs of the EAR will be loaded by the same class loader, thus sharing the same 

namespace. Each Web Application Archive (WAR) is deployed with its own class 

loader and will not have class visibility to other sibling application. 

The whole EJB model was conceived with distribution in mind, thus remote 

communication is supported by the component container. The infrastructure for EJB 

communication is based in a message based IPC approach that uses the RMI-IIOP 

protocol. Thus EJBs can also be isolated by separating them in different VMs. A 

crash in one component would not directly affect components hosted in other VMs. 

However, this choice leads to problems such as scalability and memory footprint. The 

cost of isolating components in separate VMs hosting heavyweight runtimes such as 

EJB containers would be expensive in terms of resources; communication overhead 

and coordination. An experimental isolation approach [14], which is detailed on the 

                                                           
1 Connected Limited Device Configuration. http://java.sun.com/products/cldc/ 
2 Connected Device Configuration. http://java.sun.com/javame/technology/cdc/index.jsp 
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related work section, takes advantage of isolates for providing different levels of 

isolation in J2EE servers. 
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Fig. 1. Classloader delegation hierarchy in a Java EE Server. 

3.3 Midlets 

The Mobile Information Device Profile (MIDP) for CLDC introduces the concept of 

MIDlets, which are managed applications with a life cycle similar to Java applets. 

MIDP has been conceived to execute in constrained devices where Java MIDlets 

would usually execute one at a time with security constraints concerning aspects such 

as visibility of types restricted to the same MIDlet suite. The MIDlet security model 

enforces that each MIDlet suite must run in isolation, but concerns were mostly 

related to type visibility since initial versions of MIDP executed one MIDlet at a time. 

Starting from MIDP 3.0 [18], parallel execution of MIDlets is specified. The Inter-

MIDlet Communication (IMC) protocol, similar to sockets, would allow two MIDlets 

to establish communication by means of a channel, enabling communication and 

possibly some rudimentary composition such as in the case of applets. Although 

communication is possible using the IMC protocol, runtime isolation is enforced: 

MIDlets must not be able to have access to the variables or memory from each other, 

having their own executing spaces. They will always run in different contexts when 

executed. The isolation concept also applies to the usage of shared libraries (LIBlets), 

with the set of classes and resources of a LIBlet behaving (e.g. per-context static 

variable value) as if they were packaged with the MIDlet. 
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Multitasking is already being used as a way for isolating applications with less 

memory footprint [36] in CLDC devices. The Sqwak Virtual Machine [38] is another 

multitasking VM targeting the CLDC but for the Information Module Profile [16], 

which consists on a profile for devices without graphical display capabilities. Both of 

those approaches are based on Isolates, which appears to be the next generation 

standard for multitasking in upcoming JVMs. 

3.4 Xlets 

The Personal Basis Profile (PBP) [17] for CDC provides an application model based 

on Xlets which are managed applications originally defined for the Java TV API. The 

Xlet application model resembles Java applets and MIDlets, providing also small 

applications with life cycle (init, start, pause, destroy). PBP provides a means of 

communication between Xlets with the Inter-Xlet Communication (IXC) mechanism, 

which uses a subset of Java RMI. Xlets executing in the same virtual machine are able 

to exchange objects across class loader boundaries. Although such communication 

takes place in the same VM, it relies on RMI proxies. An Xlet can register an object 

in the IXC registry. Other Xlets running on the same VM can perform a lookup in the 

registry to retrieve the object that is bound to the queried name. The result is a 

dynamically generated stub that implements the same remote interface of that object. 

Since code is running in different class-loaders, the class definitions are not shared. 

The client Xlet must have the same interface type of the requested object packaged 

with its application so it can correctly retrieve the corresponding stub instances. 

The approach above described fits in the initial CDC VM monolithic versions that 

provide class loader based namespace isolation. The CDC Application Management 

System (AMS) [37] introduces process-based application management, where all Java 

applications run in native processes coordinated by the AMS. The IXC would 

continue working as the communication mechanism between Xlets, but in a more 

robust environment with fault isolation and clean application removal. 

3.5 Java Card Applets 

In the Java Card platform, applications are called applets (card applets for 

disambiguation). A firewall mechanism isolates card applets from each other by mean 

of contexts, which are separate protected object spaces. It enforces security 

constraints and provides a secure environment where card applets may not access 

each other's functionality unless explicitly specified through shareable interfaces (SI). 

These contexts provide a sort of object domain in terms of data visibility, but do not 

provide fault isolation. The separate spaces and security mechanisms do not prevent 

an unhandled fault from halting the VM, as described in its specification: “As the Java 

Card virtual machine is single-threaded, uncaught exceptions or errors will cause the 

virtual machine to halt”. Thus, a misprogrammed card applet that provokes a 

StackOverflowError, for example, affects all loaded applets. This applies also 

to the most recent Java Card specification (v. 3.0), which in addition to context 

isolation also provides code isolation in the connected edition. This type of isolation 
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is implemented using the traditional class loader delegation hierarchy that provides 

separate class namespaces. Communication between card applets is still through SIs, 

but with the class loader hierarchy principle implies that the SI implementations be 

loaded by a higher level class loader so they can be visible to all card applets, which 

are all potential invokers of the shared object.  

3.6 Summary  

The predominant way for component isolation in Java is by means of class loaders, 

which allow separate namespaces that give less robust isolation. However a trend 

towards multitasking in the embedded market is observed as a means to enhance 

isolation. The utilization of Isolates allow programmatic access to an API for starting 

and controlling the execution of an application container that transparently provides 

strong isolation, enabling fault containment and a much more robust isolation 

mechanism than the one provided by class loaders. EJBs components can take 

advantage of isolation either with namespaces or in separate VMs, since these 

components where conceived for a distributed model where inter-VM communication 

is natural, but choosing to host individual EJBs in separate VMs leads to a rather 

complicated problem that would compromise scalability. Table 1 presents a summary 

of some isolation characteristics for each analyzed type of component approach. 

Table 1. Isolation overview on the Java Platform 

Component/Application 

Model 

Isolation 

mechanism 

Fault 

Containment 

Collaboration 

Java Applets Namespace No Direct access 

Local EJB Namespace No Direct access 

Remote EJB OS based Yes RMI-IIOP 

Midlets (MIDP 3) Domain based3 Yes Socket-like 

Xlets4 OS based Yes IXC (RMI) 

JavaCard V.2.x Applets Domain-like5 No Direct access 

JavaCard V.3 Applets, 

Connected edition 

Namespace No Direct access 

4 Isolation in OSGi 

The OSGi framework is a dynamic service platform for the construction of modular 

Java applications, allowing the installation, uninstallation, update and startup of 

components and services with no application reboot. OSGi components are called 

bundles, which are the platform’s unit of deployment consisting of jar files with 

                                                           
3 If utilizing the CLDC MVM 
4 Considering the utilization of the CDC AMS 
5 There is no traditional classloading in JavaCard v2.2.2, but its isolation model through 

firewalls does not provide fault isolation, as in JSR121 domain isolation 
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custom manifest attributes for defining, for example, information about versioning, 

package (type) dependencies and provided packages. Optionally bundles may provide 

services, which are published in a central registry that can be queried by service 

consumers, allowing component collaboration with loose coupling through service 

interfaces. After service binding, the consumer code directly references the servant 

object, without any proxies 

The isolation level in OSGi is in fact a sort of enhanced namespace isolation by 

means of individual class loader instances provided for each bundle. The class loading 

mechanism follows some policies for loading types, basically considering the 

information provided by the Import-Package and Export-Package manifest attributes. 

Instead of a child to parent visibility in a tree hierarchy, the class loading in OSGi is 

rather a graph (Fig. 2), where sibling class loaders may provide classes between them. 

 

 

Fig. 2. Illustration of the classloading graph in OSGi. 
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5 Dynamic Component Isolation 

The OSGi specification tries to be as simple and lightweight as possible. Its direct 

object referencing brings the advantage of fast communication but it may impose 

problems if components do not handle correctly the inherent dynamicity of that 

platform. Other sorts of misbehavior, especially from untrusted third party 

components may also introduce faults, but such cases do not necessarily concern 

malicious components since a fault may happen due to lack of proper testing, or 

integration issues, for example. Security policies and class loading provide a limited 

level of isolation but no robustness. 

Software-based isolation [40] introduces the concept of sandboxes for isolating in 

the process level untrusted modules and for providing fault containment, which is 

seen as a strategy for preventing error propagation across defined boundaries [27]. 

The term sandboxing has gained a wider sense throughout the years and now is often 

used to generally describe similar isolation techniques for preventing the underlying 

system to be harmed.  

Therefore, in order to achieve such containment we needed to establish boundaries 

for separating components. Although there are custom VMs that provide object 

isolation in the Java platform through non-standard mechanisms, we wanted a 

solution focusing on technology that is standardized. We have chosen Java Isolates as 

our isolation boundaries for a few reasons: Isolates come from an official 

specification (JSR-121); its concepts are a trend for isolation and multitasking 

approaches that have been already tested with success in CLDC VMs; it continues to 

serve as an enabler for other features such as the ongoing effort of the resource 

consumption API [19] for Java.  

Our component isolation mechanism for the OSGi platform tries to increase 

application robustness and dependability, in such a way that we can provide a 

sandbox where untrusted components are put in quarantine in a separate container 

where they can execute without harming (either intentionally or unintentionally) the 

application. In case a component misbehaves, or becomes stale, the sandbox can be 

restarted and the component can be safely terminated without needing to bring down 

the whole application. This type of isolation fills the well-isolated pre-condition for 

microrebooting [3] (individual rebooting of fine-grain application components). 

However, even if components are designed independently they are meant to 

collaborate as a part of a framework [28]. We have a means for isolating components 

but they still need to collaborate. Communication across boundaries is also provided 

in our approach, which is detailed in the next sub-sessions. 

The implementation of the isolation solution described here was done in 

OpenSolaris with Sunlabs’ Multitasking Virtual Machine6 (MVM). We have patched 

the Apache Felix7 v. 1.4.0 OSGi implementation for enabling the isolation solution 

using the JSR121 (Isolate API). 

                                                           
6 http://mvm.dev.java.net 
7 http://felix.apache.org 
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5.1 Isolation Mechanism 

The solution provided in [8] uses services as the grain of isolation. The principle is 

also applied here, but in a coarser grain.  While that solution focuses on service 

isolation via proxies in the same VM, the one described here focuses on separating 

components in isolated domains. The semantics is the same, as generalized in the 

meta-model from Fig. 3.  

 

Service

IsolatedEntity

Component

IsolationPolicy

1

0..*

Application

 

Fig. 3. Meta-model with the general isolation approach used either with services or components 

At runtime, when a given entity (i.e. a service or a component) is about to be 

activated (retrieved in the case of a service, and started in the case of a component) 

then the system verifies if that entity must be isolated, and proceeds with the isolation 

process if necessary. 

Since OSGi consists of a dynamic platform, our isolation model also needs to be 

dynamic. The sandboxing is done selectively, and at runtime, only for untrusted 

components which are then grouped in the sandbox. Faults are quarantined in that 

isolated container, and can not interfere in the main environment. The mechanism 

also allows the component to be promoted from the quarantine to the main platform 

during application runtime, currently upon human decision based on application 

behavior observation. For the dynamic component isolation, upon installation of an 

OSGi bundle, the customized framework performs a policy verification against the 

bundle jar file in order to know if it must be isolated or not. Implementations for the 

policy verification may vary: it can be done based on signed jar files, CRC 

verification, etc. 

Our current policy implementation simply verifies a list of known jar files to see if 

the deployed jar is known. If the jar does not pass the verification, it is installed in the 

main platform but marked as “untrusted”. At startup time, when dependencies have 

been resolved, the platform will not start the untrusted jar in the main platform, but 

install that untrusted bundle and its dependencies on the sandbox and then perform the 

start up in the isolated environment, as illustrated in Fig. 4 showing that bundle C 

depends on types provided by bundle B which is also deployed in the sandbox but not 

started. As there is no dependency to Bunde A, there is no need to copy it to the 

sandbox. Thus, there are some rules concerning deployment: 
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− The main platform will always have all application bundles deployed, but no 

untrusted bundle in the started state; 

− The sandbox will have untrusted bundles plus their dependencies, but no 

dependency in the started state, unless a dependency is also an untrusted bundle; 

− No replicated bundle will be in the started state in both platforms at the same time. 

 

Main OSGi OSGi sandbox

STARTED RESOLVED STARTEDSTARTED RESOLVED

JVM

Isolate Isolate

BundleA BundleB BundleC

?

BundleC

?

BundleB

 

Fig. 4. Current deployment approach for dependency resolving in the sandbox. Untrusted 

bundles are also deployed in the main platform, but started only in the sandbox. 

Although the duplication of components can increase memory footprint, and 

potentially load the same classes both in the main platform and in the sandbox, there 

are mechanisms that could reduce the cost of loading the same class representation 

multiple times in custom application class loaders [5], which is the case in OSGi. By 

hosting a component in a separate object domain (the sandbox) there will also be 

performance impact of the communication cost for trespassing the domain barrier if 

the sandboxed component needs to use services from a component in the main OSGi 

platform, and vice-versa. 

5.2 Components Communication 

In the OSGi platform, components establish communication through services 

which is done directly. In the case of our OSGi isolation mechanism, if an untrusted 

component needs to use a service provided by a trusted component, or vice-versa, the 

method calls need to cross the isolation boundaries that separate the service consumer 

and provider. This is done transparently by dynamic service proxies over a simple 

communication protocol which we have implemented. There is a two step process for 

retrieving a service instance in OSGi: query the service registry for a 

ServiceReference object, and then use that object for retrieving the actual 

service instance. In our implementation, if the requested service reference is not found 

in the local registry, the query is sent to the isolated platform. In case of a match the 

requestor gets an IsolatedServiceReference object, which is an instance of 

ServiceReference, and then requests the corresponding service which would be 

a dynamic proxy implementing the requested service interface. The proxy delegates 
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the calls to the isolated platform using our protocol. The usage of service proxies 

evidently adds an overhead for proxy creation and subsequent method calls on the 

proxy. The service orientation without the communication overhead is one of the 

advantages of OSGi over other service oriented platforms. However, the goal of our 

proposed isolation mechanism is not to completely forbid the OSGi’s standard 

proxyless service referencing. In the mechanism described here, the communication 

between services co-located in the same container is still done via direct object 

referencing. 

This proof of concept has been implemented using javax.isolate.Links, a 

JSR-121 specific API for communicating between Isolates, but the communication 

layer has been abstracted in such a way that the details of the communication 

implementation can be easily changed to another approach. In doing so, the 

component isolation solution could be ported to non-multitasking VMs, but with the 

additional cost of a whole JVM footprint (besides its startup). The Link usage could 

be replaced by sockets, or even RMI. The protocol which we have written had a small 

set of messages for installing untrusted bundles in the sandbox; querying services in 

the isolated platform; invoking isolated services; sending framework events (Service 

and Bundle). This initial implementation focused on feasibility before giving any 

attention to performance. After performing simple microbenchmarks, we have 

identified that service calls using our protocol over the Link implementation did not 

perform better than ordinary RMI method calls outside the OSGi environment. More 

than 2/3 of the overhead was exactly in the synchronization of reading and writing on 

Links. Most likely this is due to the fact that the communication model used by 

Isolates is very simple and frequent transmission of messages may cause a large 

overhead [2]. Anyhow, optimizations can still be performed. Although it has 

outperformed our approach, if we choose to use RMI this implies in more complexity 

since it needs to add marker interfaces (javax.rmi.Remote) to the isolated 

services needing to be called across domain boundaries, methods need to throw a 

remote exepction and both isolated platforms (the main one and the sandbox) would 

need their own RMI object servers to be managed. 

Crashes due to misbehaving code from untrusted component bring only the 

sandbox down, without any harm to the rest of the application. In such cases the 

platforms coordinator needs to bring back the sandbox and reestablish the 

communication channel that has been disrupted, by sending new and valid Link 

objects to the main platform. During this process, before restarting the sandbox and 

restablishing communication the main platform has to invalidate and to notify the 

departure of all isolated proxy clients and IsolatedServiceReferences. 

In our controlled experiment we automatically deployed untrusted bundles in the 

remote platform after an attempt to install it in the main platform. The following test 

cases were performed on components providing services using primitive types: 

− StackOverflowErrors intentionally fired have brought isolated components 

down along with the sandbox, but the sandbox could be automatically rebooted.  

− Stale services (unregistered services that are still and erroneously being used by 

service consumers) would have their isolated proxies invalidated, similar to [8]. 

Misprogrammed sandboxed bundles did not prevent the unregistered services from 

the main platform from being appropriately released and garbage collected. 
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− Manual runtime promotion of sandboxed components to the main platform.  

 

Although we have not addressed resource accounting, by using the sandboxing 

approach we can enable that in the component level if we consider isolate one 

component at a time. A multiple sandbox mechanism would add complexity 

concerning deployment and communication coordination, but would be a way to 

achieve fine grained isolation and resource accounting. 

5.4 Current Limitations 

As it was developed as a proof of concept, there are limitations in this isolation 

approach that were not yet addressed: policy implementation is just based on a file 

list, parameters and return types on proxied services are limited to primitives, Strings, 

and arrays of those types; the current isolation solution enables only one “shared” 

sandbox, where all untrusted components are executing. A misbehaving untrusted 

component will affect (e.g. stale services, stale threads, sandbox crash) all 

components that coexist in the sandbox. Only primitive, String attributes and 

properties map are available in BundleEvent and ServiceReference that 

come from an isolated platform. There is no unified identifier, that is, an untrusted 

bundle has a given id in the main platform, and most likely a different id in the 

sandbox platform. 

6 Related Work 

Other platforms already address the type of isolation we want to provide in OSGi 

applications. For instance, Microsoft COM components can be either loaded in the 

client application process or provided in an isolated process [25]. In the latter case, a 

surrogate process (dllhost.exe) can load the DLL and act as a server. Communication 

is transparently done via inter-process communication, bringing performance 

overhead but enabling fault isolation between the client and the component server. 

The Microsoft .NET platform addresses isolation as well, by means of Application 

Domains [35], which are like lightweight processes using the same concept that Java 

uses with Isolates. These domains have fault isolation: one domain can be terminated 

without interfering in the other domains’ execution. Communication across domain 

boundaries is done in an RPC fashion where objects are sent via marshalling. 

Application domains can be dynamically loaded but would have unloading limitations 

if used for implementing a dynamic platform [6] such as OSGi. 

Singularity [11] is a Microsoft research micro-kernel OS built with managed code. 

Instead of having processes isolation ensured by memory isolation, it uses software-

isolated processes which have a communication overhead smaller than ordinary OS 

based process isolation. Secure object access is enforced by using static analysis (code 

is verified ahead of execution), and by not allowing run-time code generation.  

A research [2] performed on alternatives for Java application isolation and resource 

accounting mentions component isolation as a means of preventing unwanted side 
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effects and full resource reclamation. The paper provides an overview of the issue by 

presenting non-standard JVM solutions which try to tackle isolation and resource 

accounting. The custom isolation solutions presented would not be suitable to the 

dynamicity of OSGi, and even clash with its custom classloader approach. Our 

technique tries to be compliant with standardized VM mechanisms, such as JSR121 

(which is also mentioned in that work) as well as enabling the architecture to work 

with multiple standard JVMs if no multitask VM is available. An experimental 

approach [14] uses the Isolate API and the MVM for improving isolation in a J2EE 

server.  They evaluate different grains of isolation, like fine grained individual servlet 

isolation, and coarse grained isolation where they introduce J2EE application 

domains. Restructuring the code for isolating servlets individually was difficult, 

which lead them to discard the implementation of other fine grained isolation cases 

(e.g. EJBs). Coarse grain isolation of application domains combining the isolation of 

whole J2EE applications with the isolation of sub-servers (e.g. WebServer, Database, 

JMS) seemed to be a feasible choice for production servers. 

Approaches like FreeBSD Jails [21] provide virtual environments that work as 

isolated compartments where a user have access only to processes and files from its 

own “jail” without having access to resources from other jails. Some approaches 

targeting isolation in the OSGi platform use virtualization [33, 26] as a way for 

isolating different customer platforms, that is, each provider would host their 

components and services in its own virtualized platform without accessing other 

providers’ environment. Access to services from the underlying platform can be 

through a predefined subset [33] or transparently without restrictions [26]. However, 

the virtualization happens in the same JVM, where multiple OSGi platform instances 

execute. A malfunctioning component crashing in one platform would bring down all 

virtualized OSGi instances. Another mechanism [9] combines JSR121 concepts with 

an extensible VM. They present JVM domains which allow lightweight isolation with 

the possibility to identify to what domain (i.e. a bundle) an object belongs to. They 

took the design decision of keeping direct object referencing as a way to keep the fast 

communication that exists in OSGi, however boundaries for fault containment are not 

mentioned. 

R-OSGi [32] deals with the communication between services located in OSGi 

platforms in different machines, with the advantage of not being bound to any OSGi 

implementation. Service consumer proxy bytecode is dynamically generated and 

loaded as a bundle into the platform, which significantly increases the number of 

executing bundles, but it is managed by the R-OSGi core. R-OSGi could also be seen 

as a way of OSGi component isolation, but there is no complete unawareness of 

distribution in the client code, which in the most transparent case still needs wrapper 

code to adapt a system to distribution. In our approach we want to leave the isolation 

decision to the executing platform based on the isolation policies. 

Security policies are also a form of isolating a component from having access to 

certain application APIs or system resources. Although security is an optional layer in 

OSGi implementations, it adds fine grained access to services and types. It is possible, 

for example, to prevent one component from having access to another by declaring 

that one of its provided services needs access permission. A practical implementation 

of OSGi application isolation enforced by security policies is presented in [12]. 

However, security policies would not provide fault containment in that case. 
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7 Conclusions and Perspectives 

In this paper we have analyzed component isolation in the Java platform and in the 

OSGi service platform, a dynamic component platform for Java. We have described 

our dynamic component isolation approach for OSGi, implemented on top of a 

mechanism based on an official standard for isolated domains in Java. Our 

architecture allows its extension for working with multiple JVMs if no multitask VM 

is available. The isolation approach we propose adds a fault contained sandbox for the 

execution of untrusted components, enhancing application robustness and 

dependability. Isolated components that misbehave or become stale can be 

microrebooted by restarting only the sandbox, without bringing down the whole 

application. However, choosing to enhance isolation levels between components 

implies in a trade-off where the cost for components communication increase. The 

initial mechanism constructed on top of JSR121 Links did not perform as well as 

standard RMI calls (outside an OSGi environment). Our base tests using a controlled 

environment have validated the dynamic isolation without losing the collaboration 

between isolated components. Tests verified isolated faults, automatic sandbox 

reboot, correct reclamation of unregistered services and dynamic promotion of 

untrusted code to the trusted environment. This type of isolation could enable 

resource accounting in the component level.  

Next activities consist in working on the current limitations, especially the 

improvement of the communication between isolates and the support to complex 

types in interface methods, as well as implementing a two-level isolation which 

combines the in-VM service isolation via proxies with the present component 

isolation approach. Automation of the component’s promotion from the sandbox to 

the main platform is also desired and also tests outside the controlled environment in 

existing OSGi based applications are also necessary in order to validate our approach 

in a real scenario. 
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