

Kiev Gama and Didier Donsez

Université Grenoble 1, France

(LIG Laboratory, ADELE Team)

kiev.gama@imag.fr

didier.donsez@imag.fr

A Self-healing Component Sandbox for Untrustworthy
Third Party Code Execution

CBSE’10

Work partially funded by the EC FP7 Aspire Project

• Motivations

• Techniques

• Approach

• Experiments
– Domain based x OS-based isolation
– Fault deployment

• Conclusions

Outline

Motivations

• Component based applications dependability

• Third party code dynamically deployed

• Provide some sort of isolation for preventing fault propagation

• Not necessarily fault tolerance IN components

• Fault containment to protect underlying application

• Providing self-healing mechanisms to recover from a faulty state

Why?

• “Strength of a composition is defined by its weakest component”
[Szyperski]

• We can’t easily predict and test all possible compositions

• Worse in dynamic platforms: we can not even predict what
assembly will be deployed

• Need to execute untrustworthy (not necessarily malicious)
components but still ensuring system reliability

What we don’t want to have

Component A Component B

Application

Crash

Crash

What we would like to have

Component A Component B

Application

CrashRecovery

Fault contained
boundary

Isolation Mechanisms in Java

• Namespace-based
– Class loader hierarchy enforcing type isolation
– Pseudo-isolation = No fault containment

• OS-based
– Uses processes as boundaries
– Implies inter-process communication (IPC) costs

• Domain Isolation
– Java Isolates (sort of lightweight processes) defined in JSR-121
– Implies IPC as well

Self-healing

• Automatic detection, diagnosis and repair of problems

• One of the key concepts in autonomic computing (self-
manageable systems)

• Need of
– Recovery mechanisms
– Fault detection and forecast

Target Platform

• OSGi Service Platform

• Loose component decoupling through services

• Dependencies:
– Defined at development time
– Resolved at runtime

• Components may be installed and uninstalled during application execution

BUT…

• Weak isolation: memory leaks when components are uninstalled (precedent work)

• No fault containment in components

Our Approach

• A sandbox architecture for untrustworthy OSGi components

• A policy for sandboxing in two levels (service and component)

• Initial prototype based on Isolates (domain-based isolation)
– Patched Apache Felix 1.4.0
– SunLabs MVM (Multitasking Virtual Machine) with Isolate API

• Port of the previous solution to OS-based isolation

Prototype

• Two OSGi frameworks executing in fault contained boundaries
– Main OSGi
– Sandbox OSGi

• Initially implemented with Java Isolates

• Policy defines which components are (not) trustworthy

• Untrustworthy components execute in the sandbox

• Assumption for enabling transparent IPC between platforms
– Services have methods with primitive types

Techniques used for Self-healing

• Automatic detection, diagnosis and repair of problems

• Introducing an autonomic manager for the sandbox
– Control loop using a sense, analyze and react principle

• Recovery oriented approach
– Microreboots
– Software rejuvenation

• Fault detection and forecast
– Pragmatic approach trying to detect and avoid typical faults

Main OSGi OSGi sandbox

STARTED RESOLVEDSTARTED

JVM

Isolate Isolate

BundleA BundleB BundleC

?

RESOLVED

BundleB BundleC

?

STARTEDRESOLVED

BundleA

Simplified View

*In OSGi jargon, a component is called bundle (deployment point of view)

Isolation Levels
Binding with strong isolation

(“component level”)

Provider

Provider

Bindings with weak isolation
(service level)

Provider

Service Proxy

Comm. proxyService proxyConsumer

Consumer

Consumer

Fault containment boundary Fault containment boundary

A

B

C

Architecture

Watchdog
Strategy
Executor

Knowledge

Monitor
Policy

Evaluator

Script
Interpreter

Trusted Platform

Sandbox Platform

Autonomic Manager

<<use>><<use>>

<<delegate>>

<<use>>

<<delegate>>

<<use>>

<<use>>

HeartbeatProbe SensorProbe EffectorProbe

Monitoring
MBean

EffectorMBean

<<delegate>>

<<use>>

<<delegate>>

PlatformProxy
Core

Isolation
Policy Eval.

<<use>>

PlatformProxy

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

<<use>>

Service
Registry

Service
Registry

<<delegate>><<delegate>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Core

<<use>>

<<use>>

<<use>>

Experiment I
• Does domain isolation performs better than OS-based isolation?

• Evaluation of
– memory footprint
– startup and reboot time

• Comparing different combinations of Application + Sandbox:
– 2 Isolates on the MVM (Java 1.5)
– 2 Sun Hotspot JVMs 1.5
– 2 Sun Hotspot JVMs 1.6

• No autonomic manager, only watchdog working

• Communication layer of custom protocol on top of
– Link API for the MVM
– Sockets for the regular JVMs

Memory

App. Startup x Sandbox Reboot

Combination Application Startup
time (ms)

Sandbox Crash
detection time (ms)

Sandbox Reboot
time (ms)

MVM (2 Isolates) 3186 32 303

2 x MVM 1.5 3449 697 3064

2 x JVM 1.5 3945 660 3047

2 x JVM 1.6 3859 658 2537

Reboot side effects
• State corruption in services

– Services need to be stateless OR
– State must be maintained outside the application (e.g. persistence)

• Sudden disruption ends ongoing operations

• ”Event storm”

• During sandbox reboot, application is on degraded mode

Experiment II
• Watchdog individually tested was OK

• Validation of the autonomic manager effectiveness

• Detection of “known” faults
– Memory consumption
– CPU consumption
– Thread instantiation
– Service invocation
– Application crash (e.g. illegal operation performed by a loaded library

• Prediction of faults
– Stale service retainers

• Fault “deployment” instead of fault injection

• Major limitation: no fine grained information at the component level
– E.g. Bundle A is consuming X MB

Conclusions and Perspectives
• Communication protocol not so performing (side finding)

• Domain-based isolation has significant

• No big differences in memory consumption between domain-
based and OS-based approaches

• OS-based isolation is also feasible

• Mechanisms for fault detection are still too trivial

• Automatic promotion of well-behaving components
– Fine grained monitoring is necessary for taking such decision

[Obrigado|Thanks|Merci]

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

