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Motivations

• Component based applications dependability

• Third party code dynamically deployed

• Provide some sort of isolation for preventing fault propagation

• Not necessarily fault tolerance IN components

• Fault containment to protect underlying application

• Providing self-healing mechanisms to recover from a faulty state



  

Why?

• “Strength of a composition is defined by its weakest component” 
[Szyperski]

• We can’t easily predict and test all possible compositions

• Worse in dynamic platforms: we can not even predict what 
assembly will be deployed

• Need to execute untrustworthy (not necessarily malicious) 
components but still ensuring system reliability



  

What we don’t want to have
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What we would like to have
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Isolation Mechanisms in Java

• Namespace-based
– Class loader hierarchy enforcing type isolation 
– Pseudo-isolation = No fault containment 

• OS-based
– Uses processes as boundaries
– Implies inter-process communication (IPC) costs

• Domain Isolation
– Java Isolates (sort of lightweight processes) defined in JSR-121
– Implies IPC as well



  

Self-healing

• Automatic detection, diagnosis and repair of problems

• One of the key concepts in autonomic computing (self-
manageable systems)

• Need of 
– Recovery mechanisms
– Fault detection and forecast



  

Target Platform

• OSGi Service Platform

• Loose component decoupling through services

• Dependencies:
– Defined at development time
– Resolved at runtime

• Components may be installed and uninstalled during application execution

BUT…

• Weak isolation: memory leaks when components are uninstalled (precedent work)

• No fault containment in components



  

Our Approach

• A sandbox architecture for untrustworthy OSGi components

• A policy for sandboxing in two levels (service and component)

• Initial prototype based on Isolates (domain-based isolation)
– Patched Apache Felix 1.4.0
– SunLabs MVM (Multitasking Virtual Machine) with Isolate API

• Port of the previous solution to OS-based isolation



  

Prototype

• Two OSGi frameworks executing in fault contained boundaries
– Main OSGi
– Sandbox OSGi

• Initially implemented with Java Isolates

• Policy defines which components are (not) trustworthy

• Untrustworthy components execute in the sandbox

• Assumption for enabling transparent IPC between platforms
– Services have methods with primitive types



  

Techniques used for Self-healing

• Automatic detection, diagnosis and repair of problems

• Introducing an autonomic manager for the sandbox
– Control loop using a sense, analyze and react principle

• Recovery oriented approach
– Microreboots
– Software rejuvenation

• Fault detection and forecast
– Pragmatic approach trying to detect and avoid typical faults
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*In OSGi jargon, a component is called bundle (deployment point of view)



  

Isolation Levels
Binding with strong isolation
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Architecture
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Experiment I
• Does domain isolation performs better than OS-based isolation?

• Evaluation of 
– memory footprint
– startup and reboot time

• Comparing different combinations of Application + Sandbox:
– 2 Isolates on the MVM (Java 1.5)
– 2 Sun Hotspot JVMs 1.5
– 2 Sun Hotspot JVMs 1.6

• No autonomic manager, only watchdog working

• Communication layer of custom protocol on top of
– Link API for the MVM
– Sockets for the regular JVMs



  

Memory



  

App. Startup x Sandbox Reboot

Combination Application Startup 
time (ms)

Sandbox Crash 
detection time (ms)

Sandbox Reboot 
time (ms)

MVM (2 Isolates) 3186 32 303

2 x MVM 1.5 3449 697 3064

2 x JVM 1.5 3945 660 3047

2 x JVM 1.6 3859 658 2537



  

Reboot side effects
• State corruption in services

– Services need to be stateless OR
– State must be maintained outside the application (e.g. persistence)

• Sudden disruption ends ongoing operations

• ”Event storm”

• During sandbox reboot, application is on degraded mode



  

Experiment II
• Watchdog individually tested was OK

• Validation of the autonomic manager effectiveness

• Detection of “known” faults
– Memory consumption
– CPU consumption 
– Thread instantiation
– Service invocation
– Application crash (e.g. illegal operation performed by a loaded library

• Prediction of faults
– Stale service retainers

• Fault “deployment” instead of fault injection

• Major limitation: no fine grained information at the component level
– E.g. Bundle A is consuming X MB



  

Conclusions and Perspectives
• Communication protocol not so performing (side finding)

• Domain-based isolation has significant 

• No big differences in memory consumption between domain-
based and OS-based approaches

• OS-based isolation is also feasible

• Mechanisms for fault detection are still too trivial

• Automatic promotion of well-behaving components
– Fine grained monitoring is necessary for taking such decision
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