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Abstract. The OSGi™ Service Platform is becoming the de facto standard for 

modularized Java applications. The market of OSGi based COTS components 

is continuously growing. OSGi specific problems make it harder to validate 

such components. The absence of separate object spaces to isolate components 

may lead to inconsistencies when they are stopped. The platform cannot ensure 

that objects from a stopped component will no longer be referenced by active 

code (a problem referred by OSGi specification as stale references) leading to 

memory retention and inconsistencies (e.g., utilization of invalid cached data) 

that can introduce faults in the system. This paper classifies different patterns of 

stale references detailing them and presents techniques based on Aspect 

Oriented Programming for runtime detection of such problems. We also present 

a fail-stop mechanism on services to avoid propagation of incorrect results. 

These techniques have proven to be effective in a tool implementation that 

validated our study. 

Keywords: OSGi, stale references, dynamic services, memory leaks, runtime 

diagnostics, component validation 

1   Introduction 

The OSGi service platform [1] is a framework targeting the Java platform, providing 

a dynamic environment for the deployment of services and modules (referred as 

bundles in OSGi terminology). The OSGi architecture provides a hot deployment 

feature by allowing modules to be dynamically added, updated or completely 

removed during application execution without the need to restart the JVM. OSGi is 

being used in a myriad of applications (e.g., desktop and server computers, home 

gateways, automobiles) and is becoming the de facto standard for modularized Java 

applications [2] [3] [4] [5]. A milestone of OSGi’s acceptance in software industry is 

its adoption in the Eclipse Platform [6]. 

Although the OSGi platform has evolved and matured in several aspects, its 

runtime environment does not enforce the isolation of bundles. A certain level of 

isolation by means of class loaders is provided by the OSGi platform, but bundles are 

not truly isolated from each other under a memory perspective. There are no separate 



2      {Kiev.Gama, Didier.Donsez}@imag.fr 

object spaces between bundles that would guarantee a safe and complete removal of a 

bundle from the platform. Bundles may freely exchange objects, but there is no 

mechanism to enforce that an object will not be referenced when its bundle stops.  

Even with events notifying the departure of services and bundles, the current OSGi 

programming model is not trivial to follow and the handling of such events is error 

prone. Due to bundle programming flaws, object instances may be kept by a 

consumer bundle after the provider bundle stops. The usage of such objects leads to 

memory retention preventing the classes from stopped bundles to be unloaded from 

memory. Faulty components can be introduced in the system due to propagation of 

incorrect results (e.g., old or invalid cached data) that may result from calls to those 

stale objects. 

The OSGi specification briefly describes this issue and refers to it as Stale 

References. Avoiding it is a matter of good programming practices since the 

environment cannot control or inspect it. Although there are mechanisms to minimize 

the occurrence of this problem, it is not possible to assure that every possibility of 

stale reference is being taken care of. This problem is difficult to detect in existing 

diagnostic applications (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit) 

because it is a consequence of particularities in the OSGi dynamic environment. 

The market of OSGi based Commercial-Off-The-Shelf (COTS) components is 

rapidly growing [2]. Under the perspective of the OSGi dynamicity aspects that we 

have presented, existing tools or testing suites cannot guarantee or evaluate that OSGi 

based COTS components can be safely introduced in an OSGi platform without 

bringing any problems such as stale references upon OSGi life cycle events. 

This paper proposes techniques that enable such type of validation for the OSGi 

environment. We go deeper in the stale references problem by classifying and 

detailing different patterns of stale references. We propose and validate diagnosis 

techniques that rely on Aspect Oriented Programming [7] to change OSGi framework 

implementations enabling them to provide information to detect those patterns during 

application runtime. We found that a static analysis approach may impose several 

constraints and it is not suitable to a dynamic environment such as OSGi. We also 

transparently introduce a fail-stop approach on calls to stale services to avoid the 

propagation of incorrect results. 

Our detection techniques make possible to identify and visualize stale references, 

achieving an OSGi specific inspection feature that is not yet available in existing 

diagnostic tools. By identifying such problems it is possible to provide information 

that can help correcting bundle source code, allowing developers to guarantee the 

quality of their OSGi targeted applications and components. 

All the techniques explained here were validated with the development of a 

diagnostic tool [8] that can be used to inspect OSGi targeted applications and 

components. The analysis of four open source OSGi based applications presented 

stale references after simulating life cycle (update, stop, uninstall) events. 

The remaining sections of this paper are organized as follows: section 2 gives an 

overview of the dynamics in OSGi and its implications; section 3 details different 

patterns of stale references; section 4 explains the techniques for runtime detection of 

those patterns; section 5 presents the results of an experiment with 4 open source 

application as a part of the validation of our work; section 6 talks about related work; 

and, at last, section 7 presents the future work and conclusion. 
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2   OSGi Dynamics and Implications 

The OSGi framework provides a straightforward service platform for the deployment 

of modules and services.  The deployment unit in OSGi is called bundle, which is an 

ordinary compressed jar file with classes and resources. The jar file manifest contains 

OSGi specific attributes describing the bundle. A bundle can be dynamically loaded 

or unloaded on the OSGi framework and may optionally provide or consume services, 

which can be any Java object. Applications can take advantage of the dynamic 

loading feature to update software components without the need to stop the 

application. For example, a production system may have a bundle updated with a new 

version due to minor bugs fixed or other types of improvements. 

Bundles can access the OSGi framework through a BundleContext object which 

becomes available in the bundle’s activation process. Through that object they can 

register and retrieve services. In OSGi, services are ordinary Java objects that are 

registered into the framework service registry under a given interface name. The basic 

process to retrieve a service instance consists in two steps: it is necessary to ask the 

BundleContext for the desired interface, resulting in a ServiceReference object which 

holds metadata of a service. The next step is to use the BundleContext again to 

retrieve the service instance that corresponds to that ServiceReference object.  

Upon service registration, modification or unregistration—either explicit or 

implicit when the defining bundle is stopped— the framework notifies the subscribers 

of the ServiceListener interface. Therefore, it is possible for service consumers to 

know when services become available (registered) or unavailable (unregistered). 

Any OSGi targeted code should be written considering the arrival and departure of 

bundles and services. The code must release references appropriately upon such 

events. Service consumers must be aware that a service departure means that a service 

instance or its ServiceReference must not be used anymore. Any usage of the 

unregistered object may lead to inconsistency. 

2.1   Bundles Isolation through Class Loaders 

Whenever a bundle is loaded —either during startup or later during runtime— it is 

provided with its own class loader. Classes and resources from a bundle should be 

only loaded through its class loader. This individual class loader mechanism permits 

to unload from memory all classes provided by a given bundle when it is stopped. 

The OSGi framework provides a basic level of isolation between bundles by means 

of that class loading mechanism. A bundle may choose which packages will be visible 

to other bundles by defining in its manifest an attribute with a list of exported 

packages. Only classes from exported packages (specified in the bundle manifest) 

may be instantiated by other bundles, which also need to explicitly specify in their 

manifest what packages they import. Whenever a bundle tries to reference a type, its 

class loader will enforce if the visibility rules are followed. Other mechanism that can 

be seen also as an isolation enforcement is the utilization of optional framework 

security permissions (AdminPermission, PackagePermission, and ServicePermission) 

which can provide a fine grained control to grant authority to other bundles perform 

certain actions, for example to retrieve a given service instance. 
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2.2   Isolation Limitations 

Although there is some isolation level between bundles, this mechanism cannot 

ensure complete or safe removal of bundles from memory. During bundle active time 

objects can be exchanged freely between bundles. For instance, a service may receive 

a parameter object that comes from other bundle. If the bundle that provided the 

parameter object is stopped there is no guarantee that the service will stop referencing 

the object it received as parameter, even if the bundle of origin of that object 

uninstalled from the framework.  

There is no security enforced communication channel (e.g., communication via 

proxy objects) that can be closed upon bundle departure, nor a protection domain (i.e, 

individual object spaces in memory) that enforces communication restrictions or other 

forms of application isolation. 

The OSGi platform does not provide a true means of isolation between bundles. It 

mostly relies in a set of good programming practices to avoid the misreferencing of 

objects after bundles are stopped. 

2.3   Stale References 

The OSGi specification, release four, defines in the section 5.4 a stale reference as  

“a reference to a Java object that belongs to the class loader of a bundle 

that is stopped or is associated with a service object that is unregistered” 

The utilization of such objects after the provider bundle being stopped leads to 

inconsistencies such as (1) incoherent operation results (e.g., stale services returning 

old data from stale caches) or erroneous behaviour due to the stale object’s context 

(e.g.., network connections, binary streams) be released or de-initialized; (2) garbage 

collection obstruction of the retained object, its class loader, and the class loader’s 

loaded types, leading to a memory leak. 

Utilizing a ServiceTracker or an OSGi component model helps to minimize the 

occurrence of stale references. The ServiceTracker is a utility class in the OSGi 

framework for providing a transparent means for locating services but it is error prone 

since service consumers may not release the consumed service instances 

appropriately. OSGi Declarative Services (part of the OSGi R4 compendium 

specification), Service Binder [9], iPOJO [10] and Spring Dynamic Modules [11] are 

OSGi component models that provide the transparent handling of services arrival and 

departure. However, their usage would not avoid all possible types of stale references. 

Other patterns of stale references which are detailed in the next session may not be 

avoided by such mechanisms. 

2.3.1   Propagation of Incorrect Results 
The usage of an unregistered service may lead to inconsistent method calls. If a 

bundle unregisters a service, it is likely that the service needs to be disposed; therefore 

it may release internal resources (open file streams and database connections, etc) and 

calls on that object would produce erroneous behaviour. Exceptions may be raised 

(e.g., access to a method that internally would try to use a closed connection) when 

methods of stale references are used. However if such method calls do not fail but 
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produce incorrect results, there is a worst scenario where faulty components are 

introduced into the system with risks to propagate inconsistencies throughout the 

whole application. This can happen due to the stale object’s internal state being 

invalid or stale (e.g., old cached data), which compromises the accuracy of operations 

involving that object. Such types of faults are harder to detect since the system would 

hide these issues and continue to work apparently without any problem. 

A service failure mechanism, as presented in [12], currently is not enforced by the 

platform. A fail-stop strategy would be able to make the faults more explicit when 

using stale references. If any calls to stale references would result in a crash (an 

exception thrown) there would be no propagation of incorrect results, and bugs would 

be evident. 

2.3.2   OSGi Specific Memory Leaks 
While the previous problem may sometimes be identified due to exceptions thrown, 

memory retention is rather difficult to be seen. In addition, the retention of class 

loaders impedes OSGi to dynamically unload the classes from a stopped bundle. 

 

 

Fig. 1. The arrow from BundleB to BundleA illustrates a stale reference that prevents the 

appropriate unloading of BundleA from memory.  

According to the Java Language Specification [13], a class or interface reification 

(a java.lang.Class instance) may be unloaded if and only if its defining class loader 

may be reclaimed by the garbage collector. As long as an object from a stopped 

bundle is reachable (Figure 1) we will have a reference to that object’s type as well, 

which references the bundle class loader which keeps all loaded types. Consequently, 

the classes can never be unloaded due to the presence of stale references. 
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3   Patterns of Stale References 

As stated previously, the framework cannot guarantee that the objects provided by a 

bundle will no longer be referenced when the bundle stops. Neither the OSGi 

framework itself nor the mechanisms mentioned in section 2.3 can completely avoid 

stale references. In the current OSGi specification, the framework needs to share 

responsibilities with bundles. The bundle side is error prone as it depends on good 

programming practices to correctly handle the departure of services and bundles. 

The correct handling mentioned previously will handle only a few patterns of stale 

references. We have classified three main patterns: (1) Stale services; (2) forwarded 

objects and (3) active threads from stopped bundles. 

3.1   Stale Services 

Stale services are a pattern of stale references that can be found when an unregistered 

service is still being referenced by active bundles. We considered that there are two 

levels of service referencing: reference to a service instance and reference to a 

ServiceReference instance. The former is the service object itself and the latter is a 

framework metadata object which is necessary to get a service instance. We kept 

references to ServiceReference instances as a simple case, but we classified a 

specialization of the reference to service instances as two possibilities: services from 

stopped bundles and services from active bundles. Therefore, we present the concept 

of stale services as three variations:  

• Reference to an unregistered instance of a service whose bundle is still active 

(has not stopped);  

• Reference to an unregistered instance of a service from a stopped bundled 

(update or uninstallation would lead to stopping the bundle as well);  

• References to unregistered org.osgi.framework.ServiceReference objects. 

The first case can happen during the active life-time of a bundle which may 

unregister a service due to an internal bundle change, for example. If after 

unregistration the service instance is retained by service consumers from other 

bundles we have a case of stale reference. In this case, the service can propagate 

incorrect results and it will also be prevented to be garbage collected. 

The second pattern is rather similar to the first one, but now the propagation of 

errors is more likely because the bundle has been stopped and may have suffered 

some de-initialization code. In addition, the bundle class loader and classes would be 

prevented to be unloaded from memory.  

The latter case of stale service (references to unregistered ServiceReference 

objects) does not prevent the unloading of bundle classes because there would be no 

reference to a bundle object, since the ServiceReference object is provided by the 

framework. Because of that, one may argue that this pattern does not fit the stale 

reference definition. However, this case has been added to our patterns because it may 

bring faults to the application and also characterizes the mishandling of service 

unregistration. When a ServiceReference is unregistered, subsequent calls to the 

framework using that ServiceReference object would return a null value, leading to a 

NullPointerException upon any method call attempt on the resulting value. 
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3.2   Forwarded Objects 

Bundles may freely exchange messages between them by means of service method 

calls. Ordinary objects may be passed as method parameters across bundle boundaries 

without restriction. Also, there is no restriction for a service to retain an object 

received as a method parameter or to forward that object reference to objects from 

other bundles. If the bundle that provides that forwarded object is stopped, the same 

memory retention problem as the stale service pattern would happen. The same also 

applies when objects are registered in server object repositories (e.g., MBean server, 

RMI registry) and are not appropriately unregistered when bundles are stopped.  

We have identified two variations of the forwarded objects pattern: 

• Forwarding of ordinary (non-service) objects 

• Forwarding of services as ordinary objects 

Figure 2 shows an example of the forwarding of an ordinary object. Consider that 

the code on that example runs on an object from Bundle X, and foo.BarService is 

provided by an object from Bundle Y. Bundle X calls a method on a service from 

Bundle Y and sends a parameter, which is a local ordinary (non-service) object from 

Bundle X. That parameter will be retained as an attribute in the Bundle Y service. If 

Bundle X is stopped, uninstalled or updated, the object that was sent to Bundle Y’s 

service will fit in the regular case of stale reference: impossibility to garbage collect 

the referenced object (localObj) and to unload the classes previously provided by 

Bundle X’s class loader. 

 

//Code on a BundleX retrieves a service from a BundleY 
ServiceReference ref = 
ctx.getServiceReference("foo.BarService"); 
BarService bar = (BarService)ctx.getService(ref); 

//LocalObject is created in (and provided by) BundleX 
LocalObject localObj = new LocalObject(); 

//service from BundleY will hold an object from BundleX 
bar.setAttribute("anAttribute", localObj); 

Fig. 2. Forwarding of an ordinary object. 

The second type of forwarded object pattern is detailed in Figure 3.  It shows that 

the Bundle X uses a service instance from Bundle Z and forwards that instance to a 

service from a third bundle (Bundle Y). Bundle Y now references an object from 

Bundle Z without knowing that it is a service. Although at that time the 

foo.BarService service holds an instance of xyz.AService, most likely it would ignore 

the unregistration of xyz.AService, since the setAttribute method semantics does not 

expect a service. If Bundle Z (the provider of the xyz.AService “attribute service”) is 

ever stopped, the foo.BarService will not release the reference to the xyz.AService 

object. Bundle Y would point to a stale reference that prevents the unloading of 

classes from Bundle Z. 
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A significant difference between referencing an ordinary (non-service) object from 

a stopped bundle and referencing a service instance from a stopped bundle is the 

absence of framework events to notify the departure of ordinary objects. But if a 

forwarded service is treated as an ordinary object, notifications of service 

unregistration are ignored and do not help. 

//Code on a BundleX retrieves a service from a BundleY 
ServiceReference ref = 
ctx.getServiceReference("foo.BarService"); 
BarService bar = (BarService)ctx.getService(ref); 

//Code on a BundleX retrieves a service from BundleZ 
ServiceReference anotherRef = 
ctx.getServiceReference("xyz.AService"); 
AService servObj = (AService)ctx.getService(anotherRef); 

//service from bundleY holds a service as an attribute 
bar.setAttribute("anAttribute", servObj); 

Fig. 3. Forwarding of a service instance as an ordinary object. 

3.3   Active Threads from Stopped Bundles 

According to the OSGi specification, when a bundle is stopped it has to immediately 

stop all of its executing threads. Since there is no isolated bundle space in memory, 

the framework cannot cancel a bundle’s set of executing threads. So, it must rely on 

good OSGi programming practices leaving that responsibility to the bundle developer. 

If the thread is not stopped in such cases, the same stale reference issue is found: 

an object (the Runnable object) from a stopped bundle is still reachable in memory, 

preventing garbage collection of its class loader (the bundle class loader) and the 

loaded types of that bundle. 

Table 1. Summary of stale references. 

Referred object Memory Retention 

(bundle objects 

and class loader) 

Incorrect Results 

Unregistered Service instance 

(Stopped bundle) 

Yes Yes 

Unregistered Service instance 

(Active bundle) 

Yes  

(but no class loader 

retention) 

Yes 

Unregistered ServiceReference 

instance 

No Yes  

(NullPointerException) 

Active Thread (stopped bundle) Yes Yes 

Forwarded object (stopped bundle) Yes Yes 
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4   Detection techniques 

Information to track object references and diagnose stale references is not present in 

implementations OSGi of the framework. Several reasons have led us to think that 

changing the source code of OSGi implementation to add that information would not 

be adequate. It would be needed to inspect the registration and retrieval of services, 

class loader creation, etc. The custom code to track such objects would be scattered 

all over the OSGi framework implementation code. It is clear that a solution which 

customizes a given OSGi implementation would compromise the portability to other 

OSGi implementations. In addition, other problems such as tracking the creation of 

threads would concern bundles but not the framework. This would imply in changing 

bundle code as well, which we most likely don’t have access in all applications. 

The whole situation led us to choose the application of Aspect Oriented 

Programming (AOP) [7] techniques. Instead of adding a cross-cutting concern to the 

code of OSGi implementations, we left the tracking code as separate aspects. AOP 

would enable to weave those aspects into different OSGi implementations. The 

process would be the same for all of them: each implementation would have its 

bytecode changed resulting in a composed implementation capable of providing 

information to identify stale references. 

The reference tracking techniques presented here rely on a special type of reference 

provided by the Java programming language, called weak reference. Weak references 

are different than ordinary (strong) references. They do not prevent a referred object 

to be reclaimed from memory and are able to tell if an object has been garbage 

collected. 

4.1   Point cut definitions 

AOP introduces the concept of joint points, which are well defined points in the 

program flow (e.g., method call, constructor call). Point cuts are elements that pick 

one or more specific join points in the program flow. We have defined two different 

sets of point cuts. One was responsible for aspects that would be applied to the 

framework, for example tracking service registration and retrieval, bundle start up, 

class loader creation, etc. The other set of join points was responsible for the aspects 

on bundles, which so far were limited to the creation and start up of threads. 

The code that is injected into point cuts during the weaving process is called advice 

in AOP terminology. The portions of code defined in the advices are executed during 

method interception. In the techniques that we have developed and tested, the advices 

contained the calls to the code that enabled the tracking of objects. 

4.2   Detection of Stale Services 

With AOP, service registration can be intercepted and each ServiceReference object 

tracked with weak references. Our technique consists also in track the garbage 

collection of each instance provided by a ServiceReference. Multiple service 
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instances can be served by the same ServiceReference when the service provider is a 

ServiceFactory, which can provide one service instance per bundle. 

In order to verify the existence of stale services, it is necessary to analyze tracking 

information relative to unregistered ServiceReference objects. There are two 

straightforward manners to know the existence of stale services. One is checking if 

the unregistered ServiceReference object has not been garbage collected, and the 

other is to verify if all service instances of each unregistered ServiceReference have 

been garbage collected. The former would characterize the pattern of a reference to an 

unregistered ServiceReference. The latter identifies the pattern of a reference to an 

unregistered service instance. 

4.3   Detection of Active Threads from Stopped Bundles 

The detection of thread creation and its start up in bundle code is necessary in order to 

have more information about them. Instead of weaving the framework, this approach 

implies in weaving the bundles. Two options are possible: static weaving or dynamic 

(runtime) weaving. The same aspects are reusable in both approaches.  

The static weaving is easier to perform but adds the step of externally weaving the 

bundles before loading them into the platform. The dynamic approach is more flexible 

but adds the overhead of weaving while loading the bundles in runtime. It is also 

necessary to add code in the framework, by AOP as well, to intercept the loading of 

bundles and dynamically weave them. 

The information on thread point cuts allows establishing a bundle-thread relation 

that can be stored for later inspection. Running threads that are in the bundle-thread 

map can have their metadata inspected (e.g. the class loader of the bundle that started 

the thread) and compare it with logged information of the bundle that started the 

thread. It is possible to identify if the bundle that started the thread has been update, 

stopped or uninstalled. 

4.4   Identifying Forwarded Objects 

Identification of forwarded objects was found to be more difficult and depends on the 

inspection of dumps of memory, as the one provided by tools such as jmap which 

comes with the Java 6 SDK. It is necessary to inspect a memory dump and verify if 

there are reachable objects whose class loader belongs to a stopped bundle. Jhat is a 

tool also available in the Java 6 SDK which allows performing queries o memory 

dumps. Its API can be integrated into applications that can programmatically perform 

queries on memory.  

Establishing a relation between runtime information and memory dump 

information is difficult. An object’s id in the heap is a sort of JVM private 

information that is not available to the runtime objects via a Java API. User 

intervention constructing ad-hoc queries has proven to be more precise some times. 

This happened due to the fact that automated inspection extracted runtime information 

of private attributes by means of reflection and compared it with results from queries 
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on memory dumps. The results most of the times would return a list of suspects that 

would need to go through a manual inspection by the user. 

5   Validations and Experiments 

The techniques to detect the patterns of stale references presented here were 

developed, tested and validated. We have developed a diagnostic tool called Service 

Coroner [8] which examines the “dead” objects from stopped bundles. Our work 

comprises the implementation of the aspects to track the code, the classes to perform 

the queries, the tool that visualizes the problems and a fail-stop mechanism to avoid 

calls on stale services. The latter was developed as a side experiment that we detail in 

the end of this session. 

Aspects were developed and weaved with AspectJ [14] and each technique was 

initially validated by bundles that were intentionally developed with errors that would 

present stale reference problems. A series of life cycle events (stop, update or 

uninstall) would lead to stale references that were diagnosed by the tool. 

The diagnostic tool and the results of an initial experiment are presented in [8]. We 

have extended that experiment by adding two other open source applications and also 

analyzing stale threads. The tool is able to inspect OSGi applications and diagnose the 

patterns presented in this paper. 

5.1   Portability across OSGi Implementations 

Althought the process of weaving an OSGi implementation may be seen as 

intrusive due to the changes it performs in the bytecode, the techniques that we have 

developed as separate aspects where easy to be applied to different OSGi 

implementations. As part of the validation, we have achieved to weave the diagnostics 

aspects into the three main implementations of the OSGi specification, Release 4: 

Equinox [15], Felix [16] and Knopflerfish [17]. All of the weaved platforms were 

successfully tested with our bundles that present the stale references patterns. 

From a source code point of view there was no need to change any of the 

implementations. The process of aspect weaving was the same on all of the three 

platforms, and consisted on a simple build process that basically compiles the Service 

Coroner tool, the aspects and then weaves the aspects into the OSGi implementation. 

5.2   Experiment on Open Source OSGi applications  

We have validated the diagnostic tool in an application scenario where errors would 

not be intentional like in our test bundles. Four open source applications constructed 

on top of OSGi were inspected with the Service Coroner tool: JOnAS1 5.0.1 [18], SIP 

Communicator Alpha 3 [19], Newton 1.2.3 [20] and Apache Sling [21]. JOnAS is a 

                                                           
1 We have also inspected Apache Geronimo and Glassfish V3 JEE servers, however analyzing 

them would not bring significant results since they do not use the OSGi service layer. 
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JEE application server; SIP Communicator is a multi-protocol instant messenger 

application; Newton is a distributed component framework that provides an 

implementation of the Service Component Architecture (SCA) standard [22]; and 

Sling is a web framework that uses a Java Content Repository. All applications are of 

significant size, especially JOnAS, whose core is about 400 000 lines of code but 

comes to over 1 500 000 when the other components are taken into account. 

Table 2 presents an overview of the experiment that was run on a Sun HotSpot 

JVM 1.6.0u4. All OSGi implementations utilized have been previously weaved with 

the aspects that we have developed. The line IV of table 2 shows that JOnAS, SIP 

Communicator and Sling are partially developed with component models for the 

OSGi Platform: iPOJO, Service Binder and Declarative Services, respectively. 

Nevertheless, Newton which provides an implementation of SCA has not been 

developed with a component model. 

Table 2. Overview of the experiment. Lines VIII to XI present the results. 

I Application JOnAS SIP Comm. Newton Sling 

II Version 5.0.1 Alpha 3 1.2.3 

2.0 incubator 

snapshot 

III OSGi Impl. Felix 1.0 Felix 1.0 Equinox 3.3.0 Felix 1.0 

IV 

Bundles using 

Component 

Models 

20 

iPOJO [10] 

6 

Service 

Binder [9] 

02 18 

Declarative 

Services [1] 

V Lines of Code 

Over 

1 500 000 

Aprox.  

120 000 

Aprox.  

85 000 

Over  

125 000 

VI Total Bundles 86 53 90 41 

VII 

Initial No. of 

Service Refs. 82 30 142 105 

VIII 

No. of Bundles 

w/ Stale Svcs. 4 17 25 2 

IX 

No. of Stale 

Services Found 7 19 58 3 

X 

No. of Stale 

Threads 2 4 0 0 

XI 

Stale Services 

Ratio (IX/VII) 8.5 % 63 % 40.8% 2.8% 

 

The tool was capable of executing scripts that could simulate life cycle events 

(update, start, stop, uninstall). A script executed by the tool simulated the update of 

components during runtime by performing calls on the update method of bundles that 

provide services (except for bundles related to the OSGi framework or component 

models). We used a standard 10 seconds interval between each bundle life cycle 

method call. With Newton and Sling we had to adapt the script because of exceptions 

                                                           
2 Actually the whole Newton implementation is an SCA constructed on top of OSGi, but its 

bundles did not use an OSGi component model like the other analyzed applications did. 
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being raised during bundle update. Instead of the update method, we performed a call 

to the stop and start methods with the standard interval between each call. 

5.3   Fail-stop Calls on Stale Services 

A crash-only principle, as provided in [12], could be adapted to services in the 

OSGi environment. We have implemented this fail-stop approach to avoid the 

propagation of incorrect results when calling methods on stale services. Any method 

call on stale services would throw an exception. Actually such calls were being done 

through a proxy object dynamically generated. 

We have added another point cut to intercept the calls of the getService method in 

the BundleContext. Whenever a service instance was requested, the result would be a 

proxy object that wrapped the service instance. The proxy would receive the calls and 

delegate them to the actual service. Upon service unregistration, the proxy object had 

its state invalidated. Subsequent calls to the invalidated proxy would throw a runtime 

exception. Proxies were cached to avoid creating multiple proxies for the same 

service instance if it was requested multiple times. 

The experiment presented previously did not utilize the fail-stop services. We have 

successfully tested it in a controlled environment where we developed all bundles 

deployed in the framework. Other adjustments would be necessary to make our 

implementation more robust and usable in other scenarios. This strategy could be 

taken further to minimize the impact of stale services, the strategies to handle such 

exceptions would allow the auto correction of applications that upon such crashes 

could react trying to retrieve a valid service or aborting the operation if no valid 

instance of the service is found. 

5.4   Limitations and Drawbacks 

Some drawbacks have been found regarding the implementation of the techniques 

presented here. The first one is regarding the OSGi optional security layer when using 

digitally signed jars files. Since we have utilized bytecode weaving, the resulted jar 

file will be different from the original one. Thus, the loading of the changed 

framework jar file will imply in security errors that will impede the start up of the 

OSGi platform. This could be found with Equinox [14] version 3.3.2 which provides 

the digitally signed jars feature, a security feature whose objective is to ensure that 

jars contents are not modified. In order to utilize our tool, such security option would 

have to be disabled. We have achieved to turn that off on Equinox by removing all 

information about security on the manifest and the jar file. 

The second drawback was found when doing inspections of memory dumps using 

the jhat API integrated to our tool. The process of reading memory dumps consumes a 

large amount of memory and occasionally would lead to out-of -memory errors. An 

alternative would be using such tools as a parallel auxiliary tool instead of trying to 

integrate it with the running application. 

Although we have removed the propagation of incorrect results produced by stale 

services and made their utilization explicit by throwing exceptions, generally the 
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proxy solution of our fail-stop approach has two limitations. It does not completely 

solve the memory retention problem. Upon service unregistration the proxy can free 

the reference to the actual service, but the service class loader (and all java.lang.Class 

objects it has loaded) would still hang in memory. 

6   Related Work 

Our work addresses a problem which is a consequence of code isolation limitations in 

a specific Java-based middleware for services and components. The same issues apply 

in environments with similar modularity approaches based on the concepts of OSGi, 

such as the upcoming Java Module System [23]. Thus theses techniques could be 

adapted to detect the same problem when that system becomes available. 

We focus on the dynamic diagnosis of OSGi applications, evaluating OSGi 

specific problems during runtime. There are other mechanisms partially addressing 

this problem in OSGi and in other platforms as well. OSGi component models [9], 

[10] and [11] provide mechanisms that automate service location and handle service 

departure but do not avoid all patterns of stale references, as previously mentioned.  

A formal model was built on [24] for OSGi verification. By doing that formal 

analysis they were able to check and identify stale references problems. However 

their solution was coupled to a specific OSGi implementation (Knopflerfish) and 

constrained by the limitation of the environment that was used for formal verification. 

Only applications with a maximum of 10 000 lines of code could be analyzed. They 

proposed three different solutions to avoid stale references. On each solution the 

services would have to extend from a default service superclass that provides a lock 

object. All solutions would depend on synchronization on that object in order to 

acquire a lock to access the service. 

A service failure approach [12] presents a fail-stop solution to handle faults in the 

composition of services in SOA environments where consumers of a service must 

anticipate that any service provider will crash from time to time. Another work [25] 

presents, like ours, a proxy-based service solution to deal with fault tolerance. 

However, their approach to is different and does not prevent the stale service from 

being called. Their proxy implementation is responsible for dynamically locating the 

best service implementation, and in case of faults it tries to locate another service.  

Concerning isolation mechanisms, other environments such as .NET [26] have 

concepts like application domains which resemble lightweight processes isolated from 

one another and can even be terminated without interfering in the other domains 

execution. Communication across application domains is done in an RPC fashion and 

objects are sent via marshalling. Application domains can be dynamically loaded but 

have limitations in being unloading. 

In Java, an effort on JSR 121 [27] provides an environment where applications can 

be isolated from each other by means of Isolates, which are application units which 

resemble lightweight processes. Applications are isolated in different object spaces 

but they can share some resources like runtime libraries. Communication between 

isolates can be done through Java RMI (remote method invocation) based 

mechanisms which imply in marshalling objects across contexts. 
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7   Conclusions and Future Work 

The OSGi service platform is a dynamic environment for modules (bundles) and 

services, but it still does not provide a completely isolated environment where 

services and bundles may be transparently removed during runtime without the risk of 

having their objects still being referenced by active code. Memory instrumentations 

tools currently available (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit) 

do not consider such particularities of the OSGi framework such as bundle life cycle. 

The problem of stale references described in the OSGi specification may happen if 

misprogrammed bundles do not handle correctly services unregistration and bundles 

unavailability. The utilization of stale references introduces memory leaks and faulty 

components into the system due to the propagation of incorrect results (e.g., a stale 

service that provides invalid cached data).  

This paper presents different patterns of stale references, techniques to diagnose 

them and a fail-stop mechanism to minimize inconsistent results due to the utilization 

of stale services. The runtime diagnosis techniques presented here were implemented 

and validated in a tool called Service Coroner, and were effectively tested against four 

open source applications. Our detection techniques provide a solution that is portable 

across different OSGi implementations, without needing to change their 

corresponding source codes. We rely on AOP to keep the tracking code as separate 

aspects that can be weaved into different OSGi implementations. Weak references 

were used to identify which tracked objects have been garbage collected or not. 

In a COTS market that targets OSGi application it would be necessary to somehow 

measure the quality of the components. For example, if they are able to be updated in 

the system without leaving any weak references or if they would not provoke such 

problems in the system. 

The diagnostics tool that is part of our work addresses OSGi specific issues not 

covered by currently available tools. Our techniques have proven that it is completely 

feasible to analyze large OSGi applications and components during runtime, allowing 

to detect the presence of implementation flaws that lead to stale references. We were 

able to evaluate if the applications’ components are ready to handle some dynamic 

characteristics of the OSGi platform like being able to cope with module updates. 

The initial fail-stop mechanism that we provided invalidates any method call on 

stale services, avoiding the propagation of incorrect results and facilitating to know 

where stale services are being used in the application. Some improvements need to be 

done in that mechanism in order to run it in any type of OSGi application. 

In our future work, we also plan to provide a more automated test approach by 

wrapping the script execution on unit tests. A wider range of OSGi based applications 

should be tested. It would also be important to adapt the presented techniques for 

providing the runtime inspection of the Eclipse platform’s extension points (although 

constructed on top of OSGi, Eclipse has its own dynamic plugin mechanism). 
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