
Service Coroner: A Diagnostic Tool for Locating OSGi Stale References

Kiev Gama and Didier Donsez

University of Grenoble, LIG laboratory, ADELE team

{firstname.lastname}@imag.fr

Abstract
The OSGi Services Platform provides a framework

for the dynamic deployment of Java-based

applications. It allows to install, to activate, to update

and to uninstall application modules without the need

to restart the host Java Virtual Machine. However, the

mishandling of such OSGi dynamics may result in a

problem described in the OSGi specification as Stale

References, which happen when services from

uninstalled modules are still referenced by active code.

It may lead to inconsistencies in application’s

behavior, state and memory. Currently, there are no

tools available to address this issue. This paper

presents a diagnostics tool named ServiceCoroner that

detects such problems. It helps developers and

administrators diagnose OSGi applications running

either in production or test environments. We have

validated this tool on two open source applications

that run on OSGi: a JavaEE application server and a

multi-protocol instant messenger application. The

results of the experiments show stale references in

those applications.

1. Introduction

The OSGi [1] framework introduced the concept of

module system that was missing in the Java platform.

This concept tackles the problem of the “Classpath

hell” encountered when applications are deployed

(installed or updated) on production sites (i.e., end-user

PCs or host servers). Applications can take advantage

of a “hot deploy” capability, where modules (called

bundles in OSGi nomenclature) can be added, updated

or removed without restarting the JVM. In addition,

each bundle is provided with its own class loader. This

provides various advantages including the possibility of

having independent versions of the same class, and

allowing the unloading of classes when a module is

updated or uninstalled.

Moreover, the OSGi specification applies service-

oriented architecture principles to Java application

design. The concept of service is important to decouple

the application modules in order to dynamically

substitute or update individual modules without

affecting the entire system.

The OSGi has proved to be successful in embedded

systems. Its adoption in the software industry is

continuously growing as more applications tend to take

advantage of its pluggable architecture. One of the well

known cases is the Eclipse project [2] that since

version 3.0 has migrated to the OSGi platform. A new

trend in desktop applications [2] and server

middlewares [3] (i.e., JOnAS, Weblogic, WebSphere)

shows the growing adoption of OSGi as a modular

layer for either commercial or open-source Java-based

products.

Programming a modularized application that targets

OSGi is a task that is apparently easy but developers

must be aware of some particularities. It is critical to

correctly handle framework events such as arrival

(registration) and departure (unregistration) of services

and bundles. Most of the time, application developers

that are not experienced with OSGi dynamics provide

code that may retain service references even when the

providing bundles are gone. The OSGi R4 specification

refers to this problem as stale references. Identifying

stale references is not easy since current Java

diagnostic tools do not handle this OSGi specific

problem.

This paper presents the results of an experiment

made with a custom built tool which allows the analysis

and detection of stale references. The objective of the

tool is not to solve the stale references problem, but to

identify it and help developers and administrators of

OSGi based applications ensure that bundles provide

behavior well suited to OSGi dynamics. The tool was

validated with the analysis of two open source

applications constructed on top of OSGi:

JOnAS 5.0.1 [4] and SIP Communicator [5], both of

which have presented stale references after the update

of some bundles.

The remainder of this paper is structured in the

following order: Section 2 details OSGi and the stale

references problem. Section 3 describes our tool,

ServiceCoroner, and the techniques used to develop it.

In section 4, the analysis of two OSGi applications is

detailed. Section 5 presents related work, and at last

conclusions and future work are presented in section 6.

2. OSGi and the Stale References Problem

The OSGi framework provides each bundle with a

BundleContext object that gives access to the

underlying framework. A bundle can register and

retrieve services through the BundleContext. In order

to retrieve a service instance in OSGi it is first

necessary to know its ServiceReference, which is

service metadata that informs what bundle provides the

service, what are the service properties, and so forth.

The BundleContext provides a getServiceReference

method that takes the name of the service interface and

an optional property filter.

A bundle that provides a service may choose to

directly provide the service instance
1
 or to provide a

ServiceFactory that will be responsible of creating

service instances. The ServiceFactory makes it possible

to provide an individual service instance per client

bundle. That is, if two bundles request the same service

they will get different instances of the very same type.

After being loaded by OSGi, each bundle will have

an individual class loader to load resources (e.g.,

images, text files) and classes provided by the bundle.

This, combined with a class import and export policy,

gives a certain level of isolation between bundles. This

mechanism provides an additional namespace level

making it possible to have multiple versions of classes

with identical absolute names but provided by different

bundles (note that this is not related with the

ServiceFactory described before).

2.2. The Stale References Problem

Although OSGi provides individual class loaders

per bundle, bundles are not completely isolated from

each other. One bundle may use a service that is

provided by another, and consequently originated from

a different class loader. Whenever a bundle becomes

unavailable all other bundles that use its classes must

release all references to objects provided by the

departed bundle. This procedure is necessary to ensure

1
 For the sake of clarity this paper refers to service

reference as the ServiceReference object, and service instance as an

instance provided by the BundleContext via the

getService(ServiceReference) method.

that the garbage collection will take place correctly and

that no bundle will utilize inconsistent services.

Figures 1 through 3 illustrate a common scenario of

life cycle events that result in a stale reference being

kept. In Figure 1 normal interaction between the

service provider and the service requester can be seen

on Bundles 1 and 2, respectively. Bundle 2 consumes a

service whose implementation is provided by an

instance of the class A from Bundle 1.

If Bundle 1 is stopped, the framework will

automatically notify the unregistering of all services

provided by that bundle. In our scenario, Bundle 2 is

supposed to release references to the service instance

of class A upon the unregistration of A’s corresponding

service reference. This results in having no references

towards objects of Bundle 1, permitting these objects

to be collected by the JVM.
However, Figure 2 shows that this procedure was

not performed by Bundle 2, which keeps holding a

reference to a service instance from a stopped bundle

(Bundle 1). It shows that Bundle 2 did not handle the

departure of the service reference that provides the A

service instance. Bundle 2 is still able to perform

method calls on the object A that possibly can lead to

inconsistent information or to an inconsistent state

since such method calls are being made on an object

from a stopped bundle. For example, network

connections or file streams could have been closed by

the stopped bundle, causing errors on the object A.

The retention of the service instance will prevent the

A object of being garbage collected. As a consequence,

A’s class loader and all class types (java.lang.Class) it

has loaded will also hang in memory.

In the continuation of the described scenario, the

Bundle 1 has been updated during runtime. A new class

loader has been assigned to that bundle, and a new

instance of A (now from a different class loader) has

been registered. Figure 3 shows that Bundle 2 kept

using the stale reference and did not take into

consideration the arrival of the new service provided by

the updated Bundle 1.

In the described scenario the objects from old

Bundle 1 (the service instance A v1.0, its class loader

and all java.lang.Class instances loaded by that class

loader) will only be eligible to garbage collection if

Bundle 2 is stopped. However, if Bundle 2 is restarted

the same situation is likely to happen again upon the

same sequence of events.

This is not only limited to bundle updates. If, for

example, a bundle provider of a given service instead

of updated is just stopped or uninstalled, it can never

be released from memory if a similar situation as in

Figure 1 happens.

Figure 1. Normal scenario

Figure 2. Reference is now stale

Figure 3. New bundle is started but not used

Bundles isolation is compromised by the bad

handling of service departure. The OSGi specification

indicates practices to minimize the problems but they

still are error prone.

An alternative to avoid such problems is to utilize

mechanisms that provide transparent handling of

service location, like the ServiceTracker. However, in

that approach, clients can still keep references to

service instances no matter how these references were

retrieved. In addition to transparent location handling,

other mechanisms like OSGi declarative services,

Service Binder [14], iPOJO [6] and Spring Dynamic

Modules [15] deal seamlessly with the releasing of

service instances and service references upon service

unregistration.

These last two options are the ideal way to provide a

more complete handling of service dynamics,

consequently avoiding stale references. On the other

hand, stale references can still be found in other

patterns. In this other scenario, for example, if a bundle

X retrieves a reference to a service from bundle Y.

Then bundle X makes a method call on an object from

a third bundle Z passing that reference ahead as a

method parameter. This makes harder to prevent a

possible stale reference. That third bundle may keep

the reference if bundle Y (the provider) becomes

unavailable. Most likely, in this scenario only bundle X

is concerned with the service departure. Therefore,

reference forwarding to other bundles would not be

solved by the previously mentioned mechanisms.

3. The ServiceCoroner diagnostic tool

The ServiceCoroner tool relies on weaved OSGi

implementations that enable to examine OSGi-targeted

applications during runtime and to diagnose stale

references. It enables developers and administrators

diagnose OSGi applications running either in

production or test environments.

Instead of changing the source code of any existing

OSGi implementation we have chosen to use Aspect

Oriented Programming (AOP) [7] techniques because

they allow keeping our tracking code separated from

actual OSGi implementation code. Since one of AOP’s

principles is separation of concerns, we keep the

tracking code as a concern that does not “pollute” the

OSGi code. By keeping that separation we have just a

minimal effort of weaving each OSGi framework

implementation to achieve tool portability across them.

A few frequent patterns of stale references to be

analyzed in OSGi have been identified: retention of

service instances and service references from stopped

bundles; services that retain an ordinary object

reference (received as a parameter in a normal method

call) from a client bundle that has been stopped;

unfinished threads created by bundles that are stopped.

Currently, the tool deals only the first presented

pattern. Work is already in progress to also identify the

threads pattern but results are not precise yet. The next

subsections describe in more detail our diagnostic tool.

3.1. Method interception with AOP

The Service Coroner tracks each service reference

object and the service instances that bundles provide.

Upon services unregistration it is possible to verify if

the services that are supposed to be garbage collected

have really being removed from memory.

Since the current OSGi implementations do not

provide enough information to track its services in a

manner that stale references can be identified, the

implementation of this tool adds that functionality to

the platform using automated mechanisms, eliminating

the need to manually modify the OSGi implementation.

This has been achieved using AspectJ [8] to provide

interception of method calls in the OSGi framework

code. AspectJ provides an AOP extension to the Java

platform.

The aspects are created targeting interfaces of the

OSGi API. The bytecode weaving mechanism changes

some classes (which implement the target interfaces) of

the target OSGi platform by adding the desired

diagnostic aspects. Strategic joinpoints in the OSGi

API were defined in order to identify where the

interception of certain method calls should be done. A

build process first compiles the ServiceCoroner, and

then performs the weaving of the aspects into a target

OSGi implementation adding calls to the

ServiceCoroner API.

The tracking of garbage collection of objects was

possible by utilizing Java Weak References, which are

a special type of object reference that is treated

differently by the Garbage Collector, allowing the

application code to know if an object allocation has

been reclaimed or not. The aspects weaved into the

framework provided a way to inject calls to the

ServiceCoroner inside the framework code. Among

other tasks, those calls would create weak references to

track service instances and service references.

3.2. Diagnostic Process

The process of identifying stale references and their

potential causers can basically be done using two

different strategies: active diagnosis or passive

diagnosis.

The active process consists in forcing bundle life

cycle events (e.g., stop, update, etc.) either by

interacting with an OSGi command line tool or by

using ad-hoc code on the ServiceCoroner scripting

console. Life cycle events may be applied to bundles

randomly chosen or to a given range of bundles. If the

code does not handle service dynamics appropriately,

stale references can be easily found. This approach

usually leads to faster results than passive diagnosis.

Such empirical usage of this approach eventually leads

to more refined test cases.

The passive process requires a longer observation of

service arrivals,departures and life cycle events. The

objective of this process is to observe the life cycle

changes without directly interfering. Normal interaction

is done in the application. Life cycle events result from

the actual administration tasks such as the deployment

or update of modules consistent with the application

usage. If necessary, a production environment could

have its deployed OSGi framework temporarily

replaced by the ServiceCoroner weaved version in

order to provide an actual diagnosis and find possible

service retention bottlenecks.

The drawback of the first approach is that one can

not be sure that a simulation of the application’s real

behavior is being done. The second approach may take

longer to get significant results but it can provide more

accuracy related to the actual behavior of the OSGi

application. Moreover, while the active process is only

suitable for a test environment the passive approach

can perform diagnosis either on a test or on a

production environment.

3.3. Analyzing Results

By inspecting all information utilizing the tool’s

GUI, it is easy to identify stale references when a

service reference that has been unregistered still

appears in the list with its number of active servants

greater than zero or with the garbage collected status as

false. A built-in query is utilized by the GUI to show a

list of all stale references found.

The ServiceCoroner may show inconsistent

information immediately after a bundle has been

stopped. Since it depends on weak references, the tool

would have to wait until the next garbage collection

takes place in order to display consistent information.

Garbage collection (GC) may be called through the

tool’s GUI which simply performs a call to Java’s

System.gc() method. This will not necessarily imply in

an immediate execution of the GC as it may vary in

each JVM implementation. However, in the

environment of our experiment, manual calls to the GC

via our GUI presented a fast response. We could verify

that by doing the following steps: (1) stop a range of

bundles; (2) verify the number of stale references; (3)

perform the call to perform GC; (4) verify again the

number of stale references. The number of stale

references in step 4 was always smaller than in step 2.

By using our tool it is also possible to identify the

potential retainers of service instances. This feature is

not yet automatic since the resultant data is just an

intermediary result that still needs to be analyzed by the

user. Currently it lists all referrers to all instances of a

given type. For example, if the referrers of ServiceX

from Figure 2 are analyzed, the result set would display

not only the objects from Bundle B that refer to the

particular ServiceX instance but also all the objects that

refer to any ServiceX instance, including the instances

from Service X’ of Bundle A’. In the current version

the queries on memory are based on the type rather

than the single object.

In order to perform such detailed inspection on the

memory allocation tree, the ServiceCoroner tool

utilizes the jhat and jmap tools provided in the Java 6

SDK. Jmap allows making dumps of memory with

information about heap details. Jhat is another tool that

is able to read jmap memory dump files and perform

queries on it.

The object referrer queries are done on an instance

of a jhat engine running on the same JVM as the

ServiceCoroner. Query results are transformed into

ServiceCoroner API objects.

3.4. Portability and performance

The weaving process was validated on the three

main OSGi R4 implementations: Apache Felix [9]

version 1.0, Knopflerfish [10] version 2.0.1 and

Equinox [11] version 3.2.0. Initial tests on Equinox v.

3.3.0 were not successful to its default utilization of

signed jars. Since the bytecode weaving changes the

affected class files, the corresponding class hashes

stored in the jar manifest would become invalid.

During framework startup, this resulted in a validation

error while attempting to load the framework jar file.

The process worked in Equinox v. 3.3.0 only if we

removed all security information from the jar and then

performed the weaving.

The ServiceCoroner was implemented independent

of any particular OSGi implementation. The coupling

exists only to the framework API, which is common to

all implementations. Thus, the construction of the tool

was achieved without needing to change or recompile

the source code of any OSGi implementation. Only the

bytecode needed to be changed by applying weaving

techniques provided by AspectJ.

Even though no performance changes were

measured, the cost of method interception appears to

have a non significant impact. The interception is made

on some interactions of the bundles with their

BundleContext object, which are not very frequent.

An optional tool feature that allows a fine grained

analysis of object referrers depends on the jhat and

jmap experimental tools that are shipped as part of

Sun’s JDK 6. The usage of those tools is then limited to

the usage of that JDK version. The usage of jhat has

memory usage implications as it allocates a large

amount of memory to load the memory dumps.

Exhaustive utilization of that feature leads to

OutOfMemory errors.

3.5. Graphical User Tools

ServiceCoroner provides two graphical user tools to

help the developer to inspect a running OSGi platform.

The first one is displayed upon execution sharing

the same JVM of the inspected application, as shown in

figure 4. The tool is able to provide information per

bundle information regarding class loaders, service

references and service instances.

In addition to detailed service references

information, the GUI provides a scripting console to

write and execute ad-hoc code directly into the

platform. This is possible through an OSGi

BundleContext instance that is provided as a built-in

variable available to the console.

However, if a server needs to be tested, the built-in

GUI is not appropriate. A remotely enabled tool is

more adequate to such task.

Figure 4. ServiceCoroner standalone GUI

 A second type of GUI enables the diagnostic on a

remote OSGi platform. The ServiceCoroner registers a

JMX [12] manageable bean (MBean), the tool allows

to diagnose a remotely deployed application that

utilizes the ServiceCoroner tool and a properly weaved

OSGi framework. A custom JConsole plugin has been

developed to display ServiceCoroner information

provided by its custom MBean in the standard

JConsole 6 (shipped with Java 6) and the VisualVM

[13]. Figure 5 show the ServiceCoroner plugin running

inside of the VisualVM.

Figure 5. ServiceCoroner plugin in the

Visual VM

The functionality currently provided is rather

limited in terms of details and provided information

when compared with the default GUI that is started by

the ServiceCoroner, but permits tools such as JConsole

and VisualVM to display such information

4. Validation and Analysis

The experiment performed an analysis in two

applications: JOnAS and SIP Communicator.

JOnAS (Java Open Application Server) [4] is an

open source implementation of the JEE specification,

provided by the OW2 consortium. The version 5 of

JOnAS is a bundlization of more than 1.500.000 lines

of code (LOC) of the previous version. Technical

services and API are packaged as OSGi bundles [3].

Most of them exchange OSGi services (unlike

Geronimo which uses only the module layer). Part of

the OSGi services is provided through iPOJO [6]

components.

SIP Communicator [5] is a multi protocol

audio/video Internet phone and instant messenger tool.

Protocols plugins are delivered as separated bundles.

The version 1.0 alpha 3 contains approximately

120.000 LOC packaged in 53 bundles.

Both applications use the Apache Felix [9]

implementation of OSGi. JOnAS and SIP

Communicator have been chosen since they are free

open source applications that use OSGi’s service layer.

As the current state of the tool presented here focuses

on the bad utilization of services, the ServiceCoroner

tool would not bring useful information in applications

such as Geronimo which uses only the module layer

and Eclipse IDE which uses mainly its own concept of

extension points.

The active process previously described was applied

on the two analyses. In order to run the desired

application with the tool, the OSGi implementation

version used by each application was replaced by a

bytecode weaved version.

During execution time, the code that intercepted

some OSGi methods would add tracking information to

allow the discovery of stale references.

Table 1. Experiment results

I Application JOnAS

SIP

Communicator

II Version 5.0.1 Alpha 3

III OSGi implem. Apache Felix 1.0

IV JVM Sun HotSpot JVM 1.6.0u4

V Lines of code

More than

1.500.000
2
 120.000

VI Total Bundles 86 53

VII

No. of Bundles

with Stale Refs. 4 17

VIII

Initial number

of Serv. Refs. 82 30

IX

No. of Stale

Refs. found 7 19

X Ratio (IX/VIII) 8,5 % 63 %

A custom script for the experiment was run in the

ServiceCoroner scripting console. The script is

responsible for calling the update method in an interval

of bundles that provide services. After executing the

script the tool could analyze which bundles had

unregistered service references and service instances

kept by other bundles. The data was ensured to be

2
 JOnAS code base is only 400KLOC according to ohloh.net.

However, JOnAS had many runtime dependencies to other FLOSS

projects (e.g. TomCat, Jetty, EasyBeans, Axis, JacORB, Medor,

Joram). As a comparison, similar JEE servers such as Glassfish and

JBoss contain 3MLOC and 1.2MLOC, respectively.

collected after the garbage collection, according to the

process described in section 3.3.

Both tests described below have been performed on

a Sun Hotspot JVM version 1.6 update 4.

Table 1 provides a summary with general

information about the results of the experiment

performed by the ServiceCoroner tool on the two target

applications.

SIP Communicator errors seemed to be more

frequent mostly due to an erroneous coding pattern that

we have identified. By analyzing memory dumps it

could be found that services were being statically

referenced by class variables that did not release them

upon service departure. Services retention in JOnAS

was mostly caused, directly and indirectly, by JMX

[12] related bundles.

The tool can quickly identify the objects retained as

stale references, but limitations previously mentioned

retard the process of detecting the causers of that

retention.

5. Related Work

Several approaches exist to tackle the stale reference

problems, like component based approaches, formal

analysis and isolation.

Dynamic service-oriented component models such

as ServiceBinder [14], OSGi R4 Declarative Services,

iPOJO [6], and Spring DM [15] provide a component-

based approach. These component models ease the

development by taking care of listening to service

registration/deregistration and automatically handling

business logic that gets and releases references to

service instances. However this does not guarantee that

stale references will be vanished. Bad programming

practices like reference forwarding to other bundles

may lead to stale references as well.

Another stale references detection approach [16]

uses a formal model to perform the analysis. That

approach utilizes a third party special JVM that

provides an explicit model checker. An OSGi tailored

formal model is created (based on the Knopflerfish

[10] implementation) and analyzed by the model

checker. However, there is a serious limitation in

regards to the size of applications that can be analyzed,

since they are limited to about 10.000 lines of code and

we are interested in large applications, like JOnAS.

Besides that, the model is also tied to a specific OSGi

implementation (Knopflerfish).

 Other application models provide some level of

isolation between components. MIDlets can be isolated

between them and since MIDP specification 3.0 [17]

they can also communicate via low level stream

channels (Inter-MIDlet Communication). JavaCard

[18] isolation between applications is done via object

spaces called contexts. Communication between

contexts is possible but security is enforced by an

applet firewall. In Java Personal Basis Profile [19],

which is largely utilized in Java TV, the Inter-Xlet

Communication Model allows components executing

on the same JVM to exchange objects across class

loaders.

A more elaborate mechanism is provided in the JSR

121 [20]. It presents the concept of isolates. An isolate

can be seen as an application unit. Applications are

isolated concerning object reachability but they can

share resources like runtime libraries. Communication

between isolates is possible through RMI mechanisms.

Microsoft provides consolidated isolation solutions

in the .NET platform and on Singularity [21]. The

former provides the concept of application domain,

which works as a lightweight process space that is

completely isolated from the other application domains

that execute on the same virtual machine. An

application domain may be purged from memory

without affecting the other. Communication is possible

between domains but it implies in a proxy based

approach using RPC mechanisms. A research OS

written in managed code, called Singularity, provides

strong isolation of processes. The Software Isolated

Processes (SIP) run on the same address space. This

gives the advantage of no process switching and

isolation enforced in terms of software. Although

isolated from each other, processes can communicate

via contract-based channels.

However, such isolation approaches would require a

deep refactoring of the API in order to provide

strategies for marshalling (e.g.: defining interfaces

extending java.rmi.Remote, providing serializable

parameters, etc). Therefore it has a serious impact on

performance when compared to the direct servant

object access used in OSGi technology.

Existing tools such as [22] and [23] provide, among

other features, fine grained profiling and memory

analysis which enable the detection of memory leaks.

However they do not address OSGi specific issues –

such as the stale references that we have described–

that could be unnoticed by those tools.

Our approach provides a diagnosis based on the

observation of a running application. An application

can be deployed in a production environment (i.e. in-

vivo) and our tool is able to work without disturbing

the application, having no impact on the overall

performance and the bundles lifecycle while the

analysis is passive.

6. Conclusion and Future Work

The dynamicity on the OSGi Services Platform may

lead to memory retention problems when developers

mishandle the departure of services. This article

presents the ServiceCoroner tool and the analysis of the

stale references that it performed on two open source

applications built on OSGi: JOnAS and SIP

Communicator. The tool takes advantage of bytecode

weaving techniques to intercept method calls in OSGi

implementations, allowing the tracking of service

references and service instances.

The purpose of the ServiceCoroner is not to fix the

stale references problem neither to permanently replace

an OSGi framework by a bytecode weaved version in a

production environment. The tool aims to help

identifying stale references in OSGi based applications.

The weaving process adds concerns useful for testing

environments before releasing an OSGi based product,

and also the possibility to detect flaws in existing

applications in order to fix such problems for their later

releases.

The ServiceCoroner tool utilization proved to be

successful by identifying the studied problem in large

applications. It is possible to automatically identify the

bundles that are erroneously being referenced. The

identification of potential causers of such problems is

also possible, but not yet automatic.

Platform portability was achieved by the tool that

was easily applied and tested among three different

OSGi implementations: Apache Felix, Knopflerfish and

Equinox. The build process was applied directly to

binary code without any need of source code changes.

The next steps in the tool development would be the

identification of other stale references patterns, such as

running threads from stopped bundles. Other important

feature is to extend the current MBean functionality in

order to enhance remote diagnostics and management

via JMX. An important improvement on existing

functionality is to provide the automatic detection of

the referrer bundles that hold references to unregistered

service instances.

At last, we focus the Eclipse Platform, which is built

on top of the OSGi framework, however it uses OSGi’s

service layer in a limited way. Eclipse rather uses its

own plugin mechanism called extension points, which

support dynamic updates of plugins but that implies in

a restart of the application to avoid problems such as

retention of resources from old plugins. This is a

known fact for most developers that utilize the Eclipse

IDE. We plan to add to the ServiceCoroner tool the

capability to inspect Eclipse’s extension registry and

look for problems similar to those previously described

as stale references patterns.

Acknowledgements
We would like to thank Walter Rudametkin and Johann

Bourcier for their analysis, feedback and technical

input which helped improving this paper.

7. References

[1] OSGi Services Platform. http://www.osgi.org

[2] O. Gruber et al. “The Eclipse 3.0 platform: Adopting

OSGi technology”. IBM Systems Journal 44(2), 2005, pp

289-300

[3] M. Desertot, D. Donsez and P. Lalanda, “A Dynamic

Service-Oriented Implementation for Java EE Servers”, 3th

IEEE International Conference on Service Computing

(SCC'06) , Chicago, USA, September 2006, pp. 159-166

[4] JOnAS Open Source Java EE Application Server.

http://jonas.objectweb.org

[5] SIP Communicator. http://www.sip-communicator.org

[6] C. Escoffier, R.S. Hall and P. Lalanda, “iPOJO: An

extensible service-oriented component framework”, IEEE

International Conference on Service Computing, Salt Lake

City, USA, 2007

[7] The AspectJ Project. http://www.eclipse.org/aspectj

[8] G. Kiczales et al. “Aspect-Oriented Programming”,

European Conference on Object-Oriented Programming

(ECOOP), LNCS 1241, Finland, June 1997

[9] Apache Felix. http://felix.apache.org

[10] Knopflerfish OSGi. http://www.knopflerfish.org

[11] Equinox. http://www.eclipse.org/equinox

[12] Java Management Extensions (JMX) Specification,

version 2.0. http://jcp.org/en/jsr/detail?id=255

[13] VisualVM. https://visualvm.dev.java.net/

[14] H. Cervantes and R. S. Hall, “Automating Service

Dependency Management in a Service-Oriented Component

Model”, 6th International Workshop on Component-Based

Software Engineering, Portland, USA, 2003

[15] Spring Dynamic Modules for OSGi Service Platforms.

http://www.springframework.org/osgi

[16] Z. Chen and S. Fickas, “Do No Harm: Model Checking

eHome Applications”, 29th International Conference on

Software Engineering Workshops, Minneapolis, USA, 2007

[17] JSR 271: Mobile Information Device Profile 3.

http://jcp.org/en/jsr/detail?id=271

[18] Java Card Platform Specification 2.2.2.

http://java.sun.com/products/javacard/specs.html

[19] JSR 217: Personal Basis Profile 1.1.

http://jcp.org/en/jsr/detail?id=217

[20] JSR 121: Application Isolation API Specification.

http://jcp.org/en/jsr/detail?id=121

[21] G. Hunt et al: An Overview of the Singularity Project.

Technical Report MSR-TR-2005-135, Microsoft Research,

2005

[22] Netbeans Profiler. http://profiler.netbeans.org/

[23] Eclipse Test & Performance Tools Platform Project.

http://www.eclipse.org/tptp/

