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Abstract 
The OSGi Services Platform provides a framework 

for the dynamic deployment of Java-based 

applications. It allows to install, to activate, to update 

and to uninstall application modules without the need 

to restart the host Java Virtual Machine. However, the 

mishandling of such OSGi dynamics may result in a 

problem described in the OSGi specification as Stale 

References, which happen when services from 

uninstalled modules are still referenced by active code. 

It may lead to inconsistencies in application’s 

behavior, state and memory. Currently, there are no 

tools available to address this issue. This paper 

presents a diagnostics tool named ServiceCoroner that 

detects such problems. It helps developers and 

administrators diagnose OSGi applications running 

either in production or test environments. We have 

validated this tool on two open source applications 

that run on OSGi: a JavaEE application server and a 

multi-protocol instant messenger application. The 

results of the experiments show stale references in 

those applications. 

 

 

1. Introduction 
 

The OSGi [1] framework introduced the concept of 

module system that was missing in the Java platform. 

This concept tackles the problem of the “Classpath 

hell” encountered when applications are deployed 

(installed or updated) on production sites (i.e., end-user 

PCs or host servers). Applications can take advantage 

of a “hot deploy” capability, where modules (called 

bundles in OSGi nomenclature) can be added, updated 

or removed without restarting the JVM. In addition, 

each bundle is provided with its own class loader. This 

provides various advantages including the possibility of 

having independent versions of the same class, and 

allowing the unloading of classes when a module is 

updated or uninstalled.  

Moreover, the OSGi specification applies service-

oriented architecture principles to Java application 

design. The concept of service is important to decouple 

the application modules in order to dynamically 

substitute or update individual modules without 

affecting the entire system. 

The OSGi has proved to be successful in embedded 

systems. Its adoption in the software industry is 

continuously growing as more applications tend to take 

advantage of its pluggable architecture. One of the well 

known cases is the Eclipse project [2] that since 

version 3.0 has migrated to the OSGi platform. A new 

trend in desktop applications [2] and server 

middlewares [3] (i.e., JOnAS, Weblogic, WebSphere) 

shows the growing adoption of OSGi as a modular 

layer for either commercial or open-source Java-based 

products. 

Programming a modularized application that targets 

OSGi is a task that is apparently easy but developers 

must be aware of some particularities. It is critical to 

correctly handle framework events such as arrival 

(registration) and departure (unregistration) of services 

and bundles. Most of the time, application developers 

that are not experienced with OSGi dynamics provide 

code that may retain service references even when the 

providing bundles are gone. The OSGi R4 specification 

refers to this problem as stale references. Identifying 

stale references is not easy since current Java 

diagnostic tools do not handle this OSGi specific 

problem. 

This paper presents the results of an experiment 

made with a custom built tool which allows the analysis 

and detection of stale references. The objective of the 

tool is not to solve the stale references problem, but to 

identify it and help developers and administrators of 

OSGi based applications ensure that bundles provide 

behavior well suited to OSGi dynamics. The tool was 

validated with the analysis of two open source 

applications constructed on top of OSGi: 

JOnAS 5.0.1 [4] and SIP Communicator [5], both of 

which have presented stale references after the update 

of some bundles. 



The remainder of this paper is structured in the 

following order: Section 2 details OSGi and the stale 

references problem. Section 3 describes our tool, 

ServiceCoroner, and the techniques used to develop it. 

In section 4, the analysis of two OSGi applications is 

detailed. Section 5 presents related work, and at last 

conclusions and future work are presented in section 6. 

 

2. OSGi and the Stale References Problem 
 

The OSGi framework provides each bundle with a 

BundleContext object that gives access to the 

underlying framework. A bundle can register and 

retrieve services through the BundleContext. In order 

to retrieve a service instance in OSGi it is first 

necessary to know its ServiceReference, which is 

service metadata that informs what bundle provides the 

service, what are the service properties, and so forth. 

The BundleContext provides a getServiceReference 

method that takes the name of the service interface and 

an optional property filter. 

A bundle that provides a service may choose to 

directly provide the service instance
1
 or to provide a 

ServiceFactory that will be responsible of creating 

service instances. The ServiceFactory makes it possible 

to provide an individual service instance per client 

bundle. That is, if two bundles request the same service 

they will get different instances of the very same type. 

After being loaded by OSGi, each bundle will have 

an individual class loader to load resources (e.g., 

images, text files) and classes provided by the bundle. 

This, combined with a class import and export policy, 

gives a certain level of isolation between bundles. This 

mechanism provides an additional namespace level 

making it possible to have multiple versions of classes 

with identical absolute names but provided by different 

bundles (note that this is not related with the 

ServiceFactory described before).  

 

2.2. The Stale References Problem 
 

Although OSGi provides individual class loaders 

per bundle, bundles are not completely isolated from 

each other. One bundle may use a service that is 

provided by another, and consequently originated from 

a different class loader. Whenever a bundle becomes 

unavailable all other bundles that use its classes must 

release all references to objects provided by the 

departed bundle. This procedure is necessary to ensure 

                                                           
1
  For the sake of clarity this paper refers to service 

reference as the ServiceReference object, and service instance as an 

instance provided by the BundleContext via the 

getService(ServiceReference) method. 

that the garbage collection will take place correctly and 

that no bundle will utilize inconsistent services. 

Figures 1 through 3 illustrate a common scenario of 

life cycle events that result in a stale reference being 

kept. In Figure 1 normal interaction between the 

service provider and the service requester can be seen 

on Bundles 1 and 2, respectively. Bundle 2 consumes a 

service whose implementation is provided by an 

instance of the class A from Bundle 1. 

If Bundle 1 is stopped, the framework will 

automatically notify the unregistering of all services 

provided by that bundle. In our scenario, Bundle 2 is 

supposed to release references to the service instance 

of class A upon the unregistration of A’s corresponding 

service reference. This results in having no references 

towards objects of Bundle 1, permitting these objects 

to be collected by the JVM. 
However, Figure 2 shows that this procedure was 

not performed by Bundle 2, which keeps holding a 

reference to a service instance from a stopped bundle 

(Bundle 1). It shows that Bundle 2 did not handle the 

departure of the service reference that provides the A 

service instance. Bundle 2 is still able to perform 

method calls on the object A that possibly can lead to 

inconsistent information or to an inconsistent state 

since such method calls are being made on an object 

from a stopped bundle. For example, network 

connections or file streams could have been closed by 

the stopped bundle, causing errors on the object A. 

The retention of the service instance will prevent the 

A object of being garbage collected. As a consequence, 

A’s class loader and all class types (java.lang.Class) it 

has loaded will also hang in memory. 

In the continuation of the described scenario, the 

Bundle 1 has been updated during runtime. A new class 

loader has been assigned to that bundle, and a new 

instance of A (now from a different class loader) has 

been registered. Figure 3 shows that Bundle 2 kept 

using the stale reference and did not take into 

consideration the arrival of the new service provided by 

the updated Bundle 1. 

In the described scenario the objects from old 

Bundle 1 (the service instance A v1.0, its class loader 

and all java.lang.Class instances loaded by that class 

loader) will only be eligible to garbage collection if 

Bundle 2 is stopped. However, if Bundle 2 is restarted 

the same situation is likely to happen again upon the 

same sequence of events. 

This is not only limited to bundle updates. If, for 

example, a bundle provider of a given service instead 

of updated is just stopped or uninstalled, it can never 

be released from memory if a similar situation as in 

Figure 1 happens. 



 
Figure 1. Normal scenario 

 

 

 
Figure 2. Reference is now stale 

 
 

 
Figure 3. New bundle is started but not used 

Bundles isolation is compromised by the bad 

handling of service departure. The OSGi specification 

indicates practices to minimize the problems but they 

still are error prone.  

An alternative to avoid such problems is to utilize 

mechanisms that provide transparent handling of 

service location, like the ServiceTracker. However, in 

that approach, clients can still keep references to 

service instances no matter how these references were 

retrieved. In addition to transparent location handling, 

other mechanisms like OSGi declarative services, 

Service Binder [14], iPOJO [6] and Spring Dynamic 

Modules [15] deal seamlessly with the releasing of 

service instances and service references upon service 

unregistration.  

These last two options are the ideal way to provide a 

more complete handling of service dynamics, 

consequently avoiding stale references. On the other 

hand, stale references can still be found in other 

patterns. In this other scenario, for example, if a bundle 

X retrieves a reference to a service from bundle Y. 

Then bundle X makes a method call on an object from 

a third bundle Z passing that reference ahead as a 

method parameter. This makes harder to prevent a 

possible stale reference. That third bundle may keep 

the reference if bundle Y (the provider) becomes 

unavailable. Most likely, in this scenario only bundle X 

is concerned with the service departure.  Therefore, 

reference forwarding to other bundles would not be 

solved by the previously mentioned mechanisms. 

 

3. The ServiceCoroner diagnostic tool 
 

The ServiceCoroner tool relies on weaved OSGi 

implementations that enable to examine OSGi-targeted 

applications during runtime and to diagnose stale 

references. It enables developers and administrators 

diagnose OSGi applications running either in 

production or test environments. 

Instead of changing the source code of any existing 

OSGi implementation we have chosen to use Aspect 

Oriented Programming (AOP) [7] techniques because 

they allow keeping our tracking code separated from 

actual OSGi implementation code. Since one of AOP’s 

principles is separation of concerns, we keep the 

tracking code as a concern that does not “pollute” the 

OSGi code. By keeping that separation we have just a 

minimal effort of weaving each OSGi framework 

implementation to achieve tool portability across them. 

A few frequent patterns of stale references to be 

analyzed in OSGi have been identified: retention of 

service instances and service references from stopped 

bundles; services that retain an ordinary object 



reference (received as a parameter in a normal method 

call) from a client bundle that has been stopped; 

unfinished threads created by bundles that are stopped. 

Currently, the tool deals only the first presented 

pattern. Work is already in progress to also identify the 

threads pattern but results are not precise yet. The next 

subsections describe in more detail our diagnostic tool. 

 

3.1. Method interception with AOP 
 

The Service Coroner tracks each service reference 

object and the service instances that bundles provide. 

Upon services unregistration it is possible to verify if 

the services that are supposed to be garbage collected 

have really being removed from memory.  

Since the current OSGi implementations do not 

provide enough information to track its services in a 

manner that stale references can be identified, the 

implementation of this tool adds that functionality to 

the platform using automated mechanisms, eliminating 

the need to manually modify the OSGi implementation. 

This has been achieved using AspectJ [8] to provide 

interception of method calls in the OSGi framework 

code. AspectJ provides an AOP extension to the Java 

platform. 

The aspects are created targeting interfaces of the 

OSGi API. The bytecode weaving mechanism changes 

some classes (which implement the target interfaces) of 

the target OSGi platform by adding the desired 

diagnostic aspects. Strategic joinpoints in the OSGi 

API were defined in order to identify where the 

interception of certain method calls should be done. A 

build process first compiles the ServiceCoroner, and 

then performs the weaving of the aspects into a target 

OSGi implementation adding calls to the 

ServiceCoroner API.  

The tracking of garbage collection of objects was 

possible by utilizing Java Weak References, which are 

a special type of object reference that is treated 

differently by the Garbage Collector, allowing the 

application code to know if an object allocation has 

been reclaimed or not. The aspects weaved into the 

framework provided a way to inject calls to the 

ServiceCoroner inside the framework code. Among 

other tasks, those calls would create weak references to 

track service instances and service references. 

 

3.2. Diagnostic Process 
 

The process of identifying stale references and their 

potential causers can basically be done using two 

different strategies: active diagnosis or passive 

diagnosis.  

The active process consists in forcing bundle life 

cycle events (e.g., stop, update, etc.) either by 

interacting with an OSGi command line tool  or by 

using ad-hoc code on the ServiceCoroner scripting 

console. Life cycle events may be applied to bundles 

randomly chosen or to a given range of bundles. If the 

code does not handle service dynamics appropriately, 

stale references can be easily found. This approach 

usually leads to faster results than passive diagnosis. 

Such empirical usage of this approach eventually leads 

to more refined test cases. 

The passive process requires a longer observation of 

service arrivals,departures and life cycle events. The 

objective of this process is to observe the life cycle 

changes without directly interfering. Normal interaction 

is done in the application. Life cycle events result from 

the actual administration tasks such as the deployment 

or update of modules consistent with the application 

usage. If necessary, a production environment could 

have its deployed OSGi framework temporarily 

replaced by the ServiceCoroner weaved version in 

order to provide an actual diagnosis and find possible 

service retention bottlenecks.  

The drawback of the first approach is that one can 

not be sure that a simulation of the application’s real 

behavior is being done. The second approach may take 

longer to get significant results but it can provide more 

accuracy related to the actual behavior of the OSGi 

application. Moreover, while the active process is only 

suitable for a test environment the passive approach 

can perform diagnosis either on a test or on a 

production environment. 

 

3.3. Analyzing Results 
 

By inspecting all information utilizing the tool’s 

GUI, it is easy to identify stale references when a 

service reference that has been unregistered still 

appears in the list with its number of active servants 

greater than zero or with the garbage collected status as 

false. A built-in query is utilized by the GUI to show a 

list of all stale references found. 

The ServiceCoroner may show inconsistent 

information immediately after a bundle has been 

stopped. Since it depends on weak references, the tool 

would have to wait until the next garbage collection 

takes place in order to display consistent information. 

Garbage collection (GC) may be called through the 

tool’s GUI which simply performs a call to Java’s 

System.gc() method. This will not necessarily imply in 

an immediate execution of the GC as it may vary in 

each JVM implementation. However, in the 

environment of our experiment, manual calls to the GC 



via our GUI presented a fast response. We could verify 

that by doing the following steps: (1) stop a range of 

bundles; (2) verify the number of stale references; (3) 

perform the call to perform GC; (4) verify again the 

number of stale references. The number of stale 

references in step 4 was always smaller than in step 2. 

By using our tool it is also possible to identify the 

potential retainers of service instances. This feature is 

not yet automatic since the resultant data is just an 

intermediary result that still needs to be analyzed by the 

user. Currently it lists all referrers to all instances of a 

given type. For example, if the referrers of ServiceX 

from Figure 2 are analyzed, the result set would display 

not only the objects from Bundle B that refer to the 

particular ServiceX instance but also all the objects that 

refer to any ServiceX instance, including the instances 

from Service X’ of Bundle A’. In the current version 

the queries on memory are based on the type rather 

than the single object. 

In order to perform such detailed inspection on the 

memory allocation tree, the ServiceCoroner tool 

utilizes the jhat and jmap tools provided in the Java 6 

SDK. Jmap allows making dumps of memory with 

information about heap details. Jhat is another tool that 

is able to read jmap memory dump files and perform 

queries on it. 

The object referrer queries are done on an instance 

of a jhat engine running on the same JVM as the 

ServiceCoroner. Query results are transformed into 

ServiceCoroner API objects. 

 

3.4. Portability and performance 
 

The weaving process was validated on the three 

main OSGi R4 implementations:  Apache Felix [9] 

version 1.0, Knopflerfish [10] version 2.0.1 and 

Equinox [11] version 3.2.0. Initial tests on Equinox v. 

3.3.0 were not successful to its default utilization of 

signed jars. Since the bytecode weaving changes the 

affected class files, the corresponding class hashes 

stored in the jar manifest would become invalid. 

During framework startup, this resulted in a validation 

error while attempting to load the framework jar file. 

The process worked in Equinox v. 3.3.0 only if we 

removed all security information from the jar and then 

performed the weaving. 

The ServiceCoroner was implemented independent 

of any particular OSGi implementation. The coupling 

exists only to the framework API, which is common to 

all implementations. Thus, the construction of the tool 

was achieved without needing to change or recompile 

the source code of any OSGi implementation. Only the 

bytecode needed to be changed by applying weaving 

techniques provided by AspectJ.  

Even though no performance changes were 

measured, the cost of method interception appears to 

have a non significant impact. The interception is made 

on some interactions of the bundles with their 

BundleContext object, which are not very frequent.  

An optional tool feature that allows a fine grained 

analysis of object referrers depends on the jhat and 

jmap experimental tools that are shipped as part of 

Sun’s JDK 6. The usage of those tools is then limited to 

the usage of that JDK version. The usage of jhat has 

memory usage implications as it allocates a large 

amount of memory to load the memory dumps. 

Exhaustive utilization of that feature leads to 

OutOfMemory errors. 

 

3.5. Graphical User Tools 
 

ServiceCoroner provides two graphical user tools to 

help the developer to inspect a running OSGi platform.  

The first one is displayed upon execution sharing 

the same JVM of the inspected application, as shown in 

figure 4. The tool is able to provide information per 

bundle information regarding class loaders, service 

references and service instances.  

In addition to detailed service references 

information, the GUI provides a scripting console to 

write and execute ad-hoc code directly into the 

platform. This is possible through an OSGi 

BundleContext instance that is provided as a built-in 

variable available to the console. 

However, if a server needs to be tested, the built-in 

GUI is not appropriate. A remotely enabled tool is 

more adequate to such task. 

 

 
Figure 4. ServiceCoroner standalone GUI 
 



 A second type of GUI enables the diagnostic on a 

remote OSGi platform. The ServiceCoroner registers a 

JMX [12] manageable bean (MBean), the tool allows 

to diagnose a remotely deployed application that 

utilizes the ServiceCoroner tool and a properly weaved 

OSGi framework. A custom JConsole plugin has been 

developed to display ServiceCoroner information 

provided by its custom MBean in the standard 

JConsole 6 (shipped with Java 6) and the VisualVM 

[13]. Figure 5 show the ServiceCoroner plugin running 

inside of the VisualVM. 

 

 
Figure 5. ServiceCoroner plugin in the 

Visual VM 
 

The functionality currently provided is rather 

limited in terms of details and provided information 

when compared with the default GUI that is started by 

the ServiceCoroner, but permits tools such as JConsole 

and VisualVM to display such information 

 

4. Validation and Analysis 
 

The experiment performed an analysis in two 

applications: JOnAS and SIP Communicator.  

JOnAS (Java Open Application Server) [4] is an 

open source implementation of the JEE specification, 

provided by the OW2 consortium. The version 5 of 

JOnAS is a bundlization of more than 1.500.000 lines 

of code (LOC) of the previous version. Technical 

services and API are packaged as OSGi bundles [3]. 

Most of them exchange OSGi services (unlike 

Geronimo which uses only the module layer). Part of 

the OSGi services is provided through iPOJO [6] 

components. 

SIP Communicator [5] is a multi protocol 

audio/video Internet phone and instant messenger tool. 

Protocols plugins are delivered as separated bundles. 

The version 1.0 alpha 3 contains approximately 

120.000 LOC packaged in 53 bundles. 

Both applications use the Apache Felix [9] 

implementation of OSGi. JOnAS and SIP 

Communicator have been chosen since they are free 

open source applications that use OSGi’s service layer. 

As the current state of the tool presented here focuses 

on the bad utilization of services, the ServiceCoroner 

tool would not bring useful information in applications 

such as Geronimo which uses only the module layer 

and Eclipse IDE which uses mainly its own concept of 

extension points. 

The active process previously described was applied 

on the two analyses. In order to run the desired 

application with the tool, the OSGi implementation 

version used by each application was replaced by a 

bytecode weaved version.  

During execution time, the code that intercepted 

some OSGi methods would add tracking information to 

allow the discovery of stale references. 

 

Table 1. Experiment results 

I Application JOnAS 

SIP  

Communicator 

II Version 5.0.1 Alpha 3 

III OSGi implem. Apache Felix 1.0 

IV JVM Sun HotSpot JVM 1.6.0u4 

V  Lines of code 

More than 

1.500.000
2
 120.000 

VI Total Bundles 86 53 

VII 

No. of Bundles 

with Stale Refs. 4 17 

VIII 

Initial number 

of Serv. Refs. 82 30 

IX 

No. of Stale 

Refs. found 7 19 

X Ratio (IX/VIII) 8,5 % 63 % 

 

A custom script for the experiment was run in the 

ServiceCoroner scripting console. The script is 

responsible for calling the update method in an interval 

of bundles that provide services. After executing the 

script the tool could analyze which bundles had 

unregistered service references and service instances 

kept by other bundles. The data was ensured to be 

                                                           
2
 JOnAS code base is only 400KLOC according to ohloh.net. 

However, JOnAS had many runtime dependencies to other FLOSS 

projects (e.g. TomCat, Jetty, EasyBeans, Axis, JacORB, Medor, 

Joram). As a comparison, similar JEE servers such as Glassfish and 

JBoss contain 3MLOC and 1.2MLOC, respectively. 



collected after the garbage collection, according to the 

process described in section 3.3. 

Both tests described below have been performed on 

a Sun Hotspot JVM version 1.6 update 4. 

Table 1 provides a summary with general 

information about the results of the experiment 

performed by the ServiceCoroner tool on the two target 

applications. 

SIP Communicator errors seemed to be more 

frequent mostly due to an erroneous coding pattern that 

we have identified. By analyzing memory dumps it 

could be found that services were being statically 

referenced by class variables that did not release them 

upon service departure. Services retention in JOnAS 

was mostly caused, directly and indirectly, by JMX 

[12] related bundles.  

The tool can quickly identify the objects retained as 

stale references, but limitations previously mentioned 

retard the process of detecting the causers of that 

retention. 

 

5. Related Work 
 

Several approaches exist to tackle the stale reference 

problems, like component based approaches, formal 

analysis and isolation. 

Dynamic service-oriented component models such 

as ServiceBinder [14], OSGi R4 Declarative Services, 

iPOJO [6], and Spring DM [15] provide a component-

based approach. These component models ease the 

development by taking care of listening to service 

registration/deregistration and automatically handling 

business logic that gets and releases references to 

service instances. However this does not guarantee that 

stale references will be vanished. Bad programming 

practices like reference forwarding to other bundles 

may lead to stale references as well.  

Another stale references detection approach [16] 

uses a formal model to perform the analysis. That 

approach utilizes a third party special JVM that 

provides an explicit model checker. An OSGi tailored 

formal model is created (based on the Knopflerfish 

[10] implementation) and analyzed by the model 

checker. However, there is a serious limitation in 

regards to the size of applications that can be analyzed, 

since they are limited to about 10.000 lines of code and 

we are interested in large applications, like JOnAS. 

Besides that, the model is also tied to a specific OSGi 

implementation (Knopflerfish). 

 Other application models provide some level of 

isolation between components. MIDlets can be isolated 

between them and since MIDP specification 3.0 [17] 

they can also communicate via low level stream 

channels (Inter-MIDlet Communication). JavaCard 

[18] isolation between applications is done via object 

spaces called contexts. Communication between 

contexts is possible but security is enforced by an 

applet firewall. In Java Personal Basis Profile [19], 

which is largely utilized in Java TV, the Inter-Xlet 

Communication Model allows components executing 

on the same JVM to exchange objects across class 

loaders. 

A more elaborate mechanism is provided in the JSR 

121 [20]. It presents the concept of isolates. An isolate 

can be seen as an application unit. Applications are 

isolated concerning object reachability but they can 

share resources like runtime libraries. Communication 

between isolates is possible through RMI mechanisms. 

Microsoft provides consolidated isolation solutions 

in the .NET platform and on Singularity [21]. The 

former provides the concept of application domain, 

which works as a lightweight process space that is 

completely isolated from the other application domains 

that execute on the same virtual machine. An 

application domain may be purged from memory 

without affecting the other. Communication is possible 

between domains but it implies in a proxy based 

approach using RPC mechanisms. A research OS 

written in managed code, called Singularity, provides 

strong isolation of processes. The Software Isolated 

Processes (SIP) run on the same address space. This 

gives the advantage of no process switching and 

isolation enforced in terms of software. Although 

isolated from each other, processes can communicate 

via contract-based channels.  

However, such isolation approaches would require a 

deep refactoring of the API in order to provide 

strategies for marshalling (e.g.: defining interfaces 

extending java.rmi.Remote, providing serializable 

parameters, etc). Therefore it has a serious impact on 

performance when compared to the direct servant 

object access used in OSGi technology. 

Existing tools such as [22] and [23] provide, among 

other features, fine grained profiling and memory 

analysis which enable the detection of memory leaks. 

However they do not address OSGi specific issues –

such as the stale references that we have described– 

that could be unnoticed by those tools. 

Our approach provides a diagnosis based on the 

observation of a running application. An application 

can be deployed in a production environment (i.e. in-

vivo) and our tool is able to work without disturbing 

the application, having no impact on the overall 

performance and the bundles lifecycle while the 

analysis is passive. 

 



6. Conclusion and Future Work 
 

The dynamicity on the OSGi Services Platform may 

lead to memory retention problems when developers 

mishandle the departure of services. This article 

presents the ServiceCoroner tool and the analysis of the 

stale references that it performed on two open source 

applications built on OSGi: JOnAS and SIP 

Communicator. The tool takes advantage of bytecode 

weaving techniques to intercept method calls in OSGi 

implementations, allowing the tracking of service 

references and service instances. 

The purpose of the ServiceCoroner is not to fix the 

stale references problem neither to permanently replace 

an OSGi framework by a bytecode weaved version in a 

production environment. The tool aims to help 

identifying stale references in OSGi based applications. 

The weaving process adds concerns useful for testing 

environments before releasing an OSGi based product, 

and also the possibility to detect flaws in existing 

applications in order to fix such problems for their later 

releases. 

The ServiceCoroner tool utilization proved to be 

successful by identifying the studied problem in large 

applications. It is possible to automatically identify the 

bundles that are erroneously being referenced. The 

identification of potential causers of such problems is 

also possible, but not yet automatic. 

Platform portability was achieved by the tool that 

was easily applied and tested among three different 

OSGi implementations: Apache Felix, Knopflerfish and 

Equinox. The build process was applied directly to 

binary code without any need of source code changes. 

The next steps in the tool development would be the 

identification of other stale references patterns, such as 

running threads from stopped bundles. Other important 

feature is to extend the current MBean functionality in 

order to enhance remote diagnostics and management 

via JMX. An important improvement on existing 

functionality is to provide the automatic detection of 

the referrer bundles that hold references to unregistered 

service instances.  

At last, we focus the Eclipse Platform, which is built 

on top of the OSGi framework, however it uses OSGi’s 

service layer in a limited way. Eclipse rather uses its 

own plugin mechanism called extension points, which 

support dynamic updates of plugins but that implies in 

a restart of the application to avoid problems such as 

retention of resources from old plugins. This is a 

known fact for most developers that utilize the Eclipse 

IDE. We plan to add to the ServiceCoroner tool the 

capability to inspect Eclipse’s extension registry and 

look for problems similar to those previously described 

as stale references patterns. 
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