
Turning Multi-Applications Smart Cards Services
Available From Anywhere at Anytime: a SOAP /
MOM Approach in the Context of Java Cards

Didier Donsez1, Sébastien Jean2, and Sylvain Lecomte1

1 University of Valenciennes, LAMIH/ROI,
Le Mont Houy, BP 311,

59313 Valenciennes Cedex 9, France
{didier.donsez,slecomte@univ-valenciennes.fr}

2 University of Lille, LIFL/RD2P,
Bat. M3/111,

59655 Villeneuve d'Ascq Cedex, France
sebastien.jean@lifl.fr

Abstract. This paper presents a way to improve smart card integra-
tion in distributed information systems. Multi-application smart cards
are able to o�er a lot of services, but at the same time they are mainly
disconnected. Our main goals are to ease the use of such services and
to increase their availability. In order to reach them, we propose a JMS-
SOAP based platform that enables remote clients both to discover what
services a smart card provides and to request any service either syn-
chronously and asynchronously.

1 Introduction

Four years old, Java Cards announced a revolution in smart cards world. Smart
card application design is no more a specialist job. Although smart card applica-
tion Time-to-Market was before 6 months long, every programmer familiar with
the Java Language and technology is now able to write and ship is �rst smart
card application in few days. Consequently, open smart cards boosted smart card
use.

Even if Java Cards are mostly used for simple client-servers applications,
one of the most promising role for open smart cards in distributed informa-
tions systems is to act as mobile agents acting as application servers. Emerging
technologies consider WWW as a universal medium for interoperable services
deployment, discovery and use. We think that open smart cards, and particu-
larly Java Cards, can smartly take a place in such a model. Nevertheless, smart
cards are disconnected most of their lifetime, even if Java-SIM cards (in mobile
phones) are exceptions. This characteristic of smart cards has to be taken into
account. In this paper, we present how multi-applications smart cards, and dis-
tributed applications where they are involved, can take bene�ts of middlewares
that provide interoperability and asynchronous messaging.



Next Section brie�y presents SOAP and related technologies as well as Mes-
sage Oriented Middlewares (MOM). After this overview, Section 3 take a look at
how the Java Card application model has evolved since four years. Then, Section
4 explains why and how to involve Java Cards in heterogeneous information sys-
tems where exchanges are either connection-oriented or connectionless, and gives
implementation issues. Finally, Section 5 concludes and presents future work.

2 MOMs and services over the Web

In this Section, we discuss technologies and concepts involved in our proposal. We
brie�y overview MOM technology and present emerging standard for deploying
and using services aver the Web.

2.1 Message Oriented Middlewares

Message Oriented Middlewares (MOM) are based on asynchronous messages as
the single structure for communication, coordination and synchronization, thus
allowing desynchronized execution of components. Reliable communication is
guaranteed by message queuing techniques or speci�c communication protocols
that can be added independently from the programming of software components.
Asynchronous communication property decouples producers of information from
consumers. They do not need to be both ready for execution at the same time.
MOM's goal is also to maximize the portability of the transmission of messages
between several applications.

JMS [13], which is a speci�cation of a MOM based on Java Technology, de�nes
a set of interfaces for messages queuing. JMS provides the application designers
with two messaging models. the �rst is Point-To-Point, where a producer and one
ore more consumers are highly coupled1. The other is Publish-Subscribe, where
a producer delivers messages related to a de�ned topic and where consumers
have just to subscribe to receive next messages of the subscribed topic. JMS is
just a standard de facto, it is not a product by itself. However, there are a lot
of commercial implementations compliant with this speci�cation and a lot of
open-source projects (as the example of JORAM[7]).

2.2 SOAP, UDDI and WDSL : deploying services over WWW

The WorldWide Web was originally created to enable information exchange in a
simple and portable way across the Internet. It resides in a combination of four
elements:

1. HyperText Transport Protocol (HTTP), a client-server protocol on top of
TCP-IP

2. Uniform Resource Locator (URL), a universal binding system

1 However JMS, as a MOM, guarantees that a message is delivered only once even if
several consumers are connected to the producer's queue



3. HyperText Markup Language (HTML)

4. Web browsers

From sharing information between scientists, WWW moved to mass market.
Server-side Scripting technologies, like CGI (Common Gateway Interface), were
developed turning the Web as a universal medium for client-server applications.
These technologies have however some drawbacks, like the di�culty to manage
sessions and the lack of interoperability. So, Client-server programming over the
web had to evolve to reach the goal of interoperability, simplicity and portability:
the answer was SOAP.

SOAP [12] is a lightweight protocol for exchange of information in a decen-
tralized, distributed environment. It is an XML based protocol that consists of
three parts: an envelope that de�nes a framework for describing what is in a
message and how to process it, a set of encoding rules for expressing instances of
application-de�ned data types, and a convention for representing remote proce-
dure calls, responses and errors. SOAP can potentially be used in combination
with a variety of other protocols. However, the bindings de�ned for the moment
describe how to use SOAP in combination with HTTP, and how to wrap RPC
on SMTP and HTTP. An example of SOAP messages(transported with HTTP)
is presented below, in the case of a quotation service. The request is transported
in an HTTP's POST request (Figure 1) and the answer comes back in an HTTP
response (Figure 2).

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV= "http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 1. Quotation service request

A service request using SOAP/HTTP is completed according to the follow-
ings steps:

1. the client builds the SOAP message, according to the service description



HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 2. Quotation service response

2. the SOAP message is encapsulated in an HTTP POST request and trans-
ported to the Web server hosting the service

3. the Web server forwards the SOAP message to an RPC router server-side
script or servlet

4. the RPC router:
(a) parses the SOAP message
(b) realizes the invocation
(c) gets the response
(d) sends back and HTTP response containing the SOAP response (normal

or error)
5. the SOAP response is sent back to the client
6. the client parses the SOAP response and processes it

SOAP is an easy and extensible way to request services across the Web. It
is independent from operating systems, programming languages and transport
protocols. SOAP is not an object-oriented distributed system, there is no grabage
collection neither object activation (parameters are not object references but
values).

However, having a simple and interoperable way to request services is not
useful if there is no way to know what a service looks like. UDDI and WSDL
are recent standards that address this feature. The Universal Description, Dis-
covery and Integration (UDDI) speci�cation [15] describes a conceptual cloud
of Web services and a programmatic interface that de�ne a simple framework
for describing any kind of Web service. The speci�cation consists of several re-
lated documents and an XML schema that de�nes a SOAP-based programming
protocol for registering and discovering Web services. WSDL [17] is an XML for-
mat for describing network services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented information. The op-
erations and messages are described abstractly, and then bound to a concrete
network protocol and message format to de�ne an endpoint. Related concrete



endpoints are combined into abstract endpoints (services). WSDL is extensible
to allow description of endpoints and their messages regardless of what message
formats or network protocols are used to communicate, however, the only bind-
ings described in WSDL documents describe how to use it in conjunction with
SOAP 1.1, HTTP GET/POST, and MIME.

3 JavaCard and its Integration in Information Systems

The arrival of Java Card [5], and others open smart cards like Smart Card
for Windows (SCW) and Multos was a kind of revolution in the smart cards
world. Java Card technology allows applets written in the Java language to be
executed on a smart card, within the Java Card Runtime Environment (JCRE),
and provides a wide API to help developers to create applets. Both JCRE and
APIs are modeled after the smart card ISO 7816 speci�cation [4]. Java Card
o�ers code sharing between applets, isolation with a sandboxing mechanism
called applet �rewall, and comes with a cryptographic API. Java Card is the
most widely accepted open smart card. This is �rstly due to its symbiosis with
an increasing Java computing world. The integration of Java Card Technology
into mobile phone technology [1] is another key of its success.

As Scott Guthery titled in [3], Java Card was initially thought as a mobile
platform for Internet Computing. Sometimes, like the example Java language
originally dedicated to washing machines, technologies are not �rstly used for
what they have been though. Java Card is in this case, and four years after the
�rst Java Card announcement it is not yet widely used for Internet purposes. The
�rst applications of Java Cards were maybe loyalty ones. The application model
was a client-server one, were the client is usually on the terminal where the card
was plugged. Designing applications involving smart cards was originally not an
easy task because the most part of the code was used to manage the communi-
cation between the card and the client parts of the application through the card
reader. Hopefully, nowadays this task is much more easier using frameworks like
OCF [?].

Even if Java Cards can o�er helpful services in an o�-line mode, their use
takes another dimension if plugged over a wired or wireless network. Java card
can then be seen as a mobile agent serving its owner and representing him over
distributed information systems. Open smart card is a young technology, and
for the it does not yet play this role. However, as what Weiser called ubiquitous

computing becomes a reality, mobile services provider is the most promising
future for Multi-application smart cards.

Many ways were investigated to interact with Java Cards. All the mecha-
nisms provided are however very similar because they consider the smart card
as a server. Some researches have successfully turned the Java Card as a mobile
Web server [2]. Close to the problematics of the WebSim project, The WebCard
[11] is a Java Card applet implementing a lightweight IP/HTTP stack. WebCard
is promising because it shows that a smart card can be seen as a traditional in-
ternet platform speaking IP. The two previous examples consider Java Cards



like data servers, but another approaches try to integrate Java Cards as parts of
distributed applications. A �rst example is the JC-RMI [16] technique that gives
a Remote object view of embedded applets. It goes further in easing smart card
application design, enabling for Java Cards the well known RMI tools used to
build classical Java distributed applications. Here, applets as seen as Java remote
objects. JC-RMI tools alleviate the burden of application designer by automat-
ically generating stubs and skeletons. These proxies transparently manages the
communication protocol and just let distributed object access to applets. One
step more is Java Card and JINI enclosure. Some work, done [?]] or still in
progress [16], intends to turn Java Card applets into Jini-based services. In such
an approach, when a Java Card is plugged somewhere, its services are automat-
ically registered and become available for distributed applications that are able
to discover them through Jini's lookup service. Once discovered, the services can
be used, as far as the smart card o�ering these services grant their access. Each
step in open smart card integration in distributed information systems lets the
card plays a smarter role. In the future, we argue that smart cards should be
much more interactive and not only passive servers [6].

4 Toward a Generic, Dynamic, Connectionless Access to
Smart Card Services

4.1 Motivations

Smart cards are disconnected 99.9 percent of their lifetime, but it can however
be useful for a requester (which can be an application provider, a card issuer,. . . )
to be able to alert the card or make updates when needed (i.e. not only when the
smart card is connected). Card Management Systems (CMS) and Application
Management Systems (AMS) now take an important place in smart card world
because controlling and managing a �eet and thousands issued smart card that
embed several evolving applications is not an easy task. Ideally, an AMS should
not wait for smart card insertion to decide for application update. A better way
should be to asynchronously notify smart cards that a later version of a given
application has been issued and to automatically upgrade it if necessary. As a
smart card is not able for the moment to emit request to a reference server in
order to poll for updates, using an asynchronous messaging platform should be
the easiest way to update applet version or personalization info for thousand
cards at the same time.

As the Java Card is becoming a more and more "common" computing plat-
form, a simple and interoperable mechanism of interaction is needed in order
to turn the embedded services available from any platform. Frameworks such
as OCF [10] address such problem but reduce the platform range (here to java-
powered ones). Moreover, it might be interesting to assume service discovery
and induced dynamic operation invocation. For example, when a smart card
becomes plugged in a CAD that is part of the user's Personal Area Network
(PAN), a daemon discovers what it is and what it can do. After this discovery



time, the smart card authentication and privacy service is used to ensure trust
in the user's PAN.

4.2 Requirements

In order to turn embedded services available to remote hosts, some requirements
have to be ful�lled. First, we have to provide a generic mechanism to invoke
operations . In the case of connection-oriented invocations, this is done using
SOAP by encapsulating operations invocations into XML messages transported
from point to point (i.e. from remote host to a reference host for the smart
card) inside HTTP requests. The same mechanism is used to send back the
invocation return value or an exception. Several transport protocols for SOAP
messages have already been implemented (with HTTP or JavaMail). Our goal is
to implement the transport of asynchronous SOAP messages by using a MOM.
Connectionless invocations are then done using an intermediate asynchronous
messaging layer that consists here in both JMS clients and servers. A smart
card representation agent (one by particular card) must be deployed in order to
inform of smart card presence, but also to forward queued messages were the
card comes back. This agent can have a static address, or can be retrieved using
directories such as JNDI or LDAP. It has to be combined to the MOM card-side
client who receives incoming messages and send outgoing responses.

Fig. 3. Architecture Proposal



Turning these invocations dynamic means that the embedded services in-
terfaces must be known or discovered at invocation time. So, in other words,
service introspection has to be provided. We propose two di�erent ways to get
introspection. The �rst is to store the description and interfaces of available ser-
vices for a given smart card. Due to interoperability issues, an adequate XML
DTD, maybe adapted from those de�ned for WSDL and UDDI, should be used
to structure this information. This repository-oriented could be interesting to
avoid replication in the case of standard services descriptions. However an image
of smart card description is required in the case of connectionless invocation and
has to be coherently managed by the smart card agent. Another way is to add
introspection facility to the card. In the case of the Java Card we propose to em-
bed a directory applet that manages applications description (written using the
same XML DTD or a more compact language). The directory, which interface
enables clients to get smart card contents and applets/operations description at
invocation time, has to be updated each time an applet is installed or removed.
However, this update can be part of the smart card's RAD.

4.3 Prototype

Our architecture proposal is resumed on Figure 3. It is based on the use of SOAP
technology to realize operation invocations and responses. The prototype that
has been developed for testing purpose is based on the use of a Java Card. The
operation invocations / responses are transported in a connection oriented way
with HTTP or in a connectionless way with JORAM. The HTTP prototype is
based on a subset of classes from Apache/SOAP package and Jakarta/Tomcat
for servlet execution platform. The MOM prototype is based on JORAM [7], an
open source implementation of JMS speci�cation.

Fig. 4. SOAP Proxy for Java Card



As described below on Figure 4, a card-side SOAP proxy, implemented by a
servlet provides introspection and invocation facility. It relies on the use of OCF
to manage readers and cards access. The discovery mechanism is implemented
inside the card; by the way of the Introspection applet that manages XML-based
descriptions. However, this can be done using UDDI external repositories. The
test application consists of a distributed client based on a Web interface that
connects to a targeted Java Card and dynamically discovers inside applications
(here, a purse and a loyalty application) and invokes operations on them.

5 Conclusion and Further Work

The objective presented in this paper is relevant with regard to necessities in
communication. More and more services are available on the Internet network
and on mobile telephony. Smart card take a more and more important place
in service o�ers over these networks. To seamlessly integrate multi-application
smart cards in order to turn them in common object-oriented execution platforms
(regarding to client applications), interoperable operation invocations must be
provided. As smart cards are not so frequently connected, the use of asyn-
chronous messages can open new perspectives. In this paper, we have presented
how to enable interoperability and asynchronism for distributed applications
that involve multi-applications smart cards. To achieve this goal, we take ben-
e�ts of SOAP and MOMs technologies. A SOAP proxy has been de�ned in
order to enable SOAP-based operation invocations for smart cards. This proxy
provides introspection facilities that, combined with an on-card introspection
mechanism, make able distributed clients to dynamically discover and use the
embedded services o�ered. We also de�ne a MOM layer which, placed on top of
SOAP, enables connectionless invocations. Although we focus on the Java Card
case, the approach and platform we describe can be easily generalized to oth-
ers multi-applications smart cards such as the Smart Card for Windows [14] or
Multos [8].

Appendix: SOAP/HTTP envelopes for a smart card
loyalty application

Invocation

POST /cardproxy HTTP/1.1

Content-Type: text/xml; charset="utf-8"

Content-Length: 334

SOAPAction: "invoke/loyalty:0:A0000000FF01"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">



<SOAP-ENV:Body>

<loy:GetBonus xmlns:loy="http://schemas.loyaltycard.org/">

<service>ACME</service>

</loy: GetBonus>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Response

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: 347

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<loy:GetBonusResponse xmlns:loy=" http://schemas.loyaltycard.org/">

<bonus>1900</bonus>

</loy:GetBonusResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

References

1. European Telecommunications Standards Institute (ETSI): Digital cellular
telecommunications system (Phase 2+); Subscriber Identity Module Application
Programming Interface (SIM API); SIM API for Java Card; Stage 2 (GSM 03.19
version 7.1.0 Release 1998). May 2000.

2. Guthery, S.B., Kehr, R., Posegga, J.: How to turn a GSM SIM into a Web
Server. In: Domingo-Ferrer, J., Chan, D., Watson, A. (eds.): Fourth IFIP
TC8/WG8.8 Working Conference on Smart Card Research and Advanced Ap-
plications (CARDIS'2000), sept 2000, Bristol, United Kingdom. Kluwer Academic
Publishers (2000) 209�222, ISBN 0-7923-7953-5.

3. Guthery, S.B.: Java Card: Internet Computing on a Smart Card. IEEE Internet
Computing, 1 (1997).

4. International Standard Organisation (ISO): Information Technology - Identi�ca-
tion cards - Integrated circuit(s) cards with contacts. ISO/IEC 7816-1,2,3,4,5,6,7,8.
1987-1999.

5. Java Card Forum : http://www.javacardforum.org.

6. Jean, S., Donsez, D., Lecomte, S. : Smart Card Integration in Distributed Infor-
mation Systems: The Interactive Execution Model. In: Proceedings of IEEE 1st
International Symposium on Advanced Distributed Systems, (Guadalajara, Mex-
ico), March 2000.

7. ObjectWeb : JORAM homepage. http://www.objectweb.org/joram/joramHomePage.htm.

8. Maosco Ltd: Multos homepage. http://www.multos.com.



9. Merle, P., Vandewalle, J.J., Dufresne, E.: Intégration d'environnements hétérogènes
: WWW, cartes à microprocesseur et Corba. In: Actes du 14e congrès INFORSID,
Bordeaux, France, 1996.

10. Opencard Framework : http://www.opencard.org.
11. Rees, J., Honeyman, P.: Webcard : a Java Card Web Server. In: Domingo-Ferrer, J.,

Chan, D., Watson, A. (eds.): Fourth IFIP TC8/WG8.8 Working Conference on
Smart Card Research and Advanced Applications (CARDIS'2000), sept 2000, Bris-
tol, United Kingdom. Kluwer Academic Publishers (2000) 197�207, ISBN 0-7923-
7953-5.

12. Scribner, K., Stiver, M.C., Scribner, K.: Understanding SOAP: The Authoritative
Solution. In: Sams (eds), Jan 2000. ISBN: 0672319225.

13. Sun Microsystems : Java Message Service API Speci�cation, v. 1.0.2. 1999.
14. Talvard, L.: The API services provided by the SCW. In: Proceedings of 1st Gemplus

Developper Conference (GDC '99), Paris, France, 1999.
15. UDDI homepage. http://www.uddi.org.
16. Vetillard, E.: Tools for Integrating the Java Card API into Jini Connection Tech-

nology. In: Sun's Worldwide Java Developer Conference (JavaOne 2000), 2000.
17. Ariba, International Business Machines Corporation, Microsoft: Web Services De-

scription Language (WSDL) Speci�cation v 1.0 . 2000.


