
Using Fail-stop Proxies for Enhancing Services Isolation in
the OSGi Service Platform

Kiev Gama
University of Grenoble

LIG laboratory, ADELE team
France

Kiev.Gama@imag.fr

Walter Rudametkin
University of Grenoble

LIG laboratory, ADELE team
Bull SAS
France

Walter.Rudametkin@imag.fr

Didier Donsez
University of Grenoble

LIG laboratory, ADELE team
France

Didier.Donsez@imag.fr

ABSTRACT
The OSGi Service Platform is becoming the de facto middle-
ware for deploying modularized Java applications. It is a dy-
namic platform that relies on a service oriented approach for
loose coupling, but the absence of separate object spaces for
isolating services of different modules cannot guarantee that
service providers from uninstalled modules will no longer be
referenced by active code. This may lead to memory reten-
tion and inconsistencies (e.g. a stale service that provides
invalid cached data) that can introduce silent faults in the
system by propagating invalid information.
We present our ongoing work where we introduce an iso-
lation layer between service consumer and provider by us-
ing dynamic proxies for services. When the corresponding
service becomes unregistered (i.e. uninstalled) the mecha-
nism is able to: 1) Guarantee that no consumers directly
refer to the service provider; 2) allow finding out the mis-
referencing consumer code by using a fail-stop mechanism.
We present tested in different OSGi based applications and
benchmarked against other approaches for accessing services
in the OSGi platform.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Diagnostics; D.2.8 [Software Engineering]: Metrics—per-
formance measures

General Terms
Experimentation

Keywords
Fail-stop services, OSGi, stale references, service isolation

1. INTRODUCTION
The OSGi Service Platform [14] plays an important role

as universal middleware for modularized Java applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’08, December 1, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

Its growing adoption in the sofware industry [10] [3] shows
that it is becoming the de facto standard for such types
of applications. The service oriented approach used in the
OSGi platform enables a loosely coupled environment for the
deploying of modules (called bundles in OSGi terminology)
that may provide or consume services in OSGi. Bundles
may be installed, stopped, updated or uninstalled during
application execution without needing to restart the appli-
cation. Services provided by such bundles may arrive and
depart anytime. However, it is under the responsibility of
the bundle developer to correctly handle the departure of
services, which is notified by the framework. Since modules
are in the same address space, there is no isolated container
(e.g. separate object space) which can automatically handle
the dereferencing of objects when a module is uninstalled.
Thus we can say that OSGi has limited isolation mechanisms
that are unable to enforce any sort of cross-module object
reference rupture upon bundle departure.

The OSGi specification refers to a problem called Stale
References, when objects of active bundles keep referencing
objects from bundles that have been stopped. This prob-
lem leads to memory retention, since the deactivated bundle
cannot be garbage collected, and can silently propagate in-
consistent information due to the utilization of objects that
should have not been used anymore. A tool [7] for the dy-
namic detection of stale references in OSGi based software
proves that applications may actually present such misref-
erencing of objects upon the departure of bundles.

In this paper we present our ongoing work where we pro-
pose an approach to address service isolation issues in the
OSGi platform. Our mechanism consists in introducing dy-
namically generated service proxies that will work as a layer
of isolation between service consumers and service providers.
Upon service unregistration, the proxy releases the reference
to the actual service provider while the service consumer,
even if misprogrammed, will reference only the proxy pro-
vided by the OSGi framework that is customized to carry
our mechanism. Our proxies act as fail-stop services which
in case of unregistration of the underlying service, they will
intentionally throw an exception upon any method call, al-
lowing us to identify the misusing of services. We have used
Aspect Oriented Programming [13] to incorporate this ap-
proach into the OSGi framework and for achieving a portable
solution across different OSGi implementations. This mech-
anism was tested in large OSGi-based applications and had
its overhead benchmarked against other service utilization
approaches. One interesting point that was also revealed

with our proxy based mechanism is that although developed
towards a Service Oriented paradigm in the OSGi platform,
some applications which we have tested do not exactly follow
that principle every time, as described further in the text.

The remainder of this paper is organized as follows: Sect.
2 gives an overview of the OSGi platform and the problem
concerning stale references; Sect. 3 presents our strategies
and implementation of the proxied services and the fail-stop
mechanism; Sect. 4 details the implementation and valida-
tion of the proposed mechanisms; related work is presented
in Sect. 5 and, finally, Sect. 6 provides the paths for future
work and our conclusions.

2. THE OSGI SERVICE PLATFORM
The OSGi (formerly known as Open Services Gateway

Initiative) service platform addresses modularization issues
that are not natively1 supported by the Java platform. OSGi
is pure Java code that adds a middleware layer on top of
the Java platform to fill some gaps (e.g. modularity) and
to provide additional capabilities (e.g. information hiding
at the package level in addition to standard modifiers in
member and class level).

The OSGi framework is a dynamic service platform from
the ground up where modules can be deployed, updated or
removed from the platform with no application reboot. The
deployment unit in the OSGi platform is usually referred
as bundle which is a jar file that may contain components
and services, and has special metadata in its manifest file to
describe the module.

2.1 A Service Oriented Platform
Bundles may optionally provide services by registering

them in the OSGi’s service registry. In the service oriented
(SOA) triad there are the service provider, service requestor
and service catalogue which in the OSGi framework take the
form of a bundle that provides a service, a bundle that re-
quests a service, and the OSGi service registry, respectively.

Services in OSGi are usually registered under one or more
Java interfaces into a shared service registry which is ac-
cessible through the BundleContext object provided to each
bundle, as previously described. The implementations are
decoupled by the usage of services. In OSGi, bundles may
preferably communicate by means of services to enforce strong
decoupling. Basically, whenever a bundle needs a service, it
will ask the BundleContext for a given interface (and pos-
sibly some filtering parameters). A positive match would
return a ServiceReference object, which encapsulates the
metadata of a service object. This ServiceReference must
be used to retrieve the actual service object by calling the
getService method in the BundleContext, which will pro-
vide the corresponding servant object (i.e. the actual ser-
vice). Other mechanisms for encapsulating this task are
available, but we omit them here for brevity sake.

Upon service registration, modification or unregistration
(either explicitly or implicitly due to the bundle being stopped)
the framework notifies the subscribers of ServiceEvents via
a ServiceListener interface. Service requester code must
be aware that a service departure means that the corre-
sponding servant object must not be used anymore. Any

1An effort called Java Module System (JSR277), based on
the same concepts of OSGi, is being conducted as an ef-
fort for the standardization of a module system for future
versions of the Java Platform.

usage of the unregistered object may lead to inconsistency.
Valid instances of the desired service would have to result
from a new query to the BundleContext for a valid Ser-

viceReference.

2.2 Namespace based isolation
The platform provides each bundle with its own class

loader instance, which plays an important role in code isola-
tion and is responsible for loading the resources and classes
defined by the bundle as well as resolving classes provided
outside the bundle (i.e. imported classes). OSGi specific
class loading policies are able to handle the package level
visibility defined in manifest entries of the bundle jar file.
Class loaders can resolve classes imported from other bun-
dles and perform runtime verifications to know if a bundle is
able to instantiate classes provided by other bundles. When-
ever a bundle tries to reference a type, its class loader will
enforce if the visibility rules are followed.

2.3 Stale References
The previous subsection shows that in OSGi there is some

level of isolation by means of individual class loaders. How-
ever, it concerns code isolation by controlling the visibility
of types. Such isolation does not ensure that when a bundle
is uninstalled, its objects (e.g. a provided service instance)
will no longer be referenced. Although the OSGi platform
provides events indicating the departure of services and bun-
dles, if the service consumer code does not release correctly
the object reference. This problem, referred in the OSGi
platform as stale references is detailed in [6].

A custom diagnostics tool [7] is able to show that upon the
departure of bundles OSGi based applications can present
stale references, which are not visible in standard memory
leak detection tools. Since an object is being referenced, its
class loader and all class types loaded by the bundle will
hang in memory. However, memory leaks are not the only
problem concerning stale references. Inconsistencies, such as
the utilization of a stale service instance which provides old
cached data instead of using a new service that has replaced
that instance. In situations like that, the system can silently
propagate such inconsistent information.

3. ISOLATION OF SERVICES
For minimizing the impact of stale references, we intro-

duce dynamically generated proxies as an isolation layer be-
tween service provider and service consumer. Our imple-
mentation can be seen in two distinct levels: The first one
addresses isolation issues and avoids the retention of services
in memory, while the second one increments the dynamic
proxies by adding a fail-stop mechanism which would help
identifying the code that is using stale services. That is, the
first mechanism addresses memory retention while the sec-
ond addresses the identification of client code that is mis-
programmed and could potentially propagate inconsistent
information. The next subsections detail both mechanisms.

3.1 Dynamic Service Proxies
In our approach, we use the proxy pattern [8] for creating

a protection layer which would isolate the service provider
from the service provider. Whenever an instance of a service
provider is requested, a proxy for that object is dynamically
generated and returned to the requester. Service consumers
would no longer have direct access to the service provider

Figure 1: Dynamic proxy which delegates calls to
acual service provider

instances. Any calls on the proxy object would be delegated
to the actual service provider, as illustrated in Fig. 1.

This isolation layer does not intend to fix the misprogram-
ming of service consumers but to prevent them of keep ref-
erencing unregistered service providers. Upon unregistra-
tion of the wrapped service provider, the proxy can release
the reference that it keeps to that delegate so the service
provider can be eligible for garbage collection (GC) if no
other reachable objects refer to it.

It is also important to mention that this mechanism is lim-
ited to isolate objects which are used as services retrieved
via the OSGi service registry. If a bundle that provides a ser-
vice uses the service instance directly forwarding it to other
objects, there is a potential risk of memory retention in case
of code that does not handle the departure of services cor-
rectly. For example, a bundle may register in a JMX2 server
an object that points to a service provider that it registered
in OSGi. Since JMX is not aware of the OSGi dynamics,
if upon uninstallation the bundle does not remove the ob-
ject it registered in the JMX server, it will still reference the
service instance.

3.1.1 Selective Mechanism
If need be, we can determine what service providers must

not be proxied. This allows avoiding the overhead of proxies
in some cases that are not necessary (e.g. services provided
by the OSGi framework, component models). In our solu-
tion we have implemented a selective mechanism where we
can use an exclude list which contains rules (e.g. imple-
ments, contains, subclassof) and class name patterns, de-
fined in a file, to be matched against the service provider
classes during the requests for service instances. By doing
that it is possible to have more control and avoid the proxy
overhead in the desired cases. This mechanism gives more
flexibility to our dynamic service proxy mechanism and al-
lows the necessary adjustments to enable some OSGi based
applications to use the proxy approach, as described later in
this paper.

3.2 Fail-stop services
2Java Management Extentions provide tools for dynamically
managing and monitoring applications

Figure 2: Object reference is released but reified
type remains referenced by proxy

A system that fails fast [17] should do so immediately
and visibly. By using such simplified failure model in OSGi
to ensure that calls on unregistered services would fail, the
portions of the application still using stale services would
be explicit. If any calls to such services would result in a
crash (an exception thrown) there would be no propagation
of incorrect results, and bugs concerning the usage of stale
services would be evident upon the crash.

We can consider the fact that the upon service unregistra-
tion the dynamic proxy will release the reference to the ac-
tual service provider, as in Fig. 2, which would supposely en-
able garbage collection. Thus subsequent calls to the proxy
would lead to a NullPointerException when it tries to del-
egate the call to the service provider. However, the garbage
collection is not guaranteed if other objects from active code
directly reference the service object, like the JMX example
given previously. We enforce service utilization validity in
the proxy layer. Before delegating any call, the proxy ver-
ifies if the wrapped service provider has been unregistered.
If so, the proxy fails by throwing a RuntimeException thus
making the erroneous utilization evident.

4. IMPLEMENTATION AND VALIDATION
Developing the mechanisms described here is directly linked

with the internals of any OSGi framework implementation.
However we have used Aspect Oriented Programming to
keep it as a separate concern which would enable easy porta-
bility across different OSGi implementations. We have suc-
cessfully tested it in two implementations: Apache Felix [2]
and Equinox [4]. A tool presented in [7] was used for veri-
fying if service providers were garbage collected.

The proxies and the fail-stop mechanisms were initially
validated in a scenario where we had developed a set of
OSGi bundles intentionally misprogrammed. We have de-
ployed them in an OSGi platform and observed the results
of life cycle events on bundles that provided services used by
our code. Upon the uninstallation or update of other bun-
dles, our bundles retained object references to services that
have been unregistered, thus presenting stale references. In
the experiment with this set of bundles we proxied all the
services and did not utilize the selective mechanism. After
performing updates and uninstallation of bundles we could
verify that the isolation through proxies allowed the garbage
collection of the actual service providers (i.e. the delegates).
We could also verify that the clients that were service con-
sumers which were using stale services would fail, since they
were getting an exception from the proxy. These results

Table 1: Garbage Collection of proxied stale services
I Application Newton SIP Comm.
II Version 1.2.4 Alpha 3
III Lines of Code 85000 125000
IV Total Stale Services 76 21
V Proxied Stale Services 35 9
VI Reclaimed Delegates 28 5
VII GC percentage (VI/V) 80% 56%

validate our concepts of isolation and fail-stop services.
However, these techniques needed to be validated against

large applications. We have tested this mechanism in two
OSGi-based open source applications: SIP Communicator,
a multiprotocol instant messenger application; and Newton,
a service component architecture. Tests have also been per-
formed in JOnAS, a Java EE Application Server, but our
mechanism presented incompatibilities with the component
model used in several JOnAS bundles. The errors concerned
type visibility, needing further investigation.

In this test we used the selective mechanism to avoid prox-
ying some services due to explicit typecasts on code that
consumed them. A script performed the update of bundles,
forcing dynamic events that implied in the departure and
arrival of bundles and services, resulting in a set of stale ser-
vices in both applications. Table 1 shows the garbage col-
lection effectiveness of service providers whose proxy have
become stale referenced. Line IV shows the total stale ser-
vices, either proxied and non-proxied. Line V shows the
total proxied stale services, while VI shows that not all prox-
ied service has been garbage collected, that is, they are still
reachable. The proxies avoid service consumers referencing
service providers directly. For instance, a bundle B that
provides a proxied service X may have another non-proxied
service Y which has become a stale service during bundle
uninstallation or update, but if Y references X directly, X
will not be eligible for GC as long as Y is reachable.

In SIP Communicator the fail-stop mechanism allowed us
to identify some functionality that was still being used. By
analyzing the regular error output of the system, we could
see which class and line of code was using the stale ser-
vice. However, in order to get more results with this fail-
stop mechanism we would need to use the tested applications
thoroughly to verify if any utilization of the system presents
errors due to calls on unregistered services.

Although the module updates that we have performed in
the tested applications may not reflect their actual evolution,
we can see that even applications constructed by experienced
developers may present mishandling of events and service de-
parture concerning OSGi, and may not be completely ready
to fully take advantage of the platform’s dynamicity.

4.1 Benchmark
We have chosen to perform a benchmark3 for measuring

the overhead of our dynamic proxy mechanism. It was com-
pared with other approaches in the OSGi platform as well
with Java Remote Method Invocation (RMI) for establishing
communication with a JVM running in other process. The
experiment measured the invocation time of a parameterless

3OSGi Platform: Apache Felix 1.0.4. JVM: Sun
Hotspot/JRE 1.6.0 07. OS: Windows XP SP2. Hardware:
Pentium 1.7 GHz 1GB RAM

Table 2: Overhead compared to direct service calls
Method call type Overhead
Fail-stop dynamic proxy 2.65
Static proxy 1.09
iPOJO 1.10
RMI At least 200

method in a service registered in the OSGi platform.
Optimizations, which are not under our control, made

during compile time and execution time were apparently
affecting our initial measurements. At each benchmark ex-
ecution the overhead of the dynamic proxies was exponen-
tially growing whenever we increased the amount of times
the method should be called. As an alternative for avoiding
such optimizations we have altered the benchmark code in a
way that some sorts of optimizations (e.g. method inlining)
could not be done. We used Java reflection to perform the
method invocations that were being measured. As a result,
the overhead remained aproximately the same if we varied
the number of method calls performed in the benchmark.

This was a simple benchmark, based on the code from [16]
where we did not make a deep statistical analysis. The devi-
ation was not analyzed and we present only set of results that
carried the minimum values of the benchmark, which have
ocurred repeatedly in different executions. Our intention by
measuring that is to have a rough idea of the cost introduced
by the dynamic proxies and compare it with other alterna-
tives. In Table 2 we compare the dynamically generated
proxies with other approaches in OSGi: direct service calls;
static proxies as services (i.e. indirect service calls) and calls
to services injected by iPOJO [5], a component model that
performs bytecode manipulation for handling, among other
things, service dependencies.

By comparing the results of the benchmark we can see
that our approach adds a method invocation time over-
head that is fairly acceptable and provides a very low cost
(less than 3 times of a direct service call) to achieve ser-
vice isolation if compared to RMI (an alternative for iso-
lating services in different JVMs). iPOJO has a low over-
head slightly higher than static proxies, which are a good
alternative to dynamic proxies and follow the same principle
of the proxy design pattern. We have manually generated
the static proxy as a class that implements the tested in-
terface and delegates the calls to the target object, held as
an attribute, which implements the same type. We wanted
to position its performance so we could analyze the gains
for future implementations of our mechanism. The static
proxy mechanism has a better performance than all other
approaches. Apparently, we can cut the overhead by more
than half if we reimplement the dynamic fail-stop proxies as
static proxies generated during runtime.

4.2 Drawbacks
Since this is an ongoing work, we are still evaluating the

drawbacks imposed by the utilization of our approach. We
have already identified a few issues which we detail in the
next paragraphs.

In [8] we can find an important principle of reuse in object-
oriented design: ”program to an interface, not an implemen-
tation”, which is a basic concept for decoupling in Service
Oriented Computing. This principle flows naturally in SOC

//Service registered under the MyService interface
ServiceReference ref =
ctx.getServiceReference("xyz.MyService");
/* The code below "knows" the actual registered
/* MyService implementation, and does a typecast */
MyServiceImpl serv = (MyServi-
ceImpl)ctx.getService(ref);
/* The typecast in above line would not work with our
/* proxy approach, which would return a proxy for
/* MyServiceImpl instead of the actual object */

Figure 3: Typecasting that would break our code.

environments like XML Web Services, where typical scenar-
ios are service consumer and provider located in different
machines which communicate using well defined contracts
(interfaces) but communication layers are hidden behind
proxies that transparently provide the same contract. In
that case, the client consumer does not have access to the
actual object that provides the service. In OSGi based appli-
cations, bundles should communicate using such contracts as
well but service consumer code may violate that principle by
doing explicit typecasts on interfaces. Since the service con-
sumer and provider execute in the same memory space, and
there is no proxying or marshalling mechanism, program-
mers assume that they can perform typecastings of services
to concrete types when they know what actual implementa-
tion is behind the service interface, which usually works.

The usage of our fail stop mechanism works only on ap-
plications that consume services as a contract defined by in-
terfaces. This is what we expect in service-oriented applica-
tions. However, implementations that choose not to blindly
rely on interfaces and try to use typecasts to concrete imple-
mentations, as in the example on Fig. 3, would compromise
the functioning of our proxy approach. A workaround for
that problem was to include such services in the exclude list
of the selective mechanism explained in Sect. 3.

Other issue concerning synchronization may arrive if the
bundle that provides the service uses any lock directly on
the servant object. If consumer code tries to synchronize
access to that service, they will not have exclusive access
guaranteed since they are synchronizing on the proxy object.
However if the bundle that provides the service accesses it
via the OSGi framework, the synchronization point will be
the proxy which is used by all consumers of that service.

As we have presented, our approach addresses: 1) memory
retention (services and class loaders); and 2) the identifica-
tion of unregistered services (stale services) still being used
by service consumers. While the latter is easily addressed
with the fail-stop approach which will accuse which service
consumers are still using unregistered services, the first issue
is partially solved. We can guarantee that service consumers
will not reference the service providers, thus the service ob-
ject can be reclaimed by the garbage collector but the class
loader used by our dynamic proxy is the same of the service
provider. Thus, as long as service consumers keep referenc-
ing the proxies the class loader will still be referenced even
if the corresponding bundle has been uninstalled.

5. RELATED WORK
Another work [1], also based on proxied services, deals

with fault tolerance concerning service availability in OSGi.
However, that approach does not prevent the stale service
from being called. Their proxy solution is responsible for

dynamically locating the best service implementation, and
in case of faults it tries to locate another service.

In [11] we can see a service failure approach which presents
a fail-stop solution to handle faults in the composition of
services in SOA environments where consumers of a service
must anticipate that any service provider will fail (crash)
from time to time.

Spring Dynamic Modules [18] provide a transparent proxy
utilization in the OSGi platform which is similar to our ap-
proach, but we different objectives. They provide a depen-
dency injection approach for objects from spring modules
that would consume OSGi services. Instead of injecting the
reference to the service, they inject a proxy to that service
which would handle the departure and arrival of services and
some rules for locating services that may depart, similar to
the approach mentioned in [1]. While in Spring they act
only on Spring specific modules, which need to use its API
and specific metadata, our approach targets any requested
service registered on the OSGi service platform.

The previously mentioned approaches use proxies for work-
ing in a dynamic service level agreement fashion. We also
investigated other approaches which concern environments
for enforcing isolation, like the JSR 121 [12] provides a spec-
ification for a Java environment where application isolation
can be done by means of Isolates, which are application units
which resemble lightweight processes. Applications are iso-
lated in different object spaces but they can share some re-
sources like runtime libraries. Communication between iso-
lates can be done through Java RMI (Remote Method In-
vocation) based or equivalent mechanisms [15] which imply
in marshalling objects across contexts. A hybrid mechanism
described in [9] combines the JSR121 with an extensible vir-
tual machine. Their solution presents a concept of JVM
domains which allows ligthweight isolation between them.

The Microsoft .NET platform utilizes application domains,
referred by [19] as ”lightweight address spaces”, which can
isolate applications that run inside the same Common Lan-
guage Runtime (CLR). A single CLR process can run several
.NET applications by loading them in separate application
domains. It is possible to have a multi-application envi-
ronment without the overhead of process context switching.
Application domains are isolated but they reside in the same
CLR process space, communication across domains is possi-
ble via marshalling of objects using .NET Remoting, which
is the inter-process communication approach in .NET.

6. CONCLUSIONS AND FUTURE WORK
The widespread adoption of the OSGi Service Platform

as an environment for modularized applications is evident.
Its service oriented approach allows loose coupling between
bundles, but the dynamicity of that platform may lead to
inconsistent service referring if the departure of modules are
mishandled. As a consequence of that, combined with ob-
ject isolation limitations on OSGi, applications may present
memory leaks and propagate inconsistent results. We present
a mechanism which minimizes and detects such problems by
introducing an isolation layer between service consumer and
service provider.

The implementation consists of dynamic proxies provid-
ing a fail-stop mechanism upon service unregistration. The
approach was used to avoid the retention of unregistered ser-
vices and to invalidate method calls on stale services, avoid-
ing the propagation of incorrect results and facilitating the

discovery of stale services being used in the application. Al-
though some improvements need to be done to the mecha-
nism in order for it to run on any type of OSGi application,
we have proven its feasibility and interest for applications.

The tests that have validated the fail-stop mechanism were
initially performed in a controlled environment where the
bundles were intentionally misprogrammed and presented
stale references upon the departure of bundles. The mech-
anism worked as expected: service usage was not affected
except when unregistered services were improperly called.
The benchmarking showed that this approach is expensive,
but we see it as a low-cost implementation to enhance iso-
lation aspects in OSGi.

This mechanism was also tested in other OSGi based ap-
plications which allowed us to see that some applications
targeting the OSGi platform do not always follow the ”pro-
gramming to interface”principle, which caused our approach
to fail when bundles performed typecasts to concrete types
forcing us to add such cases to our exclude list that de-
termined the non-proxied services. We have analyzed the
results of experiments in two OSGi based applications of sig-
nificant size, which we have observed the garbage collection
of unregistered services and by using the fail-stop mecha-
nism we could identify portions of the code that kept using
such unregistered services.

In a simple benchmark we analyzed the invocation cost
of a dynamic proxy comparing it with RMI calls and also
two other service usage approaches in the OSGi platform:
static proxies (indirect service calls) and iPOJO. The dy-
namic proxies have a very acceptable cost if we compare it
with with the isolation cost of RMI (i.e. isolation in differ-
ent VMs). The utilization of a static proxy proved to have
a better performance than all other approaches.

In the continuation of our work we will evaluate the im-
pacts of dynamic proxies in the OSGi environment, as well as
the issues that such mechanism may bring. We will replace
the dynamic proxy implementation by static proxies. With
the help of bytecode generation libraries the static proxy
classes are going to be generated and dynamically loaded
during runtime. The proxies of the new approach would
work exactly as the dynamic proxies. Although there would
be the initial cost of bytecode generation when registering
the services, we would take advantage of faster execution
with the static proxies during application lifetime. We also
plan to execute tests in more realistic scenarios that actu-
ally reflect usage and evolution of OSGi based applications
instead of using scripts for batch updates of modules.

Acknowledgements. Part of this work has been carried
out in the scope of the ASPIRE project (http://www.fp7-
aspire.eu), which is co-funded by the European Commis-
sion in the scope of FP7 programme under contract number
215417. The authors acknowledge help and contributions
from all partners of the project.

7. REFERENCES
[1] H. Ahn, H. Oh, and C. O. Sung. Towards reliable

OSGi framework and applications. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied
computing, pages 1456–1461, New York, NY, USA,
2006. ACM.

[2] Apache Felix. http://felix.apache.org.

[3] M. Desertot, D. Donsez, and P. Lalanda. A Dynamic
Service-Oriented Implementation for Java EE Servers.
In SCC ’06: Proceedings of the IEEE International
Conference on Services Computing, pages 159–166,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] Equinox. http://www.eclipse.org/equinox.

[5] C. Escoffier, R. S. Hall, and P. Lalanda. ipojo: an
extensible service-oriented component framework. In
Services Computing, 2007. SCC 2007. IEEE
International Conference on, pages 474–481, 2007.

[6] K. Gama and D. Donsez. A Practical Approach for
Finding Stale References in a Dynamic Service
Platform. In 11th International Symposium on
Component Based Software Engineering (CBSE 2008).
Springer LNCS, 2008.

[7] K. Gama and D. Donsez. Service Coroner: A
Diagnostic Tool for finding OSGi Stale References. In
Proceedings of the 34th EUROMICRO Conference on
Software Engineering and Advanced Applications
(SEAA). IEEE, 2008.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, January 1995.

[9] N. Geoffray, G. Thomas, C. Clement, and B. Folliot.
Towards a new Isolation Abstraction for OSGi. In
Proceedings of the First Workshop on Isolation and
Integration in Embedded Systems (IIES 2008), pages
41–45, Glasgow, Scotland, UK, April 2008.

[10] O. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault,
and T. Watson. The eclipse 3.0 platform: adopting
osgi technology. IBM Syst. J., 44(2):289–299, 2005.

[11] C. Hobbs, H. Becha, and D. Amyot. Failure Semantics
in a SOA Environment. Montreal Conference on
e-Technologies, 0:116–121, 2008.

[12] Java Community Process. JSR 121: Application
Isolation API Specification.
http://jcp.org/en/jsr/detail?id=121.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

[14] OSGi Alliance. OSGi Service Platform.
http://www.osgi.org.

[15] K. Palacz, J. Vitek, G. Czajkowski, and L. Daynes.
Incommunicado: efficient communication for isolates.
In OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 262–274,
Seattle, Washington, USA, 2002. ACM.

[16] L. Seinturier, N. Pessemier, C. Escoffier, and
D. Donsez. Towards a Reference Model for
Implementing the Fractal Specifications for Java and
the .NET Platform. In 5th Fractal Workshop at
ECOOP’06, July 2006.

[17] J. Shore. Fail fast. IEEE Software, 21(5):21–25, 2004.

[18] Spring Dynamic Modules for OSGi Service Platforms.
http://www.springframework.org/osgi.

[19] D. Stutz, T. Neward, and G. Shilling. Shared Source
CLI Essentials. O’Reilly Media, March 2003.

