
June 10-11, 2008 Berlin, Germany

Runtime Diagnosis of Stale References
in the OSGi™ Services Platform

Kiev Gama & Didier Donsez
Université Grenoble 1, France

Kiev.Gama@imag.fr

Didier.Donsez@imag.fr

2

Objectives

• Bad OSGi™ Programming Practices

• How to diagnosis one (ie Stale References) ?

3

Outline

• The Stale References Pathology

• Need for Diagnosis

• The ServiceCoroner tool

• Experimentation

• Conclusion

• Perspectives

• Short demo of the tool

4

What are Stale References?

“a reference to a Java object that belongs to the

class loader of a bundle that is stopped or is

associated with a service object that is

unregistered”

OSGi R4 Section 5.4

5

class

Bv1.0

registered

servant

class

loader

Bundle #2 v1.0

ACTIVE

An example of Stale Reference Pathology?
(i) initial

framework

> start 2

Servant ready (v1.0)

> start 2

Servant ready (v1.0)

6

class

Bv1.0

registered

servant

class

loader

Bundle #2 v1.0

ACTIVE

An example of Stale Reference Pathology?
(i) initial

service

consumer

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

7

> start 2

Servant ready (v1.0)

> start 3

class

Bv1.0

service

consumerregistered

servant

class

loader

Bundle #2 v1.0

ACTIVE

An example of Stale Reference Pathology?
(i) initial

class

loader

Bundle #3

ACTIVE

framework

sayHello()

sayHello()

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

8

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

RESOLVED

(ie stopped)

An example of Stale Reference Pathology?
(ii) After stop 2

class

loader

Bundle #3

ACTIVE

framework

stale
references

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

9

Bundle #2 v1.0

RESOLVED

(ie stopped)

class

Bv1.0

service

consumerunregistered

servant

class

loader

An example of Stale Reference Pathology?
(iii) After stop 2

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

sayHello()

sayHello()

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

3- Hello World ! (v1.0)

4- Hello World ! (v1.0)

continue to
serve !!! ;-(

10

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

« Zombie »

An example of Stale Reference Pathology?
(iii) After update 2 & start 2

class

Bv1.1

registered

servant

class

loader

Bundle #2 v1.1

ACTIVE

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

3- Hello World ! (v1.0)

4- Hello World ! (v1.0)

> update 2

> start 2

Servant ready (v1.1)

11

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

« Zombie »

An example of Stale Reference Pathology?
(iii) After update 2 & start 2

class

Bv1.1

registered

servant

class

loader

Bundle #2 v1.1

ACTIVE

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

3- Hello World ! (v1.0)

4- Hello World ! (v1.0)

> update 2

> start 2

Servant ready (v1.1)

5- Hello World ! (v1.0)

6- Hello World ! (v1.0)

continue to
serve ! ;-(sayHello()

sayHello()

12

Bad Consequences in OSGi-based SW

• Memory leaks
• Retention of the classloader of a stopped or uninstalled bundle

• Retention of all java.lang.Class loaded by that bundle

• Utilization of invalid services � Inconsistencies!

• Service is unregistered but still used (wrong!)

• Its context is most likely inconsistent

• e.g. closed connections

• Possible exceptions upon service calls

• good because we can see the problem

• Silent propagation of incorrect results (worst case!)

• E.g. Returning old cached-data

13

Other « stale » pathologies
(Bad OSGi™ Programming Practices)

• “Forwarded references”

• From one bundle to another

• “Stale” threads (ie orphan threads)

• bundle has stopped but created threads have not

• Unregistered MBeans, RemoteObjects, …

• Unreleased resources

• sockets, file descriptors, locks, …

14

How to ensure
« stale reference free » applications?

2 cases of OSGi™ SW projects

• From-scratch OSGi™ development

• Bundlization of Legacy codes

• Really frequent (Eclipse 2.0 to 3.0, JOnAS, WebLogic, …)

• Module with or without Services/Extension Points

Gurus’ advice (Peter, BJ, Rick (in the other room)…)

1. Follows Good OSGi™ programming practices

• Who trusts their developers ?

2. Uses Component Models

• Necessary but not enough

• Stale references may be there but we can’t see them…

� We need Diagnosis
victim bundles x guilty bundles

15

The ServiceCoroner tool

• A diagnosis tool for detecting

stale references in OSGi™ applications

• “Inspector” of services death

• Runtime diagnosis

• Points out victim bundles/services

and possible suspects

*The coroner is a legal examiner that investigates the causes of unnatural deaths in English speaking countries. Not all coroners have forensic pathology knowledge,

but for illustration purposes we have named our tool as ServiceCoroner.

16

The ServiceCoroner tool (cont.)

• Diagnosis of service references “pathologies’’

• How to enable OSGi™ to provide that info?

• Use AOP: diagnosis as a separate concern; portability

• Relies on weak references to know if a service has

been GCd

• Small delays (wait for GC) to get actual info

• Listens to service and bundle events and log them

• Minimal performance impacts
• Weaving Service Registration; Class Loader and Thread Creation

17

W
e
a
v
in

g

p
ro

c
e
s
s

Aspects

OSGi™

framework

Weaved OSGi™

framework

Input Output

ServiceCoroner

The Weaving Process
Portable aspects on

the OSGi R4 API

* That version uses signed jars. We manually removed the class hashes information from the original equinox jar manifest in order to bypass checking

Tested Frameworks:
- Apache Felix v1.0

- Equinox v3.2.0

- Equinox v3.3.0*

- Knopflerfish v2.0.4

…

18

The Diagnosis Process

> stop 2

> refresh 2

> start 2

> update 3

> uninstall 4

> stop 5

…

Weaved OSGi Framework

B
u
n
d
le

 1

B
u
n
d
le

 4

B
u
n
d
le

 5

stop/refresh/start

update uninstall

stop

B
u
n
d
le

 2

B
u
n
d
le

 3

Classical JVMClassical JVMSun JVM 6.0Sun JVM 6.0

STOPPED# 5

s40UNINSTALLED# 4

ACTIVE# 3

s20, s21ACTIVE# 2

ACTIVE# 1

ACTIVE# 0

StaleRef SvStatusBundle

Realtime report

5

4

s20# 3

2

s40, s21# 1

0

GuiltinessBundle

JDK6’

JHat

JDK6’

JHat Yet a
manual

process !

HotSpotDiagnosticMXBean.dumpHead()
or jmap command

Snapshot report

19

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

« Zombie »

Watching services

class

Bv1.1

registered

servant

class

loader

Bundle #2 v1.1

ACTIVE

class

loader

Bundle #3

ACTIVE

framework

ServiceCoroner

WeakRefs to services

20

The Diagnosis Process (cont.)

• In vitro (active)
• Force life cycle events
• Not ideal for a production environment.
• Reasonable for a testing environment
• Faster results
• "Brute force" may not lead to events

that reflect the application’s architecture

• In vivo (passive)
• Wait for "normal" life cycle events

• resulted from normal administration tasks

• Ideal for production environments
• Results are more precise
• Take longer (maybe days!)

21

Executing the Active Process Diagnosis

• Run a script in the
ServiceCoroner scripting
console

• Script performs a call to update
in bundles that have registered
services

• 10 second interval between
each update call

• Core bundles are not updated
(e.g. bundle 0, libraries, …)

• Use an “exclude list”
containing such bundles

22

Issues

• Fine grained analysis to find out object referrers
• Used jhat and jmap embedded in the application
• Semi-automated process
• Only in Sun JVM
• Limitations: Large memory footprint;
• Weaving at bundle load time

• How to find out the bundle classloader
• During bundle activation is fine, but…
• …what about the extender model case and library bundles?
• We need an accurate mechanism to infer a bundle’s

classloader

23

ServiceCoroner Graphical User Tools
(i) Standalone

24

ServiceCoroner Graphical User Tools
(ii) JConsole/VisualVM Plugin

25

Experiments

• Motivation
• Validate ServiceCoroner on real-life OSGi-based SW

• Widely used

• OSS and Non-Commercial OSGi apps to avoid court trials or man
hunts ;-(

• More than 100,000 LoC (Not « HelloWorld » Toys)

• Answer to « Is the Stale Reference pathology so frequent ? »

• Choices : SW using Services
• JOnAS, Sling, SIP Communicator, Newton
• Remark: some use (partially) Component Models
• Remark: Eclipse (Extension Points) & GlassFish (HK2 comp.)

are not pertinent !

• And the results are …

26

Experiment results

2.8%40.8%63 %8.5 %
Stale Services Ratio

(IX/VII)XI

0042No. of Stale ThreadsX

358197

No. of Stale Services

FoundIX

225174

No. of Bundles w/ Stale

Svcs.VIII

1051423082

Initial No. of Service

Refs.VII

41905386Total BundlesVI

Over

125 000

Aprox.

85 000

Aprox.

120 000

Over

1 500 000Lines of CodeV

18

Declarative Services

0
6

Service Binder

20

iPOJO
Bundles using

Component ModelsIV

Felix 1.0Equinox 3.3.0Felix 1.0Felix 1.0OSGi Impl.III

2.0 incubator snapshot1.2.3Alpha 35.0.1VersionII

Sling
(Content Repository)

Newton
(SCA container)

SIP Comm.
(multiprotocol VoIP

and Chat UA)

JOnAS
(JavaEE server)OSGi-based softwareI

[1] Actually the whole Newton implementation is an SCA constructed on top of OSGi, but its bundles did not use an OSGi component model like the other analyzed applications did.

Stale References are not a myth !

27

Conclusion

• Stale References are not a myth !

• But Component Models are helpful !
• JOnAS bundles that used a component model (iPOJO) did not

present stale references

• Same for Sling

• SIP Communicator errors were mostly due to GUI objects
retaining references, and services kept as class members

• Newton does not used identified OSGi component model …

28

Perspectives

• Release ServiceCoroner in an OSGi OSS Community

• Automate guilty bundles identification

• Add other pathologies diagnostics to ServiceCoroner

• “Stale” extension points

• Eclipse IDE & RCP’ plugins

• Other “stale pathologies” related to the R4.1’ Extender Model

• HK2, SCA …

• Collaborations to improve current OSGi-based SWs

• JOnAS but others are welcome

29

More about the ServiceCoroner

• 5000 word-long paper to appear in the 34th EuroMicro
SEAA CBSE track: ‘‘Service Coroner: A Diagnostic Tool
for locating OSGi Stale References’’

• Videos, documentations and tools available on
• http://www-adele.imag.fr/users/Kiev.Gama/dev/osgi/servicecoroner

Or googlize "ServiceCoroner"

• Extra stuff : JConsole & VisualVM Plugins for OSGi
• Bundle admin, Felix/Equinox/KF remote shells, …
• http://www-adele.imag.fr/users/Didier.Donsez/dev/osgi/jconsole.osgi/

June 10-11, 2008 Berlin, Germany

Very short demo !

Only the victims detection

June 10-11, 2008 Berlin, Germany

Q & A

32

Abstract

• The OSGi™ Service Platform allows the dynamic loading and unloading of bundles and their classes during JVM execution. However,
developers must take special care to handle the departure of services and bundles. Since OSGi™ bundles are not isolated from each
other in separate object spaces, when they are stopped there is no guarantee they are safely removed from runtime. There is a high
possibility of inconsistencies due to the mishandling of such events. The platform cannot ensure that objects from a stopped bundle will
no longer be referenced by other bundles – a problem referred by OSGi™ specification (Core R4 section 5.4) as stale references. This
happens as an invisible problem that compromises application integrity: Stale References cause memory leaks and prevent the
classes of a bundle to be unloaded from memory; inconsistencies can silently propagate errors throughout the system due to calls to
an unregistered service that returns stale data (e.g., old cached data).

• This presentation details: different patterns of stale references occurrence; situations where that problem may compromise application
correctness; techniques based on Aspect Oriented Programming to detect such problems during application runtime; a fail-stop
mechanism on services to avoid the propagation of incorrect results due to calls to stale references; and the results of an experiment
on four open source OSGi™ technology based applications.

• It is difficult to say that OSGi™ applications and components are ready to cope with the OSGi™ dynamics, since there are no custom
mechanisms to measure or evaluate that. The usage of component models does not necessarily avoid the occurrence of stale
references. We have developed a tool called Service Coroner, which implements the techniques that we present and is able to provide
information on stale references objects.

• We have validated this diagnostic tool by doing a runtime analysis in four open source applications constructed on top of OSGi™: OW2
JOnAS 5.0.1, SIP Communicator Alpha 3, Newton 1.2.3 and Apache Sling. All applications are of significant size, especially JOnAS,
whose core is about 400 000 lines of code but comes to over 1 500 000 when the other components are taken into account. Some of
those applications are partially developed with component models for the OSGi™ Platform: Service Binder, R4 Declarative Services
and iPOJO. The experiment shows that even using such mechanisms applications still present stale references are not completely
ready to handle the dynamic update of components. After the simulation of some life cycle events (update, start, stop) on a limited
range of bundles in each the application we found out a number of stale references. The stale services proportion in relation to the
initial number of registered services in JOnAS, SIP Communicator, Newton and Sling were 8.5 %, 63%, 40.8% and 2.8 %, respectively.
JOnAs presented 2 stale threads and SIP Communicator presented 4.

• The presentation would be concluded with a 5-minute demonstration of the ServiceCoroner diagnostic tool and its 2 GUIs: standalone
and remote (on JConsole6/VisualVM)

33

Bios

Kiev Gama
Kiev Gama (kiev.gama@imag.fr) is currently a Master Student at Université Grenoble 1 (France). He has a

bachelor’s degree in Computer Science from Universidade Catolica de Pernambuco (Brazil) and has

earned a one year post-graduate degree in Mobile and Converging Systems from Universidade do Estado

do Amazonas (Brazil). He has 6 years of experience of development in Java, J2ME, JavaEE and .NET

technologies having worked in several companies of the brazilian information technology market. He is

interested in researches on service oriented architecture and component-based software engineering.

Didier Donsez
Didier Donsez (didier.donsez@imag.fr) is a full professor of computer science at the University Grenoble 1

(France). His research is focused on service oriented architecture and component-based software

engineering in the context of Machine-to-Machine applications. He had 7 years of experience in OSGi

software engineering for J2ME to JavaEE runtimes. He is the current chairman and co-founder of the OSGi

Users Group France. He contributes also to OSS communities (Apache, OW2 …). He earned his PhD in

Computer Sciences (1994) at University Paris 6 and a HDR in Computer Sciences (2006) at University

Grenoble 1.

June 10-11, 2008 Berlin, Germany

Bonus Track

35

Metrics

• ServiceCoroner
• (Felix.jar 330KB)
• Core + MBean : 48KB

• Number of ligne of code: 1615 in Java, 79 in AspectJ

• Number of classes: 37

• Number of pointcuts (AspectJ): 5

• Swing GUI : 53KB
• Number of ligne of code: 1067 in Java, 97 in JavaScript

• Number of classes: 43

• ServiceCoronerPlugin (JConsole & VisualVM)
• Jar: 123 KB
• 4 classes and 254 LoC

36

MBeans & JConsole/Visual plugins
OSGi console

37

MBeans & JConsole/Visual plugins
Shell (for Felix, Equinox, KF)

