
FROGi: Fractal components deployment over OSGi

Mikael Desertot1 3, Humberto Cervantes2 and Didier Donsez1

1Laboratoire LSR-IMAG, 220 rue de la Chimie,
Domaine Universitaire, BP 53, 38041,Grenoble, Cedex 9, France
{Mikael.Desertot, Didier Donsez}@imag.fr

2Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),
San Rafael Atlixco Nº 186, Col. Vicentina, C.P. 09340, Iztapalapa. D.F., Mexico

hcm@xanum.uam.mx
3Bull SAS,

1 Rue de Provence, 38130, Echirolles, France

Abstract. This paper presents FROGi, a proposal to support continuous de-
ployment activities inside Fractal, a hierarchical component model. FROGi is
implemented on top of the OSGi platform. Motivation for this work is twofold.
On one hand FROGi provides an extensible component model to OSGi devel-
opers and eases bundle providing. FROGi-based bundles are still compatible
with “legacy” OSGi bundles that offer third party services. On the other hand,
FROGi benefits from the deployment infrastructure OSGi provides and that
eases conditioning and packaging of Fractal components. With FROGi, it is
possible to automate the assembly of a Fractal component application. Partial or
complete deployment is also supported as well as performing continuous de-
ployment and update activities.

 1. Introduction

Component-based software engineering (CBSE) is a development methodology that
promotes the idea that software can be built through the assembly of reusable software
units called components [Szyperski1998]. Components are characterized by the fact
that they explicitly define a set of provided functionalities along with dependencies
that allow the components to be assembled (i.e. composed). CBSE assumes that com-
ponent development and component assembly are clearly differentiated activities.
Moreover these activities can be performed by different actors. This differentiation
implies that delivery and deployment aspects must be taken into account early in the
development life-cycle. To support these activities, components are typically pack-
aged in a unit which includes everything that is needed by the component to function,
except whatever the component declares as an explicit dependency. Dependencies can
be fulfilled either through composition or at deployment time. A component model is
also generally associated to an execution environment which is responsible for con-
trolling several aspects associated to the components at run-time. These aspects in-
clude life-cycle management and the support of non-functional requirements such as
persistence or security.

Currently, many component models exist; the majority of them are targeted toward
specific application domains such as the construction of user interfaces (JavaBeans) or
the construction of application servers (CCM, EJB). The Fractal component model,
however, aims to be a more generic model [Bruneton2004]. The Fractal specification
defines the component model characteristics, and different implementations for this
specification exist. One of them is Julia [Bruneton2004], which is the reference Java-
based implementation. An important particularity of the Fractal component model is
that it supports hierarchical composition, where a composition itself can be seen as a
component that can be used in other compositions. Another particularity of this model
is that it is extensible; this characteristic allows this model to be independent from a
particular application domain. Although the Fractal specification defines clearly the
characteristics of Fractal components, it does not cover deployment aspects which, as
previously mentioned, need to be taken into account early in the development lifecy-
cle.
This paper presents FROGi [Cervantes2004] which is an extension of the Fractal com-
ponent model that supports deployment features. FROGi introduces the concept of a
deployment unit which is not covered in the original Fractal specification. Further-
more, FROGi deployment units address the problem of deployment at both the com-
ponent and the composition level, necessary to support Fractal's hierarchical model.
FROGi also addresses the issue of supporting continuous deployment activities, which
represent the fact that deployment activities, which include installation, activation, up-
date and de-installation of components occur continually. Supporting continuous de-
ployment is facilitated by introducing concepts from Service Orientation into the com-
ponent model.

 FROGi implements these concepts by combining the Julia reference implementa-
tion of the Fractal component Model and the OSGi services platform [OSGi2005].
FROGi simplifies Fractal-based application deployment and also allows these applica-
tions to support continuous deployment activities. This paper describes the concepts
and the implementation of FROGi and discusses some issues related to its realization.

This paper is structured in the following way. Section 2 presents the Fractal compo-
nent model and its reference implementation Julia. Section 3 presents FROGi con-
cepts. It describes how a Fractal application is delivered as a set of deployment units.
Section 4 discusses implementation details, including OSGi. Section 5 presents related
work and finally section 6 provides a conclusion and perspectives to this work.

 2. The Fractal component model

This section discusses the principles behind the Fractal component model and its ref-
erence implementation Julia.

 2.1. Fractal

The Fractal component model is intended as a generic component model. Fractal com-
ponents are defined as entities that provide and require functional interfaces. One
component can also provide or require various named instances of an interface of a

same type (similar to Corba Component Model's facets). To support multiple applica-
tion domains, Fractal components allow an undefined number of control interfaces to
be implemented by the components. Control interfaces are used at run-time for various
purposes. The Fractal specification defines several control interfaces which cover as-
pects such as life-cycle control (LifeCycleController – LC), the management of con-
nections between components (BindingControler – BC) and the management of com-
posite contents (ContentController – CC). Furthermore, different instances of a Fractal
component can be created from a factory associated with a particular component type.
Figure 1 depicts an example of a composite component containing two component in-
stances. These instances, which represent a client and a server, are bound together and
an interface provided by the client instance is exported outside the composition. Addi-
tionally, the two instances and the composite provide several control interfaces.

The Fractal specification defines a standard API that allows component types to be
defined programmatically. The API also allows component instances to be created,
configured and connected.

Figure 1. Graphical representation of a Fractal composite

 2.2. Julia

Julia [Bruneton2004] is the Java-based reference implementation of the Fractal frame-
work which implements the Fractal API. Julia aims to simplify the construction of
Fractal applications through the generation of support classes, which allow standard
Java classes to adhere to the Fractal component model. A developer using Julia who
wishes to create a Fractal component must only provide code associated to application
logic (the code that implements the functional interfaces or component implementa-
tion). Julia generates a set of classes which include implementations of control inter-
faces as well as interceptors between functional interfaces and the component imple-
mentation. Support classes are generated either in a static or in a dynamic way through
mixin and byte code injection techniques. It must be noted that Julia is not the only
Fractal implementation; other implementations of Fractal are also available for other
languages and frameworks such as C, .NET, Smalltalk, etc...

jl.R z.Z

C BCCC LC

y.Y

C BC LC

z.Zy.Y
Client Server

z.Zjl.R jl.R

AC

AC C BC LC AC

 2.3. Construction of Fractal applications using Julia

A Fractal application is typically built from a set of classes implementing the applica-
tion logic contained in the components, one or more coordination classes, as well as a
primary class (bootstrap) responsible for performing the application startup. Coordina-
tion classes interact with the Fractal framework to create the different component
types, component instances and instance connections required by the application. Co-
ordination logic can be written either programmatically or declaratively using the
Fractal Architecture Description Language (ADL). It must be noted that the ADL only
allows static compositions to be described in an XML file; dynamic changes must be
described in program code.

 3. FROGi

As previously described, the Fractal Component model intends to be general and al-
lows many types of applications to be constructed, either distributed or not. Construc-
tion of applications using this model is beneficial for several reasons. First, Fractal is
an extensible model; it allows the developer to extend it by providing additional con-
trol interfaces and by extending its ADL as well. It is also flexible as it permits to dy-
namically adapt the binding configuration between the components (although this has
to be done programmatically through the API). Finally it is a hierarchical model that
can manage the non-functional aspects of components. Despite these advantages,
Fractal still has some limitations. The first concerns component deployment since
nothing is specified in Fractal regarding this aspect. Although this issue has been ad-
dressed by some recent work, proposed solutions are limited because they do not sup-
port component unloading when components are not used anymore (see related work
section). The second limitation concerns component packaging. As deployment is not
currently addressed, no deployment unit has been specified. As a result, a Fractal ap-
plication is delivered a set of classes. Although these classes can be packaged together
in a jar, the components themselves cannot be delivered independently. The last limi-
tation concerns the versioning of the components constituting the application. It is not
currently possible to support multiple versions of components running simultaneously
as classes or package versioning is not supported, although this is more a limitation of
standard Java.

Generally, component based applications are assembled by mixing off-the-shelve
components together with newly developed ones. Both kinds of components are as-
sembled to provide more complex functionalities. However, current techniques usual-
ly assume that the construction is performed by a single actor. As a result, the lifecy-
cle, of the application and its components, (of any models [Loritsch2004],
[Heller2002]) is managed by a single provider (this it is currently the case for applica-
tion servers or domotic gateways). This situation limits the possibility of sharing com-
ponents between different applications.

On the other hand, Service-Oriented Architectures (SOA) are built following a dif-
ferent model. Services are similar to components in the sense that they are composed
to build applications. Services, however, are specifically designed to be shared at run-
time. Services are usually discovered in a service registry before being used in a com-

position. The most common approach to service composition is Web Services compo-
sition/orchestration. But some non web-service frameworks that support SOA also ex-
ist. OSGi [OSGi2005] is one of them and is presented later in this article. OSGi was
designed to construct applications running inside home gateways; this kind of environ-
ment is typically shared by several providers and must run continuously.

The construction of a component-based application or a service-based application
requires different concerns to be addressed. The main difference is that in components
models, binding are static and explicitly described (naming) whereas in service archi-
tectures bindings are dynamic as services are referenced in a registry (trading) and can
appear or disappear at runtime. Moreover, components tend to be small grained as-
sembly units. It is possible to create a considerable amount of component instances in-
side an application. For instance, a large number of components can be deployed in an
application server like Java EE. Services, on the other side, are usually not designed to
be small grained entities. The reason for this is that in service orientation it is neces-
sary to deal with the inherent dynamicity, and the lookup and adaptation required to
support dynamic service availability tend to be resource consuming activities which
are too costly for small size components.

FROGi introduces an approach where component and service orientation concepts
are mixed. FROGi components (either single components or compositions) are used to
provide services. This approach allows applications to be constructed as hierarchical
compositions where bindings are dynamic. Dynamic binding is supported through the
introduction of service orientation concepts. Furthermore, the introduction of support
for dynamic binding also allows dynamic deployment activities to be performed.
FROGi is built by introducing the OSGi service platform into Fractal. FROGi intends
to illustrate that OSGi can be used to deploy applications build using different compo-
nent models and furthermore to be able to make these applications interact. This inter-
operability can occur, for example, between a Fractal component and another like EJB
[Sun2001]. The authors have already worked on supporting OSGi-based dynamic de-
ployment of both EJB components and a whole Java EE application server [Deser-
tot2005]. What FROGi offers is a deployment container that takes in charge bindings
between components using inversion of control [Fowler2004] and similar to PicoCon-
tainer [Hammant2004]. Finally, FROGi also allows Fractal-based applications to ben-
efit from all the legacy services already offered by the OSGi platform. For instance,
Comanche HTTP, a web server implemented with Fractal, can use the Log service
specified in OSGi.

 4. FROGi implementation

This section discusses the implementation of FROGi. It begins by describing the OSGi
framework upon which FROGi is built. This section also discusses how components
are packaged, an ADL that is used for deployment and a generation chain.

 4.1. The OSGi Framework

The Open Services Gateway Initiative (OSGi) Alliance [OSGi2005] is an indepen-

dent, non-profit corporation working to define and promote open specifications origi-
nally intended for the delivery of managed services to networked environments, such
as homes and automobiles. These specifications include the definition of the OSGi
Services Platform, which consists of two pieces: the OSGi framework and a set of
standard service definitions. The OSGi framework is a Java-based deployment and ex-
ecution environment for components. The OSGi framework was originally conceived
to be used inside restricted environments, such as set-top boxes. The OSGi framework
can however be used in other domains, as for example, an infrastructure to support un-
derlying release 3.0 of the eclipse IDE.

The OSGi framework supports uninterrupted deployment of components that are
delivered inside of bundles. The framework also provides a service registry that al-
lows the components to interact following a service-oriented approach. In OSGi, each
bundle is used to deploy a single component that results in a unique instance at run
time (singleton). The continuous deployment activities supported by the framework
include bundle installation, activation, deactivation, update and de-installation of the
bundles. The framework ensures that deployment dependencies at the bundle level are
satisfied before allowing the bundle to be activated. Bundle activation results in the
creation of the component instance deployed inside the bundle.

Physically, a bundle is packaged a jar file that contains binary code as well as re-
sources needed by the component. The jar file manifest file provides meta-information
that describes the bundle's dependencies and the name of an activation class. This
class is instantiated by the framework upon bundle activation. The bundle's dependen-
cies are divided between deployment-time and run-time dependencies. Deployment-
time dependencies are code dependencies described as packages that are exported and
imported by the bundles. Run-time dependencies describe the services that are provid-
ed or required by the component that is deployed inside the bundle.

Component instances can publish or discover services provided by other compo-
nent instances at run-time. In OSGi, a service is published from a service interface, a
reference toward the component implementing the service and a set of properties.
Those properties, defined as keys and values, allow clients to differentiate two equiva-
lent service offers (i.e. two services with the same interfaces). Moreover, the registry
allows constraint searches to be made using filters based on the properties following
LDAP syntax. Because service publication or departure can occur at anytime, the ser-
vice registry supports a notification mechanism that allows service clients to be aware
of a particular service arrival or departure events. In OSGi application assembly oc-
curs at execution time as a result of the interaction between components and the ser-
vice registry.

 4.2. Component packaging

In FROGi, a Fractal application is packaged inside one or more bundles. It is impor-
tant to notice that inside a single bundle, FROGi components are bound together fol-
lowing the standard Fractal approach. However, when components are delivered in
separate bundles, components become service providers and binding is performed us-
ing the service-oriented interaction pattern which is facilitated by the OSGi platform.

Because a Fractal application is built as a hierarchical composition, FROGi sup-
ports independent packaging of primitive components as well as composites. As a

consequence, it is possible to perform independent delivery as well as independent up-
date of the components. The example of figure 2 presents the application from figure
1 packaged as a set of bundles. In this example, each component is delivered in a dif-
ferent bundle: B0 for the composite, B1 for the client and B2 for server.

Figure 2. Fractal application packaged as a set of OSGi bundles

It is important to notice that once published, service interfaces become stable con-
tracts which evolve slowly while their implementations can evolve more frequently.
As a consequence, service interfaces used for the binding between components should
be delivered in separate bundles (for example bundle B3 in the figure 2 contains the
interfaces implemented by the components in the other bundles). The bundles that im-
plement interfaces have a deployment-time dependency towards the bundle that con-
tains them. The independent delivery of service interfaces allows implementation bun-
dles to be updated without impact on the other bundles. If services interfaces were de-
livered with their implementation, a bundle update would lead to stopping and restart-
ing (i.e. refresh) of the bundles that depend on those services interfaces. This situation
can be problematic when applications run in non-stop environments. In FROGi, the
Fractal API as well as the Julia runtime are themselves delivered inside a bundle (frac-
tal.jar); this bundle exports packages that must be imported by bundles containing
Fractal components.

FROGi uses standard OSGi mechanisms for managing deployment activities of a
bundle-based Fractal application. During bundle installation, the OSGi framework re-
solves in an automatic way deployment dependencies corresponding to packages con-
taining service interfaces as well as the Fractal API. When those dependencies are re-
solved, the bundle can be activated. Activation of a FROGi bundle results in the in-
stantiation and activation of an object from a generic class, FrogiBundleActivator,
contained in each FROGi bundle. This class is responsible for configuring Julia exe-
cution environment (notably by specifying that the classloader to use is the bundle
one). It then instantiates a primary class (i.e. BootStrap) that is responsible for creat-
ing the component(s) instance(s) delivered by the bundle.

LegacyLegacy

jl.R;
service.pid=main
cron.pattern=* * 3 * * * *

B3B3

z.Z;
(language=fr)

jl.R;
service.pid=x1

Provided service

Required service

Exported package

Imported package

Appli-
cation

Manager

Appli-
cation

Manager

B0B0 B1B1 B2B2
y.Y;
service.pid=y2

BC,LC;
service.pid=x1

BC,LC;
service.pid=y2

Client ServerComp

y; specification-version=1.0.0
z; specification-version=2.0.0

org.objectweb.fractal.*

fr.imag.adele.frogi FROGiFROGi

FractalFractal

LegacyLegacyLegacyLegacy

jl.R;
service.pid=main
cron.pattern=* * 3 * * * *

B3B3

z.Z;
(language=fr)

jl.R;
service.pid=x1

Provided service

Required service

Exported package

Imported package

Provided service

Required service

Exported package

Imported package

Appli-
cation

Manager

Appli-
cation

Manager

B0B0 B1B1 B2B2
y.Y;
service.pid=y2

BC,LC;
service.pid=x1

BC,LC;
service.pid=y2

ClientClient ServerServerCompComp

y; specification-version=1.0.0
z; specification-version=2.0.0

org.objectweb.fractal.*

fr.imag.adele.frogi FROGiFROGi

FractalFractal

 4.3. Component runtime

This section describes the features of the runtime environment associated to FROGi.

Controller Publication. Once a FROGi component instance (i.e., Fractal components
located at the bundle root) is created, its control interfaces are published in the OSGi
service registry. The publication of those interfaces allows a third party bundle (its en-
capsulating composite or an administration bundle) to control the component in-
stance's lifecycle. Management can, however, also be performed externally, for exam-
ple using a JMX Agent [Frénot2004].

Instance binding. Trading associated with the service oriented approach is used in
FROGi to support binding of component instances that are delivered in different bun-
dles. The use of trading allows flexible bindings to be created. A binding can be per-
formed, for instance, with regard to any instance providing a particular service (i.e.
org.osgi.service.log.LogService). Furthermore, services are characterized by a set of
properties (such as “language=en” or “cron.pattern=***3***” in figure 2). Trading
also allows 'static' bindings to be created. In that case a service request must contain
the unique instance identifier (service.pid) towards which the binding must be real-
ized.

Life cycle and binding management. FROGi proposes two policies to manage the
lifecycle and binding of the components: a composite-driven policy and an autonomic
policy. The instance lifecycle of a root component can be managed either by its com-
posite (delivered in another bundle), either by itself in an autonomous way. Life cycle
management by the composite requires the instance control interfaces to be published
as services in OSGi service registry. Each service is identified by the service.pid at-
tribute. This attribute identifies the instance that provides the service in a unique and
persistent way. The composite creates bindings between instances through the Bind-
ingController services they expose. Once those binding are created, the composite ac-
tivates the instances with the help of their LifecycleController services.

The alternative to this policy is to consider the bundle as an autonomous life cycle
management unit of the instance with regard to its composite. This policy is inspired
from the Service Binder (see 4.2). The instance is started as soon as mandatory ser-
vices dependencies are available in the registry. This last policy is used for connecting
components to legacy bundles that are devoid of life cycle and binding controllers.

Dynamic reconfiguration. No matter which policy is used, it is necessary to support
dynamic reconfiguration when the framework notifies that new components are intro-
duced or removed from the environment. If an arriving component is required by an-
other one, the binding must be performed. If a component leaves, the components that
depend on it must check in the registry that the mandatory services they depend on are
still available. In the case of the autonomous policy, provided services are systemati-
cally unregistered of OSGi registry at component stopping time. They are registered
again (still with the same service.pid atribute) during the component instance restart.

Application activation. A Fractal application is a component/composite that can be
activated from one of its functional interfaces by Fractal support classes such as

org.objectweb.fractal.adl.Launcher.
In OSGi, the application concept doesn't really exist: the application is built as a set

of bundles that create connections as they are installed or removed from the frame-
work. Bundles can, however, be classified into two categories: support bundles (i.e.,
which provide services), and coordination bundles (which may not provide services
but use services provided by other bundles). Coordination bundles are closer to the
concept of an application, however, these bundles may themselves provide services to
other bundles and become part of a bigger application.

In FROGi, an application manager is responsible for activating the Fractal applica-
tion deployed on OSGi. This can be for instance a Cron Service calling the run()
method of a component or an administrator command executed on the terminal con-
sole.

 4.4. Extensions to the Fractal ADL

Fractal provides an Architecture Description Language (ADL) that allows compo-
nent assemblies to be described. As previously mentioned, this ADL is extensible.
FROGi extends this ADL to take into account the deployment aspects of the compo-
nents, i.e. Packaging them within bundles.

The extended ADL is specified as shown in figure 3. The <bundle> sub-element
of the <component> and <definition> elements define how components are
packaged inside the bundle identified by the name attribute. The version attribute
specifies the overall implementation version. It corresponds to the bundle's Bundle-
Version manifest attribute in OSGi. All the elements that are declared after a
bundle element are packaged together in the same bundle and this occurs until
another <bundle> element is encountered.

The bundle attribute under the <interface> element indicates that the interface
must be packaged inside another bundle whose name is specified by the name value. If
the bundle attribute value is an empty string, the interface is not packaged by FROGi:
it is already available in another bundle, generally a legacy bundle. By default, if
nothing is specified, service interfaces are packaged in the same bundle as their
component implementation. The version attribute of the <interface> element
declares the package specification version (i.e. contract) of the interface. The default
version value is 0.0.0.

The sub-element <property> of the <interface> element defines some
properties that are associated to the service interface and which are used when the
interface is published in the service registry. Those properties are used for service
trading and and to provide information to application managers.

The sub-element <binding>, of <component> and <description> elements is
used simultaneously to create standard Fractal bindings between instances created in
the same bundle, bindings between instances created into separate bundles and
bindings between instances and legacy OSGi services. The server attribute can be
substituted by a filterserver attribute whose value is a LDAP expression that the
requiring service must match to perform the binding. This attribute is not available for
standard Fractal bindings (i.e. intra-bundle). We can notice that the
serverfilter="(service.pid=server.y2)" attribute is equivalent to
server="server.y2".

Figure 3. The Extended Fractal ADL

Figure 3 presents the Fractal ADL description used to obtain the FROGi packaging
of figure 2 for the application depicted in figure 1.

 4.5. Generation and deployment chain

The extended ADL presented in the previous section allows packaging tasks to be au-
tomated using a generation and deployment chain. Once Fractal components are pack-
aged inside bundles, the facilities provided by the OSGi platform are used to perform
their deployment.

<definition name="HelloWorld">
 <bundle name="B0"/>
 <interface name="main" role="server"

signature="java.lang.Runnable">
 <property name="cron.pattern" value="** * 3 * * *"

type="java.lang.String"/>
 </interface>
 <component name="client">
 <bundle name="B1"/>
 <interface name="x1" role="server"

signature="java.lang.Runnable"/>
 <interface name="cy2" role="client" signature="y.Y"

 version="1.0.0" bundle="B3"/>
 <content class="ClientImpl"/>
 </component>
 <component name="server">
 <bundle name="B2"/>
 <interface name="y2" role="server" signature="y.Y"

 version="1.0.0" bundle="B3"/>
 <interface name="cz3" role="client" signature="z.Z"

 cardinality="collection"
contingency="optional"

 version="2.0.0" bundle="B3"/>
 <content class="ServerImpl"/>

 </component>
 <binding client="this.x1" server="client.x1"/>
 <binding client="client.cy2" server="server.y2"/>
 <binding client="server.z3" server="this.cz3"/>
 <binding client="this.z3" serverfilter="(language=fr)"/>
</definition>

Figure 4. Generation and deployment chain

The first step in the chain is concerned with bundle generation. This activity is per-
formed by the FROGi packager (left of figure 4). The packager parses the ADL and
packages interfaces and implementations following the ADL descriptor. The packager
tries to separate interfaces from implementations since this is essential to support dy-
namic component updates.

The deployment is managed by another tool dedicated to OSGi deployment (right
of figure 4). This tool manages OSGi gateways distributed over several nodes. It reads
deployment files that are produced by the FROGi packager (xml files). These files
contain both the localizations of the generated bundles and the gateway on which they
must be deployed. The description also contains the dependencies between the bun-
dles. The tool deploys the FROGi bundles and, if necessary, depending of the state of
the targeted OSGi platform, it also deploys required OSGi legacy bundles. Those bun-
dles, and possibly their dependencies, are made available from bundle repositories
(such as the Oscar Bundle Repository, Oscar being the open source OSGi implemen-
tation we are using).

 4.6. Security

Service oriented architectures and service deployment require security aspects to be
taken into account. In the context of FROGi, it is necessary to ensure that an architec-
ture that is deployed using the ADL functions properly after installation. The compo-
nents that interact with legacy OSGi services must be capable of trusting them. This
concern is exacerbated by the fact that the OSGi environment is designed to be operat-
ed by different actors, and a FROGi-based application may coexist with unsafe bun-
dles from a different provider.

FROGi currently relies on the mechanisms provided by the OSGi framework to
handle security. These mechanisms allow bundles to be signed so that other bundle
can verify their origin. This offers a first level of security. The second level occurs at
the service level. OSGi provides a mechanism that allows services to be traded ac-

FROGi
packager

Fractal
ADL

Comp
ImplComp

ImplComp
Impl

Comp
ImplComp

ImplComp
Impl

Itf
Itf

Itf
Itf

Itf
Itf

Julia
(extended)

BundleBundleBundleBundle

BundleBundle

BundleBundle
BundleBundleBundleBundle

BundleBundleBundleBundle

bundle
.obrbundle

.obrbundle
.xml

bundle
.obrbundle

.obrbundle
.xml

OSGi
Deployer

deploy
plan

(script)

® Adele, 2002Yet Installed
Bundles

OSGi Service
Platform

® Adele, 2002Yet Installed
Bundles® Adele, 2002Yet Installed
Bundles

OSGi Service
Platform

telnet,
httpadmin
jmx , …

telnet,
httpadmin
jmx , …

KF
repository.

xmlOSCAR
repository.

xml

cording to security policies. Furthermore, those policies can be updated dynamically.
Security mechanisms at the service level are adequate for FROGi because they bring
additional capabilities to the component model. Finally, It must be noted that Fractal
does not support these concepts (which is understandable as it targets mono-operated
applications).

 5. Experimentation

This section presents an experimentation which compares the creation of an HTTP
server using a 'standard' approach versus a FROGi-based approach. The experimenta-
tion is inspired from the comanche HTTP server discussed in the Fractal tutorial.

 5.1. Using standard Fractal

Figure 5 depicts a minimal HTTP server. This server is assembled as a composite
component that is responsible of receiving, analyzing and dispatching requests (to
simplify, only the external composite is shown, not the contained components). This
component requires a Log component and one or more handlers towards which the re-
quests will be directed. Before a call arrives to a handler, the request may go through
different filters that are capable of adapting the requests or that can be used as probes
for example to collect information. To realize this example in standard Fractal, all the
needed components are described in the ADL along with their bindings.

Figure 5. A minimal HTTP server with Fractal

 Once deployed and during execution, it is still possible to adapt the bindings be-
tween the components. For example it is possible to disconnect the Log component if
we do not want to trace the requests anymore. It is also possible to adapt the filter
chain between the requests manager and the request handler by connecting or discon-
necting filters. This adaptation is taken in charge by the requests analyzer and dis-
patcher. What is not possible, however, is to add dynamically a new filter that was not
previously described in the ADL. This is simply because the implementation classes
of this filter are not deployed with the original application. The same problem occurs
if we want to update a filter, for example for performance reasons. It is possible to dis-
connect the filter properly but no mechanism is available to perform an update of the

Request
Receiver,
Analyzer
and
Dispatcher

LogLog

Request
Handler
Request
Handler

FilterFilterFilterFilter

filter's implementation and maintain the coherency.

 5.2. Using FROGi

The construction of the same example using FROGi illustrates three key points: the
capability of using legacy OSGi services, of dynamically deploying new components
and of updating components without restarting the application.

Figure 6. A minimal HTTP server with FROGi

Figure 6 depicts how the HTTP server application is assembled and deployed using
FROGi components. The capability of using legacy OSGi services is illustrated by
replacing the previous Fractal log component with the Log service defined in the
OSGi specification. Deployment concerns are now addressed since the components
are packaged into different bundles which are later managed by OSGi framework. In
this example, the filter components are packaged and delivered in different bundles.
As a result new filters can be deployed easily. Using the trading mechanisms, the
Dispacher is able to select, among the set of filters, the ones it requires to create the
filter chain. Updating a component is also possible and is supported by the OSGi
update mechanism. First of all, bindings with the corresponding component are
relieved. Then the update mechanism manages the download, replacement and
reactivation of the component embedded in the bundle. During this period, Fractal's
interception capabilities are used to hold the calls towards the components until it they
are reactivated. It is interesting to notice that as soon as a component is not used
anymore, it is possible to uninstall it and completely free the resources it was using.

This simple example shows that the FROGi's features introduce important benefits
into the standard Fractal model.

 6. Related work

This section presents different related works concerning the OSGi use as an infrastruc-
ture for deploying components as well as Fractal components packaging.

Request
Receiver
Analyzer
and
Dispatcher

Request
Handler

Filter Filter

LogLogLogLog

 6.1. Beanome

Using OSGi as a component deployment infrastructure is explored in the Beanome
component model [Cervantes2002]. In Beanome, OSGi bundles are used to deploy
COM-like components. Moreover, the OSGi service registry is used to publish com-
ponents factories when the bundle is activated. A benefit of registering component
factories as services is that factories can be located based on the functionalities of the
components they create and not only from a unique identifier as in COM. Beanome,
however, does not provide support for dynamic changes.

 6.2. Gravity

The Gravity project [Cervantes2003] explores the creation of applications with au-
tonomous adaptation capabilities towards component availability. Gravity introduces a
service oriented component model in which trading is used at run time to bind compo-
nent instances as well as to maintain compositions despite components arrival and de-
parture. In Gravity, an execution environment entity, called the Service Binder, is in
charge of adapting component instances and compositions with respect to dynamic
changes. Gravity is built as a layer on top of OSGi, and the Service Binder is deployed
as a bundle inside the service platform. A Gravity drawback is that is uses a particular
component model that is nevertheless not far from Fractal. Many of the ideas intro-
duced in the Service Binder have been recently added to the OSGi specification's 4th

release under the name of Declarative Services.

 6.3. Fractal packages and deployment activities

Some discussions on the Fractal mailing list mention the definition of a packaging
mechanism for Fractal components and some work has been realized concerning this
mechanism. The proposals that have been made also rely on OSGi but only for pack-
aging purposes (packaging units are .FAR)[Abdellatif2005]. An XML manifest that
contains the metadata is added to the archive. Deployment is supported but it is im-
possible to update components at runtime. This proposal does, however, not consider
the existence of an infrastructure to perform continuous deployment activities. This is-
sue is tackled in another work [Kornas2004]. This proposal uses a layer that supports
the creation of Java classloaders to bring additional components to an application at
runtime. This work does not support component uninstall.

 6.4. JSR277

Packaging an application is one of the most recurrent problems to facilitate deploy-
ment. JSR277 (Java Module System) [JSR277] aims to specify an unified packaging
model for all Java software for J2SE 1.7 (2007). JSR277 intends to overtake JNLP,
J2EE EAR, OSGi R4 packaging formats. It will be based on the JAR file format and
the Manifest will be augmented by explicit versioned package dependencies. In fact,
the chapter "Module Layer" of the recent OSGi R4 specifications already covers all of

JSR 277 requirements. Moreover, JSR277 does not address the OSGi service layer
which enables to build dynamic service-oriented architectures of Java applications as
SCR or FROGi. If this JSR is integrated in Java, FROGi would already be compliant
at the packaging level with future Java versions.

 7. Conclusions and perspectives

This paper has presented FROGi, a proposition that is based on the introduction of
some characteristics of the OSGi service platform in the Fractal component model.
With FROGi, a Fractal application is packaged inside one or more OSGi bundles; this
allows the components to be delivered and deployed individually and continuously.
Moreover, binding between components instances can be realized either through the
'standard' Fractal connexion technique, either by the publication of functional
interfaces in the services registry and the use of OSGi proper trading technique. In
addition, FROGi proposes Fractal ADL extensions to automate packaging and
deployment. It must be pointed out that FROGi, as well as the different works
described in the fifth section, show that OSGi is an ideal platform to perform
component deployment, application update and code versioning.

Nevertheless, some points have not been considered in the work realized until
now :

Multiple instances creation mechanism: Fractal supports the creation of a
variable number of component instances. The work presented here focuses on a
singleton based approach. A way to resolve this, still being compatible with the OSGi
environment, is to publish components factories through services (similar to the
approach followed by Beanome and described in 5.1)

Architecture introspection: as we assume that different kinds of components can
be deployed and bound on OSGi, it is desirable to expose the architecture of the
application independently of the technologies we are using. An example of such
architecture viewer is Fractal Explorer but it only manages pure Fratal applications.
Finally, as it was mentioned in the second part, there is currently not a clear vision of
the difference between component models and service oriented architectures. Most of
the time, these approaches are considered either as orthogonal aspects, either as simi-
lar approaches. We have already cited some tracks on the subject and this is the focus
of our current research. For instance we are currently working on the interoperability
we can have between Fractal and EJB components model inside an application server
and on component deployment on heterogeneous platforms [Marin2005].

Bibliography

[Abdellatif2005] Abdellatid, T., Kornas, J. And Stephani, J-B., “J2EE Packaging, Deployment
and Reconfiguration Using a General Component Model,” Proceedings of Component De-
ployment, CD, Grenoble 2005

[Bruneton2004] Bruneton, E., Coupaye, T. and Stefani, J.B., "The Fractal Composition
Framework Version 2.0-3," Object Web Consortium, July 2004.

[Cervantes2002] Cervantes, H. and Hall, R.S., “Beanome, A Component Model for the OSGi

Framework,” Proceedings of the workshop Software Infrastructures for Component Based
Applications on Consumer Devices, Lausanne, 2002

[Cervantes2003] Cervantes, H. and Hall, R.S., “Automating Service Dependency Management
in a Service-Oriented Component Model,” Proceedings of CBSE 6, Portland, USA, 2003

[Cervantes2004] Cervantes, H., Desertot, M. And Donsez, B., “FROGi: Déploiement de com-
posents Fractal sur OSGi,” Proceedings of Decor'04, CoRR, Grenoble 2004

[Desertot2005] Desertot, M., Escoffier, C. And Donsez, D., “Autonomic administration of
J2EE Edge Servers,” Proceedings of the International Worshop of Middleware for Grid
Computing (MGC), Grenoble, 2005

[Fowler2004] Fowler, M., "Inversion of Control and the Dependency Injection Pattern," On-
line Document, 2004. (http://martinfowler.com/articles/injection.html)

[Frénot2004] Frénot, S. And Stefan D. “Instrumentation de plate formes de services ouvertes –
Getion JMX sur OSGi,” Ubimob, Nice, 2004

[Hammant2004] Hammant, P., Hellesoy, A., and Tirsen, J., “PicoContainer: a lightweight em-
beddable container,” http://www.picocontainer.org

[Heller2002] Heller, C. “An extended Component Lifecycle,” Unpublished Paper available on-
line, 2002. (http://cybop.berlios.de/paperns/)

[JSR277] JSR277 Web Site http://www.jcp.org/en/jsr/detail?id=277
[Kornas2004] Kornas, J., Leclercq, M., Quema, V. And Stephani, J-B., “Support pour la re-

configuration d'implantation dans les applications a composants Java,” Proceedings of
Decor'04, CoRR, Grenoble 2004

[Loritsch2004] Loritsch, B., Donald, P. and Simons, L., “Apache Framework – The Compo-
nent Lifecycle,” online document, 2004 (http://jakarta.apache-
korean.org/avalon/framework/reference-the-lifecycle.html)

[Marin2005] Marin, C. And Desertot, M., “SensorBean: A Component Platform for Sensor-
Based Services,” Proceedings of the International Worshop of Middleware for Pervasive
and Ad-Hoc Compouting (MPAC), Grenoble, 2005

[OSGi2005] OSGi Alliance web site, http://www.osgi.org
[Sun2001] Sun Microsystems, "Enterprise JavaBeans Specification Version 2.0," Online Doc-

ument, August 2001. (http://java.sun.com/products/ejb/docs.html)
[Szyperski1998] Szyperski, C., ”Component software: beyond object-oriented programming,”

ACM Press/Addison-Wesley Publishing Co., 1998.

