
Application Management Plug-ins through Dynamically
Pluggable Probes

Kiev Gama
+
, Gabriel Pedraza

+
, Thomas Lévêque

*
and Didier Donsez

+

+
LIG laboratory, University of Grenoble

Bat. C, 220 rue de la Chimie, Domaine Universitaire
Grenoble, France

{kiev.gama, pedraza, didier.donsez}@imag.fr

*
Mälardalen University, Department of Computer

Science and Electronics, P.O. Box 883, SE-721 23
Västerås, Sweden

thomas.leveque@mdh.se

ABSTRACT

It is widely recognized that applications need to be remotely
administrated. In general, application management and monitoring
is supported by textual management consoles while graphical user
interfaces specialized for their tasks are preferred from average
users. Defining what must be monitored and what are the admin
actions you want to perform on an application cannot be defined
during the application development due to the fact that these needs
evolve after the application deployment as we cannot completely
predict the execution environment such as available devices. This
paper presents an architecture and the corresponding infrastructure
that allow administrators to define what they want to monitor and
manage and automate the discovery and deployment of
corresponding probes and related management console graphical
plug-ins. This work has been validated on two different application
domains.

1. INTRODUCTION
Nowadays, applications interact heavily with external devices

and external services. The unpredictable nature of their
surrounding environment such as device availability/unavailability
force them to be adapted dynamically. It is widely recognized that
applications need to be remotely administrated. With the
increasing complexity of systems, good application management
tools becomes important to be present in parallel to application
execution in order to facilitate application monitoring and to
perform reconfigurations at runtime. Administrative tasks
including application management and monitoring are usually
performed thanks to textual management consoles. Graphical
consoles are more convenient to show visual system
representations for average users. While generic representations of
manageable data are used to build generic console [10][9][5],
specialized consoles with dedicated user interface for each
manageable data type are more efficient.

Typical management tools provide a predefined set of functionality
that does not change over time. However, the dynamic nature of

today applications requires on demand probe deployment and their
console counterpart: a specialized user interface.

Current tools suffer of lack of high level monitoring and
management leading to not efficient administration. In particular,
the administrator needs to know which probe provides expected
data and the different probe commands to collect data while he is
only interested on collected data.

The needed probes cannot be defined at application design and
implementation time as new services and components are deployed
during the execution. In general, new probes cannot be added
unless the system code is patched, the new functionalities added
and the application redeployed, usually at the price of an
application restart. Administrators need to be able to install probes
dynamically according to the resources they want to manage and
monitor.

We propose an approach that lets the administrator choose the
manageable elements he is interested in and automates discovery
and deployment of corresponding probes and console plugins. The
proposed approach rely on a plugin infrastructure for both sides:
the application and the management console. This approach is
validated in two management consoles developed as plug-ins on
top of the Oracle Java VisualVM. The first plug-in we present is a
general purpose management console for OSGi frameworks, and is
part of the open source OW2 chameleon project. The other plug-in
targets the open source RFID middleware from the Aspire RFID
European project reused by other aspects that provide specific
crosscutting concerns, improving modularity for better abstractions
and reuse.

Section 2 will list our motivations. Then section 3 will present our
approach by describing the plugable probe infrastructure, our
modular approach to build specialized consoles and . Then section
4 descibes the two case studies used to validate our approach and
the results of our experiments. Section 5 will describe some related
works. Finally, section 6 concludes and presents our future works.

2. MOTIVATION
Management consoles are important for observing applications,
collecting data and applying metrics to them, as well as allowing to
communicate with the target application and to perform
reconfigurations if necessary. Dynamic component platforms
provide infrastructure for installing and uninstalling components
during application execution. The inherent complexity introduced
by such dynamism makes even more important to provide
management consoles for these types of application. When the
application functionality is known at design time it is easier to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

define what must be monitored and what actions should be
available to system administrators. However, this is a very hard
task doing so in dynamic environments where the set of
components may change during application execution. It is more
prudent to retard the process of defining management functionality
to be configured and decided during application execution instead
of trying to predict which functionalities, devices or components
will be available or installed in the application.

The OSGi Service Platform[7] is being extensively used for
building dynamic Java applications (a major milestone of OSGi
usage in industry concerns its adoption in the Eclipse platform
[4]). We are particularly interested in monitoring, and in a broader
sense, managing applications developed on top OSGi. In that
platform components and services may be installed or uninstalled
anytime during application execution without requiring it to be
restarted.

We want to be able to provide administration tools that adapt to
the functionality of the systems components that are available in
the managed dynamic application. If we consider that dynamic
applications can have new components deployed at any time, we
should be able to easily plug the corresponding administration
functionality on the administration tool. Since components of the
monitored platform may be added or removed at any time, we
proposed doing the same on the administration console
application. A tool constructed using a plug-in approach would be
ideal in that case. Rich Client Platforms (RCP) such as Eclipse [3]
and the Netbeans Platform [1], provide extensible environments
that facilitate the construction of desktop applications using plug-
ins as building blocks. By using plug-ins developers can easily add
new functionality to applications, which in fact are a combination
of different plugins. The usage of an RCP would facilitate the
development of such management consoles.

However, such possibility of dynamically adding manageable
components and their counterpart administration plug-in
introduces a new challenge: how to identify the administration
plug-ins for a given component?

3. PROPOSED APPROACH
We propose a general architecture for decoupling the management
consoles (e.g., monitoring, configuration, instrumentation) from
the managed application. The approach leverages a plugin-based
architecture at two levels: managed application and management
consoles. Figure 1 provides a simplified architectural view of our
approach. The bottom side of figure shows the managed
application and how probes are incorporated as plugins. In the top
side of the Figure RCP platforms are extended using a plugin
approach to build specific management consoles.

3.1 Managed Application’s Probes
The managed application should be able to expose probes that
allow external tools to inspect it and possibly reconfigure it. As
said previously, in component-based approaches new components
could be added to existing applications, in the same way probes
can be added to application (even at runtime). Probes could
provide information on specific components (leftmost probe in
Figure 1) or on the application as a whole (center probe on the
Figure 1). Probes can be deployed in a non-intrusive way as
separate components (center and rightmost probes), in that case the
managed entity (component or application) is not aware of the
probe and it can also be easily replaced without affecting the
running components. Otherwise, the probes are part of the
component, therefore a probe redeployment would mean an update

of the whole component, which would be the case in the leftmost
probe of Figure 1.

Application Runtime

GUI 1

Model Adapter

Connector

Probe

R
C

P
 C

o
n
s
o

le

P
lu

g
-i

n
M

a
n
a
g

e
d

A
p
p
lic

a
ti
o
n

ComponentProbe
Component

with Probe

GUI 2 GUI 3

Model Adapter

Connector

Figure 1. Simplified view of the approach

3.2 Specialized Management Consoles
Management console GUIs can be built on top of RCP platforms.
These consoles can offer generic management functionality for the
application or specific management functionality for a particular
application component. Consequently, the approach allows
composing a tailor-made management consoles providing only
management functionality for deployed components into the
application.

3.3 Automatic Installation Process
Pluggability on both levels imposes a correspondence between
managed application’s probes and management consoles. When a
new probe is deployed into the application runtime, a specific
management console can exploit it. On the other hand, when a
management console is deployed it requires the suitable
application (or component) probe to work properly.

Based on the set of installed probes we should be able to add the
corresponding management consoles’ plug-ins. A new module the
“Console Plugin Resolver” is placed between the two levels, it is
responsible for detection of new available probes in the application
runtime and then of deployment of the management console plugin
into the RCP platform according with the deployed probes.

GUI

Plug-ins

Platform

Monitored
Application

Plug-in
Repository

Component
Repository

Mapping

Descriptor

Plug-in

Resolver

Figure 2. A descriptor to map components to their counterpart

management plug-in

Management consoles specify declaratively their required probes,
then the Console Plugin Resolver performs a match operation
between deployed probes and requires one. When a management
console is “able” (all mandatory probes are deployed) to be
deployed this task is realized by the resolver.

4. CASE STUDIES
Ideally, the RCP of choice to develop our management plug-ins
should provide some basic management functionality. Our case
studies concern two sets of plug-ins we have developed for the
Oracle Java VisualVM. The VisualVM is a visual tool that
instruments Java Virtual Machines (JVM), providing different
types of information at the VM level and making available default
profilers and data visualizers. The VisualVM supersedes JConsole
which was JDK’s previous monitoring console generation. It is
extensible through a plug-in mechanism since it is built on top of
the Netbeans platform. Plug-ins that extend VisualVM
functionality easily integrate to the instrumenting infrastructure
provided by that platform. No additional components or
connection establishment is necessary to access JMX (Java
Management Extensions) functionality. A user needs only to
connect to a JVM (either local or remote) so the plug-ins are
loaded and can have access to the JMX connection to that
instrumented JVM.

4.1 OSGi plug-in
The VisualVM OSGi plugin is a management console for OSGi
platforms. It does not address a specific OSGi application, but
rather the OSGi platform itself. As illustrated in Figure 3, with this
plugin it is possible to perform component lifecycle events (start,
stop, uninstall, install, update), list bundles and their respective
manifest headers, provided services and list of files. This plugin is
part of the official list of VisualVM plugins1 and is available for
download through the OW2 Chameleon project2.

Figure 3. Snapshot of the VisualVM OSGi plug-in

It consisted of an overhauling of an OSGi management console we
had done previously as a JConsole plugin that we presented in [2].
Since VisualVM supersedes JConsole as the instrumenting and
monitoring console for Java applications, we have migrated the
plugin from JConsole to VisualVM, keeping most of the GUI’s
functionality. Because both JConsole and VisualVM rely on Java’s
Swing API for building the GUI we could reuse a good part of the
GUI code which was not very much affected even though we have
changed the MBeans API. This was possible because the
adaptation layer of the GUI model hid the changes we had

1 https://visualvm.dev.java.net/plugins.html
2 http://wiki.chameleon.ow2.org/xwiki/bin/view/Main/AdminTools

performed on the probe API. However, the information being
displayed remained the same.

This plugin has a one to one cardinality with its corresponding
probe. In the OSGi application side the probes are deployed in an
OSGi bundle that accesses the OSGi API in order to expose
management functionality through JMX MBeans. The pluggable
probe domain model is shared with the VisualVM plug-in.

4.2 AspireRFID End-to-End Management
AspireRFID middleware3 proposes an open source infrastructure
for creation of applications that uses the RFID technology. This
middleware is composed of several components (ALE, BEG,
EPCIS, APE). In the context of the AspireRFID European project,
we have developed management consoles for some of main
components of the AspireRIFD middleware.

ALE server (Application Level Events) is the AspireRFID core
component; it is responsible for interaction between client
applications and data sources. It allows to clients application
utilization of filtered, consolidated RFID tag data and related data
from a variety of sources without concerns about data sources
heterogeneity.

The ALE component exploits architectural benefits of OSGi
platform, consequently different data sources as RFID readers or
environmental sensors can be added (as OSGI components) to the
middleware without stopping its execution. Data sources’ probes
are also implemented as OSGi compliant components using the
JMX technology.

A plugin on top of VisualVM RCP platform has been developed
into the AspireRFID project in order to manage the ALE server
and its associated data sources. This plugin has two
responsibilities, first the management and monitoring of the ALE
server component, but in addition it is able to take into account the
apparition of new data sources and it proposes a management
interface for these sources. In Figure 4 is presented a screenshot of
the ALE Management Plugin, in bottom side is presented how
sensors can be monitored when available in the ALE server.

Figure 4. More elaborate functionality broken down into

various plug-ins

3 http:// wiki.aspire.ow2.org

For other AspireRFID components as BEG (Business Event
Generator), EPCIS (EPC Information System) and APE (Abstract
Process Engine) specialized management consoles have been also
built. A customized management console is then provided to
administrators of the AspireRFID containing only suitable
consoles for deployed modules of the middleware. The Figure 4
presents a screenshot with a management environment providing
management console for the ALE, BEG and EPCIS AspireRFID
components.

5. DISCUSSION
Although it was relatively easy to migrate and adapt the OSGi
plugin from the JConsole to the VisualVM, we believe that the
possibility of constructing plug-ins that can span multiple tools has
a major limitation. That basically related with the GUI because
interfaces change from API to API, at least some GUI adaptation
code is necessary. Similar problems apply to the usage of the
underlying infrastructure (e.g. retrieving the current JMX
connection) which also differs among RCP APIs. In general, in
order to mimic the same functionality The same management
console can be implemented on different RCPs and use the same
probes.

By modularizing the code of the probes we are able to keep them
separate from the main application. Environments such as OSGi,
where it is possible to load components in a pluggable allow
introducing new probes on the fly. In the approach we propose, the
tooling that perform the management and monitoring resides in an
external application built on top of an extensible RCP that should
provide facilities to instrument applications. The pluggable probe
should have a corresponding plugin on that external application so
it can display the non-standard monitored information (i.e. specific
to the application domain). or way order to be able to clearly
identify/import the reusable parts of the API.

The automatic discovery and deployment of probes and their
corresponding management consoles is feasible by providing a
central plug-in in the management tool, allowing us able to use the
default JMX interfaces for querying the available probes. Based on
that info we can then query the descriptor in order to find the
corresponding mappings.

6. RELATED WORK
The OSGi Bundle Repository [8] defines the format of an XML
file that lists different components and their dependencies. An
OSGi framework may also directly install components by using
information found in the OBR. It relates to our work especially in
the aspect of the representation of dependencies between
components, which in our case would be from different platforms.

The closest we have found to our architecture was the Managed
OSGi Framework (M-OSGi) [6], which is a management console
for OSGi. Instead of using an RCP it provides a simple console
based on a plug-in approach where each pluggable tab is resolved

based on the MBeans found on the monitored OSGi platform.
Disadvantages of this approach concern its underlying platform
which is very simplistic, and probe/plug-in cardinality of 1..1.

7. CONCLUSIONS
The approach brings flexibility for dynamically composing
customs management consoles adapted to the application
components. The automatic discovery and deployment minimizes
the burden of administrators when looking for the appropriate
management plug-ins for the current application architecture. We
think that our contributions are to propose a plugin architecture on
application side but also on management console side, the
definition of an automatic deployment mechanism for probes and
console plugins and the evaluation done on two application
domains.

8. ACKNOWLEDGEMENTS
Part of this work has been carried out in the scope of the ASPIRE
project (http://www.fp7-aspire.eu), co-funded by the European
Commission (FP7 programme, contract 215417). The authors
acknowledge help and contributions from all project partners.

9. REFERENCES
[1] Boudreau, T., Tulach, J., Wielenga, G.. Rich Client

Programming: Plugging into the NetBeans Platform. Prentice
Hall, 1st edition, 2007.

[2] Gama, K., Donsez, D. Service Coroner: A Diagnostic Tool for
Locating OSGi Stale References. In Proc. 34th Euromicro
Conf. Software Engineering and Advanced Applications
(SEAA '08). Washington, DC, USA, 108-115. 2008

[3] Gamma, E., Beck, K. Contributing to Eclipse: Principles,
Patterns, and Plug-Ins. Addison-Wesley, 2004

[4] Gruber, O., Hargrave, B. J. , McAffer, J. , Rapicault, P.,
Watson, T. The Eclipse 3.0 platform: adopting OSGi
technology. IBM Syst. J. 44, 2 (January 2005), 289-299.

[5] JConsole.
http://java.sun.com/developer/technicalArticles/J2SE/jconsole
.html

[6] MOSGi. Managed OSGi Framework.
http://felix.apache.org/site/mosgi-managed-osgi-
framework.html

[7] OSGi Alliance. OSGi Service Platform. http://www.osgi.org

[8] OSGi Alliance. RFC – 0112 Bundle Repository.
http://www.osgi.org/download/rfc-
0112_BundleRepository.pdf

[9] VisualVM. https://visualvm.java.net

[10] Web Services Management.
http://www.dmtf.org/standards/wsman

