An Introduction to Graph Rewriting

Rachid Echahed

CNRS and Université Grenoble Alpes, Grenoble, France

July 1 and 2, 2019

ISR2019 (Paris)

The Sec. 74

Graph Rewriting: Motivation

Handling real-world data structures

A Circular Linked List

A Doubly-Linked Circular List

Graph Rewriting: Motivation

Efficient Implementations

Graph Rewriting: Motivation

Various Application Domains

Programming, Graph Grammars, UML-like Modeling, Databases, etc.

Various Definitions of Graphs

- Undirected graphs
- Directed graphs
- Labeled graphs
- Hypergraphs
- Multigraphs
- Rooted graphs
- Attributed graphs

Graph Rewriting : Elementary Actions

There are different possible elementary actions on graphs.

- Delete an existing item (node or edge)
- Add a new item
- Merge two or more items
- Clone (copy) an item or a subgraph

• ...

Graph Rewriting :Elementary Actions

Different frameworks

Since late 1960's!

• There are several approaches, in the literature, to rewrite graphs:

- Imperative Programs
- Rule-Based Programs
- Graph Grammars
- Knowledge-Base updates
- Non-classical Logics
- ▶ ...

э

< ロ > < 同 > < 回 > < 回 >

Different frameworks

Since late 1960's!

- There are several approaches, in the literature, to rewrite graphs:
 - Imperative Programs
 - Rule-Based Programs
 - * Algebraic/Categorial approaches (DPO, SPO, SqPO, PBPO, ...)
 - ★ Algorithmic approaches
 - Graph Grammars
 - Knowledge-Base updates
 - Non-classical Logics
 - ► ...

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

R. Echahed

ISR2019 (Paris)

Outline

Introduction

- Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- 5 Termgraph Rewriting: An Algorithmic Approach
- Verification of Graph Transfomation

э

- A TE N - A TE N

Categories

A category $C=(Obj_C, Hom_C, \circ, id)$ consists of

- A class Obj_C of objects
- A class *Hom_c* of morphisms. We write *Hom_c(A, B)* for the morphisms from object *A* to *B* and *f* : *A* → *B* an element of *Hom_c(A, B)*
- A composition of morphisms \circ . For all objects, A,B and C, $\circ: Hom_c(A, B) \times Hom_c(B, C) \rightarrow Hom_c(A, C).$

Such that:

- The composition \circ is associative: For all morphisms $f : A \to B$, $g : B \to C$ and $h : C \to D$, $(h \circ g) \circ f = h \circ (g \circ f)$ and
- For every object *A*, there exists a morphism $id_A : A \to A$ called the identity such that: for all morphism $f : A \to B$, $f \circ id_A = f$ and $id_B \circ f = f$.

Examples of categories

Category of sets :

- objects are sets
- morphisms are functions

Category of graphs :

- objects are graphs
- morphisms are graph homomorphisms

Graphs

In this talk we consider the category of graphs where objects and morphisms are defined as follows:

A graph (or multigraph) $G = (N_G, E_G, s_G, t_G)$ consists of

- a set of nodes N_G
- a set of edges E_G
- a source function $s_G : E_G \rightarrow N_G$
- a target function $t_G: E_G \to N_G$

A graph homomorphism between two graph *G* and *T*, $h : G \to T$, consists of two functions $h_N : N_G \to N_T$ and $h_E : E_G \to E_T$ such that :

•
$$h_N \circ s_G = s_T \circ h_E$$

• $h_N \circ t_G = t_T \circ h_E$

Graph Homomorphism: Example

Graph G

$$N_G = \{f, a, b\}$$
 and $E_G = \{e_1, e_2\}$
 $N_T = \{g, c\}$ and $E_T = \{f_1, f_2, f_3\}$

Notice that symbols *f*, *a*, *b*, *c*, *g* represent nodes and not function symbols!

A first homomorphism $h: G \rightarrow T$ can be defined as follows:

 $h_N(f) = g$ and $h_N(a) = h_N(b) = c$ $h_E(e_1) = f_1$ and $h_E(e_2) = f_2$

Graph Homomorphism : Example

 $N_G = \{f, a, b\}$ and $E_G = \{e_1, e_2\}$ $N_T = \{g, c\}$ and $E_T = \{f_1, f_2, f_3\}$

Notice that symbols *f*, *a*, *b*, *c*, *g* represent nodes and not function symbols!

A second homomorphism $k : G \to T$ can be defined as follows: $k_N(f) = k_N(a) = k_N(b) = g$ $k_E(e_1) = k_E(e_2) = f_3$ Are there other homomorphisms between *G* and *T*?

Pushout Definition

The Pushout of morphisms f and g consists of an object D and two morphisms f' and g' such that :

• Commutativity

 $g' \circ f = f' \circ g$, and

Universal Property

For all objects D' and morphisms u and v such that $u \circ f = v \circ g$, there exists a unique morphism $h : D \to D'$ such that $h \circ g' = u$ and $h \circ f' = v$.

Pushout

In Sets:

D = (B + C)/ ≡
with ≡ being the least equivalence generated by the pairs {(f(x), g(x)) | x ∈ A} over B + C.

• For all
$$x \in B$$
, $g'(x) = \bar{x}$

• For all $x \in C$, $f'(x) = \bar{x}$

$$\begin{array}{l} f(1) = a, f(2) = b, f(3) = b, f(4) = c\\ g(1) = f, g(2) = f, g(3) = e, g(4) = d \end{array}$$

Э.

イロト イヨト イヨト イヨト

$$\begin{array}{l} f(1) = a, f(2) = b, f(3) = b, f(4) = c\\ g(1) = f, g(2) = f, g(3) = e, g(4) = d \end{array}$$

Э.

イロト イヨト イヨト イヨト

$$\begin{array}{l} f(1) = a, f(2) = a, f(3) = b, f(e_1) = f(e_2) = e_3 \\ g(1) = n, g(2) = d, g(3) = n, g(e_1) = e_5, g(e_2) = e_4 \end{array}$$

In graphs: The sets of nodes and edges of the pushout object (D) can be constructed componentwise as pushouts in Sets (respecting the source and target functions)

		- <u>-</u>				2.40
2019 (Paris)	R. Echahed	J	uly 1 ar	nd 2, 2019	2	25 / 158

A D N A D N A D N A D N

 $\begin{array}{l} f(1) = a, f(2) = a, f(3) = b, f(e_1) = f(e_2) = e_3\\ g(1) = n, g(2) = d, g(3) = n, g(e_1) = e_5, g(e_2) = e_4 \end{array}$

In graphs: The sets of nodes and edges of the pushout object (D) can be constructed componentwise as pushouts in Sets (respecting the source and target functions)

ISR2019 (Paris)	R. Echahed	July 1 and 2, 2019	26 / 158

A D N A B N A B N A B N

1.1

The Pullback of morphisms f and g consists of an object D and two morphisms f' and g' such that :

Commutativity

 $f \circ g' = g \circ f'$, and

Universal Property

For all objects D' and morphisms u and v such that $f \circ u = g \circ v$, there exists a unique morphism $h : D' \to D$ such that $g' \circ h = u$ and $f' \circ h = v$.

In Sets,

- $D = \{(x, y) \in BxC \mid f(x) = g(y)\}$
- For all $(b, c) \in D$, g'(b, c) = b
- For all $(b, c) \in D$, f'(b, c) = c

13n2019 (raiis

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\begin{array}{l} f(1) = a, f(2) = b, f(e_1) = f(e_2) = e_3 \\ g(3) = a, g(4) = g(5) = b, g(e_4) = g(e_5) = e_3 \end{array}$$

In graphs: The sets of nodes and edges of pullback object D can be constructed componentwise as pullbacks in Sets (respecting the source and target functions)

 $\begin{array}{l} f(1) = a, f(2) = b, f(e_1) = f(e_2) = e_3 \\ g(3) = a, g(4) = g(5) = b, g(e_4) = g(e_5) = e_3 \end{array}$

In graphs: The sets of nodes and edges of pullback object *D* can be constructed componentwise as pullbacks in Sets (respecting the source and target functions)

ISR2019 (Paris)

Outline

- Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- 5 Termgraph Rewriting: An Algorithmic Approach
- 7 Verification of Graph Transfomation

Adding New Items

Pushouts can be used to add new items to a graph.

(Paris)

Merging Existing Items

Pushouts can be used to merge existing items of a graph.

ISR2019 ((Paris)

Deleting Existing Items

- Both Pushouts and Pullbacks can be used to delete items within a graph!
- Single pushout can be used to delete items in a graph but requires partial morphisms (out of this talk).

Use of pushout complement: A pushout complement (POC) of two morphisms $m : L \to G$ and $I : K \to L$ is an object D and two morphisms $I' : D \to G$ and $m' : K \to D$ such that the following diagram is a pushout :

Deleting Existing Items

Example of the use of pushout complement

Remark: Pushout complements may not exist or not be unique!

				=
ISR2019 (Paris)	R. Echahed	July 1	1 and 2, 2019	36 / 158
Pushout complements may not be unique!

ISR2019 (Paris)	
-----------------	--

Pushout complements may not be unique!

ISNZUIS (Falls)

Exercise

10112019 (Fails)

Э.

イロト イヨト イヨト イヨト

Pushout complement may not exist!

(2019 (Paris)

Pushout complement may not exist!

SR2019 (Paris)

July 1 and 2, 2019 42 / 158

Э.

イロト イヨト イヨト イヨト

Pushout complement may not exist!

ISR20	19 ((Paris)

Exercise

ISR2019 (Paris

Э.

イロト イヨト イヨト イヨト

Pushout complement may not exist!

ISBZUIGI	Parisi

Existence of Pushout Complements (in Graphs)

Let $m : L \to G$ and $I : K \to L$ be two graph morphisms. There exits a pushout complement defined by a graph D and two morphisms $I' : D \to G$ and $m' : K \to D$ iff the following *gluing* conditions hold :

• Dangling Condition:

 $\{n \in N_L \mid \exists e \in E_G \setminus m(E_L), s_G(e) = m(n) \text{ or } t_G(e) = m(n)\} \subseteq I(N_K)$

Identification Condition:

► {
$$n \in N_L$$
 | $\exists n' \in N_L, n \neq n'$ and $m(n) = m(n')$ } $\subseteq I(N_k)$

► { $e \in E_L$ | $\exists e' \in E_L, e \neq e'$ and m(e) = m(e')} $\subseteq I(E_k)$

Deleting Existing Items

Use of pullbacks: Example

2

< A

Deleting Existing Items

Use of pullbacks: Example

æ

Deleting Existing Items

Use of pullbacks: Example

æ

Cloning Items Use of Pullbacks

Cloning the subgraph containing nodes I_0, I_1, I_2

3 > 4 3

Cloning Items Use of Pullbacks

Cloning the subgraph containing nodes l_0, l_1, l_2

3 + 4 = +

Graph Rewriting

Give three rules implementing the following evolution

Graph Rewriting

Exercise

- Starting from a graph *G* modeling agents (*A*), files (*F*) and an arbitrary access relation (*R*) including possible prohibited accesses ($R \subseteq AxF$), give a rewrite rule which transforms *G* into a graph that satisfies the following policy.
- There are two responsibility levels among agents : H and L. Files are classified according to 3 security levels : 1, 2 and 3. Agents of responsibility level H have the right to access files of security levels 1 and 2. Agents of responsibility level L have the right to access files of security levels 2 and 3.

イロト 不得 トイヨト イヨト ニヨー

Outline

- 2 Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- 6 Termgraph Rewriting: An Algorithmic Approach
- 7 Verification of Graph Transfomation

DPO Rules

First things first!

[EPS'73] H. Ehrig, M. Pfender, H. J. Schneider: Graph-Grammars: An Algebraic Approach. SWAT (FOCS) 1973: 167-180

$$L \longleftarrow K \longrightarrow R$$

э.

DPO Rules

First things first!

[EPS'73] H. Ehrig, M. Pfender, H. J. Schneider: Graph-Grammars: An Algebraic Approach. SWAT (FOCS) 1973: 167-180

$$L \longleftarrow K \longrightarrow R$$

A DPO rewrite step :

DPO Rules

An example

POCs (Pushout complement) are not unique when cloning items! Delete actions are restricted by the gluing conditions.

SQPO Rules

$$L \longleftarrow K \longrightarrow R$$

A SQPO rewrite step :

[ICGT 2006] Corradini et al. Sesqui-Pushout Rewriting. ICGT 2006: 30-45

3

A B F A B F

SQPO Rules

An example

Clone action is still quite limited!

	4	리카 《圖카 《콜카 《콜카	∃
ISR2019 (Paris)	R. Echahed	July 1 and 2, 2019	58 / 158

AGREE Rules

Caution : The definition of AGREE transformation requires the existence, in the underlying category, of a *partial map classifier* [ICGT 2015][TCS 2019,to appear]

July 1 and 2, 2019 59 / 158

AGREE Rules

An example

	D)
ISBOLIG /	Parie
	i ans.

ъ.

・ロト ・ 四ト ・ ヨト ・ ヨト

AGREE Rules

An example

Clone action is more flexible than SQPO but can still be improved!

PBPO Rules

A PBPO rule consists of a (classical) first span of the form:

 $L \leftarrow K \rightarrow R$

to which it is added a (typing) second span

$$L' \leftarrow K' \rightarrow R'$$

such that the two following squares commute :

[JLAMP2019]The PBPO graph transformation approach. J. Log. Algebr. Meth. Program. 103: 213-231 (2019)

De wiel
Paris.
uno,

PBPO

A rewrite step

PBPO rule :

PBPO rewrite step : The match is defined as a pair (m, m')!

PBPO Rewrite Step

Example

ISR2019 (F	Paris)
------------	--------

Э.

イロト イヨト イヨト イヨト

PBPO Rewrite Step

Example

ISR2019 (F	Paris)
------------	--------

Э.

イロト イヨト イヨト イヨト

The PBPO Approach :

Exercise

Give a rewrite rule that makes a copy of the pages of a local web site or a copy of a whole directory

```
cp -r <directory> <new directory>
cp <a local web site>
```


AGREE needs a new rule for every specific shape of the web site PBPO uses only one generic rule!

PBPO Rewrite Step

Example of the copy of local Web pages

크

PBPO vs AGREE, SQPO

Proposition

Let α be an AGREE rule in a category with a partial map classifier. Then there is a PBPO rule ρ_{α} such that for each mono $m : L \rightarrow G$ we have $G \Rightarrow_{\alpha}^{AGREE} H$ if and only if $G \Rightarrow_{\rho_{\alpha}} H$ using match (m, \overline{m}) with $\overline{m} : G \rightarrow T(L)$.

Add R' as a Pushout of morphisms t and r to end the construction!

ISR2019 ((Paris)
ION LOT O	(uno)

PBPO vs SQPO

Proposition

Let α be a SQPO rule in a category with a partial map classifier. Then there is a PBPO rule ρ_{α} such that for each mono $m : L \rightarrow G$ we have $G \Rightarrow_{\alpha}^{\text{SQPO}} H$ if and only if $G \Rightarrow_{\rho_{\alpha}} H$ using match (m, \overline{m}) with $\overline{m} : G \rightarrow T(L)$.

Add R' as a Pushout of morphisms t and r to end the construction!

A B F A B F

Outline

Introduction

- Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- 6 Termgraph Rewriting: An Algorithmic Approach
- 7 Verification of Graph Transfomation

Attributed Graphs

definition borrowed from [DEPR, FASE2014]

- Let Graph be a category of structures (e.g., graphs)
- Let **Att** be a category of attribute structures (e.g., Σ-algebras)
- Let S : **Graph** \rightarrow **Set** be a functor
- Let $T : \mathbf{Att} \to \mathbf{Set}$ be a functor

Definition

The category **AttG** of attributed graphs is defined as the comma category $S \downarrow T$.

3

- A TE N - A TE N
Attributed Graphs

- Let S : **Graph** \rightarrow **Set** be a functor
- Let $T : \mathbf{Att} \to \mathbf{Set}$ be a functor
- Attributed Graph : $\widehat{G} = (G, A, \alpha)$
 - G in Graph,
 - A in Att and
 - $\alpha : S(G) \rightarrow T(A)$ (in **Set**) is a labelling function
- Morphisms : \widehat{g} : $\widehat{G} \to \widehat{G'}$, where $\widehat{G} = (G, A, \alpha)$ and $\widehat{G'} = (G', A', \alpha')$, is a pair $\widehat{g} = (g, a)$ with $g : G \to G'$ is a morphism in **Graph** and $a : A \to A'$ is a morphism in **Att** such that $\alpha' \circ Sg = Ta \circ \alpha$ (in **Set**).

Partially Attributed Graphs

• Partially Attributed Graph : $\widehat{G} = (G, A, \alpha)$

- G in Graph,
- A in Att and
- $\alpha : S_{\rho}(G) \to T_{\rho}(A)$ (in **Pfn**) is a partial labeling function

• Morphisms: $\widehat{g} : \widehat{G} \to \widehat{G'}$, where $\widehat{G} = (G, A, \alpha)$ and $\widehat{G'} = (G', A', \alpha')$, is a pair $\widehat{g} = (g, a)$ with $g : G \to G'$ is a morphism in **Graph** and $a : A \to A'$ is a morphism in **Att** such that $\alpha' \circ S_p g \ge T_p a \circ \alpha$ (in **Pfn**).

Remark: \geq states that morphisms preserve defined attributes A morphism of partially attributed structures (g, a) is called strict when $\alpha' \circ S_p g = T_p a \circ \alpha$.

PBPO Rules for Attributed Graphs

$$(L, A, \alpha_L) \xleftarrow{(l, id_A)} (K, A, \alpha_K) \xrightarrow{(r, id_A)} (R, A, \alpha_R)$$

$$\downarrow \hat{t}_L = \downarrow \hat{t}_K = \downarrow \hat{t}_R$$

$$(L', A', \alpha_{L'}) \xleftarrow{(l', id_{A'})} (K', A', \alpha_{K'}) \xrightarrow{(r', id_{A'})} (R', A', \alpha_{R'})$$

with the additional conditions

- $\alpha_L, \alpha'_L, \alpha_R$ and α'_R are total labeling functions
- The morphism \hat{t}_{K} is strict
- The morphism $\hat{t}_{\mathcal{K}}$ is injective on non-attributed items

The Attributed case

Does H always exist? Is H completely attributed?

Easy examples

$$\begin{array}{c|c} n:x & \leftarrow & n:x \\ \downarrow & \downarrow & \downarrow \\ \hline n:6 & \leftarrow & n:6 \\ \downarrow & \downarrow & \downarrow \\ \hline n:nat & \leftarrow & n:nat \\ \end{array} \rightarrow \begin{array}{c} n:6 \\ \downarrow & \downarrow \\ \hline n:nat \\ \end{array}$$

Node *n* is preserved together with its attribute

э

Easy examples

Node *n* is preserved but re-attributed

Problematic Examples

Case of a non strict $\hat{t}_{\mathcal{K}}$

э

Problematic Examples

Case where $\hat{t_{K}}$ is not injective on non-attributed items

|--|

Problematic Examples

Case where a non-attributed element in $\widehat{K'}$, n', has no antecedent in \widehat{K} .

ISR2019 (Paris)	R. Echahed	July 1 and 2, 2019	80 / 158

4 D K 4 B K 4 B K 4 B K

Proposition

If the following conditions hold

- $\alpha_L, \alpha_L', \alpha_R$ and α_R' are total labeling functions
- The morphism $\hat{t}_{\mathcal{K}}$ is strict and injective on non-attributed items
- G is completely attributed
- $\forall n \in G$, if $\exists n_{K'} \in K'$ such that $n_{K'}$ is not attributed and
- $m'(n) = l'(n_{K'})$, then $\exists n_k \in K$ with $n = m(l(n_K))$ and $n_{K'} = t_K(n_K)$.

Then the graph H exists and is completely attributed

Outline

Introduction

- 2 Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- Termgraph Rewriting: An Algorithmic Approach
- Verification of Graph Transfomation

4 D N 4 B N 4 B N 4 B

Termgraph Rewriting

- Handling Data-structure rewriting including cyclic data-structures with pointers such as circular lists, doubly-linked lists, etc.
- Data-structures are more complex than terms (Cycles, Sharing)
- Difficult to encode efficiently using terms
- Usually described by pointers (⇒ pointer rewriting)
- Formally described as termgraphs
 Informally: termgraph = term with cycles and sharing

4 E N 4 E N

Termgraph Rewriting

Motivation

 $egin{array}{cccc} 0+x & o & x \ s(x)+y & o & s(x+y) \ double(x) & o & x+x \end{array}$

Term rewrite systems constitute a very well established domain with several results : Confluence, Termination, Strategies, Proof methods (equational reasoning, induction) etc.

However, subterm sharing, as in termgraph, does not preserve classical properties of term rewriting such as, e.g., the confluence property.

Sharing Subterms (information) and Term Rewriting

Consider the following rules:

 $egin{array}{ccc} f(a,b) &
ightarrow & c \ a &
ightarrow & b \end{array}$

Sharing does not preserve properties of tree (term) rewriting !

Term rewrite derivation: $f(a, a) \rightarrow f(a, b) \rightarrow c$

Termgraph rewrite derivation:
$$\begin{pmatrix} f \rightarrow & f \not \rightarrow \\ \downarrow & & \downarrow \end{pmatrix}$$

[Plump 99] survey on rewriting with "dags".

Termgraphs

[Barendregt et al. 87]

[Plump 99, survey on acyclic term-graphs]

Let Ω be a set of operation symbols. A *term-graph t* over Ω is defined by:

- a set of nodes \mathcal{N}_t ,
- a subset of labeled nodes $\mathcal{N}_t^{\Omega} \subseteq \mathcal{N}_t$,
- a labeling function $\mathcal{L}_t : \mathcal{N}_t^{\Omega} \to \Omega$,

• a successor function $\mathcal{S}_t : \mathcal{N}_t^{\Omega} \to \mathcal{N}_t^*$,

Termgraphs

[Barendregt et al. 87] [Plump 99, survey on *acyclic* term-graphs]

Let Ω be a set of operation symbols and \mathcal{F} a set of feature symbols. A *term-graph t* over Ω and \mathcal{F} is defined by:

- a set of nodes \mathcal{N}_t ,
- a set of edges *E*_t
- a subset of labeled nodes $\mathcal{N}_t^{\Omega} \subseteq \mathcal{N}_t$,
- a node labeling function $\mathcal{L}_t^n : \mathcal{N}_t^\Omega \to \Omega$,
- an edge labeling function $\mathcal{L}_t^e: E_t \to \mathcal{F}$
- a source function $\mathcal{S}_t : E_t \to \mathcal{N}_t$,
- a target function $\mathcal{T}_t : E_t \to \mathcal{N}_t$,

э.

BA 4 BA

Algorithmic approach

[Barendregt et al. 87] Shape of a rule:

 $L \rightarrow R$

where *L* and *R* are rooted term-graphs.

A rule can be defined as one graph together with two roots

 $(L+R,r_1,r_2)$

where r_1 and r_2 are the roots of *L* and *R* respectively Let ρ be the rule $(L + R, r_1, r_2)$ We say that *G* rewrites to *H* using the rule ρ if

- L matches a subgraph of $G(h: L \rightarrow G|_n)$
- (build phase) Construct graph $G_1 = G + h(R)$
- (redirection phase) $G_2 = [h(r_1) \gg h(r_2)]G_1$
- (garbage collection phase) $H = G_2 |_{root}$

A cumbersome definition, hard to deal with in practice!

Rewrite Rules with actions

Shape of a rewrite rule :

$$[L \mid C] \rightarrow R$$

- L is a term-graph pattern
- *C* is a node constraint, $\bigwedge_{i=1}^{n} (\alpha_i \not\approx \beta_i)$.
- *R* is a sequence of actions *a*₁; *a*₂; ...; *a*_n

Actions

We consider three kinds of actions :

- Node definition α : $f(\alpha_1, \ldots, \alpha_n)$
- Edge redirection $\alpha \gg_i \beta$
- Global redirection $\alpha \gg \beta$

Application of actions

a[t] denotes the application of action(s) a to the termgraph t

• Let t = n: f(p, q: a)

• Let $t_1 = p: h(p)[t] = n: f(p:h(p), q:a)$

ISR2019 ((Paris)	
10112010 1	(•	

Application of actions

a[t] denotes the application of action(s) a to the termgraph t

• Let $t_1 = p: h(p)[t] = n: f(p: h(p), q: a)$

Application of actions

a[t] denotes the application of action(s) a on the term-graph t

• Let $t_2 = n \gg_2 p[t_1] = n : f(p:h(p), p); q : a$

• Let $t_3 = p \gg q[t_2] = n: f(q,q); p: h(q)$

э

E 5 4 E

Rewrite Step

Let t be a termgraph

```
Let \rho be a rewrite rule [L \mid C] \rightarrow R
```

t rewrites to *s* at node α , $t \rightarrow_{\alpha} s$ iff:

- $\exists m : L \rightarrow t$ a homomorphism
- $m(root_L) = \alpha$
- α is reachable from *root*_t
- m(C) holds
- s = m(R)[t]

-

A B K A B K

Termgraph Rewrite Systems (tGRS) Example

Length of a circular list :

- $r : \textit{length}(p) \rightarrow r : \textit{length}'(p,p)$
- $r : length'(p_1 : cons(n, p_2), p_2) \rightarrow r : s(0)$
- $[r:\textit{length'}(p_1:\textit{cons}(n,p_2),p_3) \mid p_2 \not\approx p_3] \rightarrow r:s(q);q:\textit{length'}(p_2,p_3)$

Remark: term rewrite systems are tGRS's.

Termgraph Rewrite Systems

In-situ list reversal :

- $o: reverse(p) \rightarrow o: rev(p, nil)$
- $o: \textit{rev}(p_1:\textit{cons}(n,\textit{nil}),p_2) \rightarrow p_1 \gg_2 p_2; o \gg p_1$
- $o: \textit{rev}(p_1:\textit{cons}(n,p_2:\textit{cons}(m,p_3),p_4) \rightarrow p_1 \gg_2 p_4; o \gg_1 p_2; o \gg_2 p_1$

Visual Programming would help!

DPO approach of rewrite rules with actions

A categorical approach can be found in [TERMGRAPH 06, ENTCS07, RTA07]

Figure: Double pushout: a rewrite step ($G \rightarrow H$)

Redirections of edges (pointers) are handled by K = disconnection(L, E, N) and the morphisms *I* and *r*. Remark: Morphisms *I* and *r* are not injective! *D* is not unique!

Confluence

f(x) o xg(x) o x

æ

3 → 4 3

Confluence

$$\alpha : \mathbf{f}(\beta : \mathbf{c}) \to \beta : \mathbf{a}; \alpha \gg \beta$$
$$\alpha : \mathbf{g}(\beta : \mathbf{c}) \to \beta : \mathbf{b}; \alpha \gg \beta$$

The label of node q may end as q : a or q : b

크

3 → 4 3

Image: A matrix

Computing with non-confluent orthogonal Termgraph Rewrite Systems

How to evaluate the following termgraph ?

- addlast(length(n : [1,2]), n)
- Two normal forms
 - ▶ [1,2,2] (evaluate addlast after length)
 - [1,2,3] (evaluate length after addlast)

4 E N 4 E N

A D b 4 A b

Termgraphs with Priority

[PPDP06][RTA07][RTA08]

- Endow Termgraphs with priorities (*G*, <_{*G*}) to express which node should be evaluated first
 - *m*₁: addlast(*m*₂: length(n:[1,2]), n); *m*₁ < *m*₂
- Priorities should not be a total order (stay declarative)
- Which nodes should be ordered?
- Solution: Order only nodes producing a "side-effect"

Strategies

A strategy ϕ is a partial function which takes a rooted termgraph *t* and returns a node (position) *n* and a rule *R*,

 $\phi(t) = (n, R)$

such that the termgraph t can be reduced at node n using the rule R,

 $t \rightarrow_n t'$

	ISR	2019) (P	aris)
--	-----	------	------	-------

Let ϕ be a rewrite strategy. Let $\phi(t) = (p, R)$. The node p is needed iff for all derivations

$$t \rightarrow_{\beta_1} t_1 \rightarrow_{\beta_2} \ldots t_{n-1} \rightarrow_{\beta_n} t_n$$

such that t_n is a value, there exists $i \in [1..n]$ s.t. $\beta_i = p$

Inductively sequential Term Rewrite Systems

- Constitute a subclass of TRSs for which efficient rewrite strategies are available [Antoy 92]
- Are as expressive as Strongly Sequential TRSs
- Are defined by means of data-structures called Definitional trees

Definitional Trees -case of terms-

```
Let {\mathcal R} be the following TRS
```

```
f(k,nil) \rightarrow R1
f(0,cons(x,l)) \rightarrow R2
f(succ(n),cons(x,l)) \rightarrow R3
```

A definitional tree of operator f is a hierarchical structure whose leaves are the rules defining f.

```
\begin{array}{l} f(k,\,l) \\ f(k,\,nil) \rightarrow R1 \\ f(k,\,cons\,(x,\,u)) \\ f(0,\,cons\,(x,u)) \rightarrow R2 \\ f(succ(y),\,cons\,(x,u)) \rightarrow R3 \end{array}
```

Definitional trees -case of termgraphs-

 $\begin{array}{l} r: \textit{length}'(p_1:\textit{nil},p_2:\bullet) \rightarrow \textit{rhs}_1 \\ r: \textit{length}'(p_1:\textit{cons}(n:\bullet,p_2:\bullet),p_2) \rightarrow \textit{rhs}_2 \\ [r:\textit{length}'(p_1:\textit{cons}(n:\bullet,p_2:\bullet),p_3:\bullet) \mid p_2 \neq p_3] \rightarrow \textit{rhs}_3 \end{array}$

A definitional tree T of the operation *length*' is given bellow:

$$\begin{aligned} r &: \textit{length}'(p_1 : \bullet, p_2 : \bullet) \\ r &: \textit{length}'(p_1 : \textit{nil}, p_2 : \bullet) \rightarrow \textit{rhs}_1 \\ r &: \textit{length}'(p_1 : \textit{cons}(n : \bullet, p_3 : \bullet), p_2 : \bullet) \\ r &: \textit{length}'(p_1 : \textit{cons}(n : \bullet, p_2 : \bullet), p_2) \rightarrow \textit{rhs}_2 \\ &[r : \textit{length}'(p_1 : \textit{cons}(n : \bullet, p_2 : \bullet), p_3 : \bullet) \mid p_2 \neq p_3] \rightarrow \textit{rhs}_3 \end{aligned}$$

A Rewrite strategy ϕ

Consider the following definitional tree T of the operation g:

$$\begin{array}{l} r:g(p_{1}:\bullet,p_{2}:\bullet)\\ r:g(p_{1}:\textit{nil},p_{2}:\bullet) \rightarrow \textit{rhs}_{1}\\ r:g(p_{1}:\textit{cons}(n:\bullet,p_{3}:\bullet),p_{2}:\bullet)\\ r:g(p_{1}:\textit{cons}(n:\bullet,p_{2}:\bullet),p_{2}) \rightarrow \textit{rhs}_{2}\\ [r:g(p_{1}:\textit{cons}(n:\bullet,p_{2}:\bullet),p_{3}:\bullet) \mid p_{2} \neq p_{3}] \rightarrow \textit{rhs}_{3} \end{array}$$

 $\begin{aligned} \phi(1:g(2:g(3:g(nil,p),q),4:g(nil,o))) \\ &= \phi(2:g(3:g(nil,p),q)) \\ &= \phi(3:g(nil,p)) \end{aligned}$

э
Naive extension of TRS's

Contrary to term rewriting, Definitional trees are not enough to ensure the neededness of positions computed by the strategy ϕ , in the context of term-graph rewriting.

Proposition: Let $SP = \langle \Omega, \mathcal{R} \rangle$ be tGRS such that Ω is constructor-based and the rules of every defined operation are stored in a definitional tree. Let *t* be a rooted termgraph. Then,

- if $\phi(t) = (p, R)$, the node p is not needed in general.
- 2 if $\phi(t)$ is not defined, g can still have a constructor normal form.

(日)

Counter-examples

 $r: f(p:0) \rightarrow r \gg p$ $r: h(p:0,q:succ(n:\bullet)) \rightarrow q \gg p$ $r: f(p: succ(p': \bullet)) \rightarrow r \gg p$ Let t =n : succ r : succ **p** : f q : succ/ s : h *u* : 0 $\phi(t) = (p, r : f(p : succ(p' : \bullet)) \to r \gg p).$ However, the node *p* is not needed in *t*. R. Echahed ISR2019 (Paris) July 1 and 2, 2019 109 / 158

Counter-examples

r : *g*(*p* :

$$0) \rightarrow r \gg p \qquad r : h(p : 0, q : succ(n : \bullet)) \rightarrow q \gg p$$
Let $t = n : succ$

$$r : succ$$

$$p : g$$

$$q : succ$$

$$s : h$$

$$\psi$$

$$u : 0$$

 $\phi(t)$ is not defined!. However, the termgraph *t* rewrites to n : succ(u : 0).

1002010	(Darie)
10112010 1	(i ano)

3

Inductively Sequential Termgraph Rewrite Systems

Let $SP = \langle \Omega, \mathcal{R} \rangle$ be a tGRS.

SP is called inductively sequential iff

- The rules of every defined operation can be stored in a definitional tree and
- for all rules $[L | C] \rightarrow r$ in \mathcal{R} , for all global (respectively, local) redirections of the form $p \gg q$ (respectively, $p \gg_i q$ for some *i*), occurring in the right-hand side r, $p = Root_L$.

э

Main Properties of Strategy Φ

In presence of Inductively Sequential Termgraph Rewrite Systems

- The positions computed by Φ are needed
- Φ is c-normalizing
- Φ is c-hyper-normalizing
- Derivations computed by Φ have minimal length

BA 4 BA

Confluence

Inductively sequential tGRS are not confluent!

$$egin{aligned} &f(p:ullet,p)
ightarrow 0\ &[f(p:ullet,q:ullet)\mid p
eq q]
ightarrow 1\ &r:g(q:ullet)
ightarrow r\gg q \end{aligned}$$

There are two different derivations starting from t:

$$egin{array}{l} t o_n 1 \ t o_p f(q:0,q) o_n 0 \end{array}$$

Admissible termgraphs

[JICSLP98] Ω is contructor-based, i.e. $\Omega = D \cup C$ and $D \cap C = \emptyset$ *D* is a set of defined operations *C* is a set of constructors

A termgraph is admissible if none of its cycles includes a defined operation.

n: succ(n) is an admissible termgraph n: +(n, n) and n: tail(n) are not admissible

BAR 4 BA

Admissible termgraphs

The set of admissible termgraphs is not closed under rewriting

 $n: f(m) \rightarrow q: g(n); n \gg m$ Let $\Omega = D \cup C$ with $C = \{0, succ\}$ and $D = \{f, g\}$ $n_1: f(m_1:0) \rightarrow q_1: g(q_1)$

э.

Admissible Inductively sequential Termgraph Rewrite Systems

Let $SP = \langle \Omega, \mathcal{R} \rangle$ be an inductively sequential tGRS. SP is called admissible iff for all rules $[\pi \mid C] \rightarrow r$ in \mathcal{R} the following conditions are satisfied

- for all global (respectively, local) redirections of the form $p \gg q$ (respectively, $p \gg_i q$ for some *i*), occurring in the right-hand side *r*, we have $p = Root_{\pi}$ and $q \neq Root_{\pi}$.
- for all actions of the form α : $f(\beta_1, \ldots, \beta_n)$, for all $i \in 1..n$, $\beta_i \neq Root_{\pi}$
- the set of actions of the form α : f(β₁,..., β_n), appearing in r, do not construct a cycle including a defined operation.
- Constraint *C* includes disequations of the form $p \neq q$ where *p* and *q* are labeled by constructor symbols.

Admissible Inductively sequential Termgraph Rewrite Systems

[ICGT08][JICSLP98]

In presence of Admissible Inductively sequential Termgraph Rewrite Systems

- The set of admissible termgraphs is closed under the rewrite relation defined by admissible rules.
- Φ computes needed positions
- Admissible termgraphs admit unique normal forms

4 1 1 4 1 1 1

Narrowing

Lifting optimal rewrite strategies to narrowing in the case of Admissible termgraph rewrite systems

Let ${\mathcal R}$ be the following TRS

$$\begin{array}{l} \leq & (0,y) \rightarrow \text{true} \\ \leq & (s(x),0) \rightarrow \text{false} \\ \leq & (\operatorname{succ}(x),\operatorname{succ}(y)) \rightarrow \leq (x,y) \end{array} \end{array}$$

A definitional tree of operator \leq is as follows:

$$\begin{array}{l} \leq (\mathsf{i},\,\mathsf{j}) \\ \leq (\mathsf{0},j) \rightarrow \textit{true} \\ \leq (\boldsymbol{s}(i_1),j) \\ \leq (\boldsymbol{s}(i_1), \boldsymbol{0}) \rightarrow \textit{false} \\ \leq (\boldsymbol{s}(i_1), \boldsymbol{s}(j_1)) \rightarrow \leq (i_1,j_1) \end{array}$$

Definitional Trees -case of terms-

$$\begin{array}{l} \leq (\mathsf{i},\,\mathsf{j}) \\ \leq (\mathsf{0},j) \rightarrow \textit{true} \\ \leq (\boldsymbol{s}(i_1),j) \\ \leq (\boldsymbol{s}(i_1), \boldsymbol{0}) \rightarrow \textit{false} \\ \leq (\boldsymbol{s}(i_1), \boldsymbol{s}(j_1)) \rightarrow \leq (i_1,j_1) \end{array}$$

How to narrow the expression $\leq (i, j + k)$? $\leq (i, j + k) \rightsquigarrow_{j \mapsto 0} \leq (i, k) \rightsquigarrow_{i \mapsto 0} true$

Remark: The assignement $j \mapsto 0$ is **useless**!

The use of definitional trees prevents non necessary assignments and develops $\leq (i, j + k) \rightsquigarrow_{i \mapsto 0} true$

Key idea: Get rid of most general unifiers. Use of definitional trees to make a traversal of term (graphs) and compute only necessary.

ISR2019 (Paris)

119/158

Some Results

Needed Term narrowing [POPL94][JACM2000] Needed Graph Narrowing [JICSLP98] Needed Collapsing Narrowing [Gratra 2000] Narrowing-based algorithm for data-structure rewriting [ICGT06]

Goal

o: equal(p: length(q), s(s(0))) = true

Solution : a circular list of length two [q : cons(n₁, r : cons(n₂, q)) | q ≉ r]

4 3 5 4 3 5 5

Outline

Introduction

- 2 Preliminary Definitions
- 3 Graph Rewriting: Elementary Actions
- 4 Some Algebraic Approaches to Graph Rewriting
- 5 Attributed Graph Transformation and PBPO rules
- Termgraph Rewriting: An Algorithmic Approach
- Verification of Graph Transfomation

A B F A B F

Partrial Correctness à la Hoare of Graph Rewrite Systems

To be proven: {*Pre(input)*} *Program* {*Post(output)*}

- Program is a graph or model transformation system
- input and output are graphs or models
- Pre and Post are formulas, of a given logic L, over the inputs and the outputs

ISR2019 (Paris)

Logically Decorated Graphs

Let \mathcal{L} be a set of formulas, a logically decorated graph *G* is a tuple $(N, E, \lambda_N, \lambda_E, s, t)$ where:

- N is a set of nodes,
- E is a set of edges,
- $\lambda_N : N \to 2^{\mathcal{L}}$ is a node labeling function,
- $\lambda_E: E \to \mathcal{L}$ is an edge labeling function
- source and target functions: s : E → N and t : E → N

In this talk, the set \mathcal{L} consists of description logic (DL) formulas.

Why considering Description Logics (DLs)?

- DLs constitute a formal basis of knowledge representation languages.
- DLs provide logical basis for ontologies.
 (E.g., the web ontology language OWL is based on DLs)
- Reasoning problems for DLs are decidable (in general)

4 E N 4 E N

DL Syntax

a DL syntax allows one to define:

- Concept names, which are equivalent to classical first-order logic unary predicates,
- Role names, which are equivalent to binary predicates and
- Individuals, which are equivalent to classical constants.

There are various DLs in the literature, they mainly differ by the logical operators they offer to construct concept and role expressions or axioms.

A TEAL A TEAL

DL syntax: Concepts and roles

Let C_0 (resp. \mathcal{R}_0 and \mathcal{O}) be a set of atomic concepts (resp. atomic roles and nominals).

Let $c_0 \in C_0$, $r_0 \in \mathcal{R}_0$, $o \in \mathcal{O}$, and n an integer.

The set of concepts *C* and roles *R* are defined by:

 $C := \top | c_0 | \exists R.C | \neg C | C \lor C$ | o (nominals, \mathcal{O}) | $\exists R.Self$ (self loops, Self) | (< n R C) (counting quantifiers, \mathcal{Q}) $R := r_0$ | U (universal role, \mathcal{U}) | R^- (inverse role, \mathcal{I})

Examples of DL logics: ALC, ALCUO, ALCUI, ...

э.

Examples of properties

Examples of some requirements about the organization of a hospital:

 All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child

4 3 5 4 3 5 5

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child
- Dr. Smith is a pediatrician: First-order formula: $\exists x.Dr.Smith = x \land Pediatrician(x)$ DL formula (ALCUO): $\exists U.Dr.Smith \land Pediatrician$

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child
- Dr. Smith is a pediatrician: First-order formula: ∃x.Dr.Smith = x ∧ Pediatrician(x) DL formula (ALCUO): ∃U.Dr.Smith ∧ Pediatrician

 All patients are a doctor's patients: First-order formula: ∀x, y.Patient(x) ⇒ Has_patient(y, x) ∧ Doctor(y) DL formula (ALCUI):∀U.Patient ⇒ ∃Has_patient⁻.Doctor

э

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

An operation can only be associated with one operating room: First-order formula:

 $\forall x, y, z. Operation(x) \land Scheduled_in(x, y) \land Scheduled_in(x, z) \land Operation_room(y) \land Operation_room(z) \Rightarrow y = z$ DL formula (ALCUQ):

 $\forall U.Operation \Rightarrow (< 2Scheduled_in.Operation_room)$

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

An operation can only be associated with one operating room: First-order formula:

 $\forall x, y, z. Operation(x) \land Scheduled_in(x, y) \land Scheduled_in(x, z) \land Operation_room(y) \land Operation_room(z) \Rightarrow y = z$ DL formula (ALCUQ): $\forall U. Operation \Rightarrow (< 2Scheduled_in. Operation_room)$

A doctor can not be his/her own patient: First-order formula: $\forall x.Doctor(x) \Rightarrow \neg Has_patient(x, x)$ DL formula (*ALCUQ*): $\forall U.Doctor \Rightarrow \neg \exists Has_patient.SELF$

э

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

An operation can only be associated with one operating room: First-order formula:

 $\forall x, y, z. Operation(x) \land Scheduled_in(x, y) \land Scheduled_in(x, z) \land Operation_room(y) \land Operation_room(z) \Rightarrow y = z$ DL formula (ALCUQ): $\forall U. Operation \Rightarrow (< 2Scheduled_in. Operation_room)$

② A doctor can not be his/her own patient: First-order formula: $\forall x.Doctor(x) \Rightarrow \neg Has_patient(x, x)$ DL formula (*ALCUQ*): $\forall U.Doctor \Rightarrow \neg \exists Has_patient.SELF$

Only "private" nodes can have access to "private" nodes. Public "nodes" cannot have access to "private" nodes: First-order formula:

 $\forall x.y.(Has_access(x, y) \text{ and } Private(y)) \Rightarrow Private(x)$ DL formula (ALCUI): $\forall U.Private \Rightarrow \forall Has_access^-$.Private

-

Graph Transformation: Considered Rules

The considered Graph Rewriting rules are of the form $L \rightarrow R$ where:

- *L* is a graph
- *R* is a sequence of elementary actions

Let C_0 (resp. R_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

• a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.

< D > < (2) > < (2) > < (2) >

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i >> j where i and j are nodes. It redirects all incoming edges of i towards j.

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i ≫ j where i and j are nodes. It redirects all incoming edges of i towards j.
- a *merge action mrg(i,j)* where *i* and *j* are nodes.

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i ≫ j where i and j are nodes. It redirects all incoming edges of i towards j.
- a merge action mrg(i, j) where i and j are nodes.
- a *clone action cl(i, j, L_{in}, L_{out}, L_{I_in}, L_{I_out}, L_{I_loop})* where *i* and *j* are nodes and *L_{in}, L_{out}, L_{I_in}, L_{I_out}* and *L_{I_loop}* are subsets of *R*₀. It clones a node *i* by creating a new node *j* and connects *j* to the rest of a host graph according to different information given in the parameters *L_{in}, L_{out}, L_{I_in}, L_{I_out}, L_{I_loop}*.

э

イロト イポト イヨト イヨト

Graph Rewrite Systems: Example

July 1 and 2, 2019 131 / 158

э.

Match

• To be able to apply rules, we need to define when they can be applied.

∃ ► < ∃ ►</p>

Match

Definition: Match A match h between a lhs L and a graph G is a pair of functions $h = (h^N, h^E)$, with $h^N : N^L \to N^G$ and $h^E : E^L \to E^G$ such that: • $\forall e \in E^L, s^G(h^E(e)) = h^N(s^L(e))$ • $\forall e \in E^L, t^G(h^E(e)) = h^N(t^L(e))$ • $\forall n \in N^L, \forall c \in \lambda_N^L(n), h^N(n) \models c$ • $\forall e \in E^L, \lambda_E^G(h^E(e)) = \lambda_E^L(e)$

Remark: The third condition says that for every node, *n*, of the lhs, the node to which it is associated, h(n), in *G* has to satisfy every concept in $\lambda_N^L(n)$. This condition clearly expresses additional negative and positive conditions which are added to the "structural" pattern matching.

Rewrite Step and Rewrie Derivation

Rewrite step Let $\rho = L \rightarrow R$ be a rule and *G* and *G'* be two graphs. *G* rewrites into *G'* using rule ρ , noted $G \rightarrow_{\rho} G'$ iff: • There exists a match *h* from the left-hand side *L* to *G*, and • $G \rightsquigarrow_{h(R)} G'$. I.e., *G'* is the result of performing h(R) on *G*

Rewrite derivation

Let \mathcal{R} be graph transformation system and G and G' be two graphs.

A *rewrite derivation* from *G* to *G'*, noted $G \rightarrow_{\mathcal{R}} G'$, is a sequence $G \rightarrow_{\rho_0} G_1 \rightarrow_{\rho_1} \ldots \rightarrow_{\rho_n} G'$ such that $\forall i.\rho_i \in \mathcal{R}$.

э.

< 日 > < 同 > < 回 > < 回 > < □ > <
Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...

э

Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...
- Example: Strategy strat = s₀; s₁^{*}; s₂ performs once the sub-strategy s₀, iterates as much as possible sub-strategy s₁, before performing once sub-strategy s₂.

э.

Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...
- Example: Strategy *strat* = s₀; s₁^{*}; s₂ performs once the sub-strategy s₀, iterates as much as possible sub-strategy s₁, before performing once sub-strategy s₂.
- A derivation $G \rightarrow_{\rho_0} G_1 \rightarrow_{\rho_1} \dots \rightarrow_{\rho_n} G'$ is controlled by a strategy *strat* iff the word $\rho_0 \rho_1 \dots \rho_n$ belongs to the language defined by strategy *strat*.

Specification and Correctness

A specification spec is a triple (*Pre*, *strat*, *Post*) where:

- *Pre* is a DL formula called the *precondition*
- strat is a strategy with respect to a graph transformation system $\ensuremath{\mathcal{R}}$
- Post is a DL formula called the postcondition.

A specification *spec* = (*Pre*, *strat*, *Post*) is said to be correct iff:

- for all graphs G,
- for all graphs G' such that $G \rightarrow_{strat} G'$
- if $G \models Pre$ then $G' \models Post$

4 E N 4 E N

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

ρ₀;

• • •

 $\rho_{n-1};$

ρ_n; Post

ISR2019 (Paris)

R. Echahed	July 1 and 2, 2019	137 / 158

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

a₀;

*a*_{*m*-1};

a_m; Post

ISR2019 (Paris)

R. Echahed	July 1 and 2, 2019	138 / 158
------------	--------------------	-----------

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

a0;

a_{m-1}; Post[a_m] a_m; Post

ISR2019 ((Paris)
IOT LEOTO	i unoj

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

```
Pre
<mark>a</mark>₀;
```

```
Post[a_m][a_{m-1}]
a_{m-1};
Post[a_m]
a_m;
Post
```

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

```
Pre \Rightarrow Post[a_m][a_{m-1}]...[a_0]
```

```
a<sub>0</sub>;
```

```
...
Post[a<sub>m</sub>][a<sub>m-1</sub>]
a<sub>m-1</sub>;
Post[a<sub>m</sub>]
a<sub>m</sub>;
```

```
Post
```

э.

Substitutions

Definition: Substitution

A *substitution*, written [*a*], is associated to each elementary action *a*, such that for all graphs *G* and DL formulas ϕ , $(G \models \phi[a]) \Leftrightarrow (G' \models \phi)$ where G' is obtained from *G* after application of action *a*,i.e., $G \rightsquigarrow_a G'$.

$$egin{array}{ccc} G & \leadsto_{a} & G' \ \phi[a] & \phi \end{array}$$

We define wp(a, Q) the weakest precondition for an elementary action *a* and a formula *Q*.

iwp(a, Q) = Q[a]

A B F A B F

We define wp(a, Q) the weakest precondition for an elementary action *a* and a formula *Q*.

•
$$wp(a, Q) = Q[a]$$
 How to handle substitutions?

∃ ► < ∃ ►</p>

Floyd-Hoare Logics: a classical example The assignment instruction (action)

Weakest precondition: $wp(x := X + 1, Post) \equiv x > 5[x := X + 1]$

Action: x := x + 1;

Post: *Post* $\equiv x > 5$

BA 4 BA

Floyd-Hoare Logics: a classical example The assignment instruction (action)

 $wp(x := X + 1, Post) \equiv x > 5[x := X + 1] \equiv x > 4$

Action: x := x + 1;

Post: *Post* $\equiv x > 5$

ISRZUI9 (Paris)

BA 4 BA

Floyd-Hoare Logics: a basic case

 $wp(Add_E(e, a, b, R), Post) \equiv \exists U.(a \land (> 5R.\top))[Add_E(e, a, b, R)]$

Action: Add_E(e, a, b, R);

Post: $\exists U.(a \land (> 5R.\top))$

ISBONIA I	Pariel
	1 413/

э.

4 E N 4 E N

Floyd-Hoare Logics: a basic case

```
 \begin{array}{l} wp(Add_{E}(e,a,b,R), \textit{Post}) \equiv \exists U.(a \land (> 5R.\top))[Add_{E}(e,a,b,R)] \equiv \\ (\exists U.(a \land \exists R.b) => \exists U.(a \land (> 5R.\top))) \land \\ (\exists U.(a \land \forall R.\neg b) => \exists U.(a \land (> 4R.\top))) \end{array}
```

Action: $Add_E(e, a, b, R)$;

Post: ∃*U*.(*a* ∧ (> 5*R*.⊤))

э.

4 3 5 4 3 5 5

4 D b 4 A b

Closure Under Substitutions

A logic \mathcal{L} is said to be closed under substitution iff for every formula $\phi \in \mathcal{L}$, every substitution [*a*], ϕ [*a*] $\in \mathcal{L}$.

DLs and Closure Under Substitutions

Theorem: The description logics ALCUO, ALCUOI, ALCQUOI, ALCUOSelf, ALCUOISelf, and ALCQUOISelf are closed under substitutions.

Theorem: The description logics ALCQUO and ALCQUOSelf are not closed under substitutions.

Generating Weakest Preconditions (continued)

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$ where ρ 's right-hand side is $a_0; ...; a_n$

э.

A TEAL A TEAL

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

•
$$wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$$

Definition: Application Condition

Given a rule ρ , the *application condition* $App(\rho)$ is a formula such that a graph $G \models App(\rho)$ iff there exists a match between the left-hand side of ρ and G

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

• wp(a, Q) = Q[a]

• $wp(\epsilon, Q) = Q$

•
$$wp(a; \alpha, Q) = wp(a, wp(\alpha, Q))$$

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$

э.

A TEAL A TEAL

wp(strat, Q) computes the weakest precondition for a strategy strat and a formula Q.

- wp(a, Q) = Q[a]
- $wp(\epsilon, Q) = Q$

•
$$wp(a; \alpha, Q) = wp(a, wp(\alpha, Q))$$

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$

•
$$wp(s^*, Q) = inv_s$$

э.

4 E N 4 E N

Verification Conditions

- $vc(\rho, Q) = \top$
- $vc(s_0; s_1, Q) = vc(s_0, wp(s_1, Q)) \land vc(s_1, Q)$
- $vc(s_0 \oplus s_1, Q) = vc(s_0, Q) \wedge vc(s_1, Q)$

• $vc(s^*, Q) = (inv_s \land \neg App(s) \Rightarrow Q) \land (inv_s \land App(s) \Rightarrow wp(s, inv_s)) \land vc(s, inv_s)$

э.

ヨトィヨト

Soundness of the verification

Let spec = (Pre, strat, Post) be a specification. We call correctness formula the formula $correct(spec) = (Pre \Rightarrow wp(strat, Post)) \land vc(strat, Post)$.

Theorem:

If *correct*(*spec*) is valid, then for all graphs *G*, *G*' such that $G \rightarrow_{strat} G'$, $G \models Pre$ implies $G' \models Post$.

Decidability of the verification

Theorem:

Let spec = (Pre, strat, Post) be a specification using one of the following DL logics ALCUO, ALCUOI, ALCUOI, ALCUOSelf, ALCUOISelf, and ALCQUOISelf. Then, the correctness of *spec* is decidable.

Other considered decidable logics

- Extension of the dynamic logic PDL: C2PDL
- First-order Logic : fragments $\exists^* \forall^*$ and C^2

A B A A B A

Conclusion

- Conferences and workshops: ICGT, ICMT, GCM, etc.
- Various Algebraic Approaches: DPO, SPO, SqPO, AGREE, PBPO, etc.
- Various Implementations: AGG, GROOVE, GP, PORGY, PROGRES, etc.
- General Framework: (Weak) Adhesive (HLR) Categories
- Other issues: Parallelism, Verification Techniques, Termination...