
A Combination of Combinatory and Converse
PDL with Substitutions

Jon Haël Brenas1 Rachid Echahed1 Martin Strecker2

1 CNRS and University of Grenoble
2 Université de Toulouse / IRIT

Abstract. We introduce a logic called C2PDLS, motivated by some
reasoning about graph rewriting systems. C2PDLS is an extension of
both combinatory propositional dynamic logic, usually written CPDL,
and converse propositional dynamic logic, usually written CPDL too. In
addition to the existing features of both CPDLs, the introduced logic
offers the possibility to use the notion of substitutions à la Hoare within
its formulae. Such substitutions reflect the effect of some actions on graph
structures such as addition or deletion of edges or nodes. These last
features led us to introduce restricted universal roles over subsets of
the universe. We propose a sound and complete deductive system for
C2PDLS and show that its validity problem is decidable.

1 Introduction

Graph structures play an important role when modeling complex systems. They
are used in different areas going from computer programs to modeling tools in
natural science. These graphs could be either static or dynamic. In this paper
we are rather concerned with the latter case where graphs can evolve thanks to
some actions aimed at performing some graph transformations.

There are several approaches to write programs which handle graph trans-
formations going from classical imperative languages to dedicated rule-based
approaches [20]. Reasoning on these transformations is still not mature enough.
Some logics tailored to deal with graph transformations have already been pro-
posed (see, e.g. [4,6]) but suffer from the lack of decision procedures.

Recently, an approach to reasoning on graph transformation based on Hoare
like calculi [16] has been proposed by several authors (see, e.g., [19,12,1]). Roughly
speaking, within such an approach, one may prove that the resulting graph G′,
obtained after performing an action α over G, fulfills a property P , written
(G′ |= P), whenever a given graph G satisfies the precondition P [α], (G |= P [α]).
The notation [α] is known as a substitution induced from action α. Different logics
could be used to specify formulas such as P or P [α] depending on the properties
one may wish to prove. The main features of such logics include facilities to
handle substitutions on one hand and the fact to be endowed by some decision
procedures on the other hand.

In this paper, we investigate a dynamic logic where substitutions reflecting
several elementary actions over graphs are part of its syntax. This logic, called

1

C2PDLS, is an extension of both converse [14] and combinatory [17] propo-
sitional dynamic logics, both classically designated by CPDL. This allows us
to give quite expressive characterizations of graphs: for instance, the formula
[ν](〈(α−∪β−)∗〉C ⇒ D) describes the graphs such that all nodes that can reach
a node labeled C using only edges labeled α or β are labeled D. One of the main
contributions of combinatory PDL is the introduction of the nominals of Hy-
brid Logics. These can be combined with several modals for instance in temporal
logics [2].

The use of dynamic logics [15], an extension of modal logics [8,9], is among
the most widespread ways to reason about complex and evolving data. In partic-
ular, modal logics are particularly well-suited to describe the relations between
diverse states of the data using the programs that allow to go from one state to
another. They are also a very efficient way to represent graph structured data.
For instance, the formula 〈α〉φ can be used to signify either that from the current
state of execution, it is possible to reach a state where φ is true by performing α
or that the current node is linked, via an edge labeled with α, to a node labeled
with φ.

On the other hand, Description Logics [5] form one of the most important
families of logics used to describe graphs and some of them have thus been ex-
tended so that they are closed under substitutions [1,11]. The main issue with
DLs is that, even though the more expressive logics allow to define a role as tran-
sitive, they lack the reachability assertions that can be expressed using CPDL.
That is why we decided to propose and investigate C2PDLS.

The paper is organized as follows. The logic C2PDLS is defined in Sect. 2.
Then, in Sect. 3, we prove that the presence of substitutions, while convenient
to express the correctness of graph transformations, does not increase the ex-
pressive power of C2PDLS. In Sect. 4, the proof that C2PDLS is decidable is
sketched. Related work and concluding remarks are given respectively in Sect. 5
and Sect. 6. The missing proofs can be found in the appendix.

2 Syntax and models of C2PDLS

In this section, we introduce C2PDLS, a combination of both Combinatory and
Converse Propositional Dynamic Logic , both named CPDL [14,17] augmented
with a notion of substitutions. These kind of substitutions are very common in
Hoare-like program verification procedures [16]. In order to take into account
the interpretations of formulae with substitutions we assume the universe (of
names), Σ, split into two subsets Σ1 and Σ2. Intuitively, elements whose names
are in Σ1 are the building blocks of the formulae before substitutions are taken
into account. Elements whose names are in Σ2, on the other hand, are introduced
when a substitution creates a new node. It also stores the names of elements that
have been deleted. The need to access nodes outside of those that form the initial
model leads us to the modification of the universal program ν. It is now used
with an index indicating on which set of names it operates.

2

Definition 1 (Syntax of C2PDLS). Given three countably infinite and pair-
wise disjoint alphabets Σ, the set of names, Φ0, the set of atomic propositions,
and Π0, the set of atomic programs, the language of C2PDLS is composed of
formulae, programs and substitutions. We partition the set of names Σ into two
countably infinite sets Σ1 and Σ2 such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = ∅.
Formulae φ, programs α and substitutions θ are defined as follows:
φ := i | φ0 | ¬φ | φ ∨ φ | 〈α〉φ | φ[θ]
α := α0 | νS | α;α | α ∪ α | α∗ | α− | φ?
θ := add(i, φ0) | del(i, φ0) | add(i, j, α0) | del(i, j, α0) |

i � j | add(i) | del(i)
where i, j ∈ Σ, φ0 ∈ Φ0, α0 ∈ Π0 and S ⊆ Σ.

We denote by Π the set of programs, Φ the set of formulae and Θ the set of
substitutions. As usual, φ∧ψ stands for ¬(¬φ∨¬ψ), φ⇒ ψ stands for ¬φ∨ψ,
φ⇔ ψ stands for (φ⇒ ψ) ∧ (ψ ⇒ φ) and [α]φ stands for ¬(〈α〉¬φ).

It is noteworthy that programs define paths between nodes and not ac-
tual modifications of the graphs that are handled by the substitutions. One
can also see that not all formulae use names in a way that makes sense. Let
φ ≡ (〈νΣ1

〉φ0)[add(i, φ0)]. Intuitively, φmeans that there exists a node labeled φ0
(〈νΣ1〉φ0) after labeling i with φ0. On the other hand, let φ′ ≡ (〈νΣ1〉φ0)[add(i)]
[add(i, φ0)]. As substitutions alter graphs from right to left, φ′ says that there
is a node labeled with φ0 after labeling i with φ0 and then creating i. It should
not be possible to modify a node that has yet to be created and thus φ′ should
not be possible. Henceforth, we only consider well-formed formulae.

Definition 2 (Well-formed formula). A formula is said to be well-formed
if it is possible to find a set E ⊆ Σ such that the following inference rules are
respected:

φE∪{i} i /∈ E
φ[add(i)]E

φE−{i} i ∈ E
φ[del(i)]E

φE θ 6= add(i), θ 6= del(i) i, j ∈ E
φ[θ]E

iΣ1 φΣ1
0

φE

(¬φ)E
φE1 φE2

(φ1 ∨ φ2)E

One now has to define how (well-formed) formulae are interpreted. This is
done using models.

Definition 3 (Model). A model is a tupleM = (M,R,χ, V, E) where M is a
set called the universe, χ : Σ → M is a surjective mapping such that χ(Σ1) ∩
χ(Σ2) = ∅, R : Π → P(M2) is a mapping, V : Φ → P(M) is a mapping and
E : Φ⇒ P2(Σ) keeps track of the annotation. They are defined such that:

– For each i ∈ Σ, V (i) = {χ(i)} and E(i) = {Σ1}

3

– For each φ0 ∈ Φ0, V (φ0) ∈ P(χ(Σ1)) and E(φ0) = {Σ1}
– V (¬φ) = V (φ) and E(¬φ) = E(φ)
– V (φ ∨ ψ) = V (φ) ∪ V (ψ) and E(φ ∨ ψ) = E(φ) ∪ E(ψ)
– V (〈α〉φ) = {s ∈M |∃t ∈M.((s, t) ∈ R(α) ∧ t ∈ V (φ))} and E(〈α〉φ) = E(φ)
– For each α0 ∈ Π0, R(α0) ∈ P(χ(Σ1)

2)
– R(νS) = χ(S)2 for S ⊆ Σ
– R(α ∪ β) = R(α) ∪R(β)
– R(α;β) = {(s, t) ∈M2|∃v.((s, v) ∈ R(α) ∧ (v, t) ∈ R(β))}
– R(α−) = {(s, t) ∈M2|(t, s) ∈ R(α)}
– R(α∗) =

⋃
k〈ω R(α

k) where αk stands for the sequence α; . . . ;α of length k
– R(A?) = {(s, s) ∈M2|s ∈ V (A)}
– V (φ[add(i, φ0)]) = V ′(φ) where M′ = (M ′, R′, χ′, V ′, E ′) is a model such

that M ′ = M , R′ = R, χ′ = χ, ∀ψ0 ∈ Φ0, ψ0 6= φ0.V
′(ψ0) = V (ψ0),

V ′(φ0) = V (φ0) ∪ χ(i) and E ′ = E
– V (φ[del(i, φ0)]) = V ′(φ) whereM′ = (M ′, R′, χ′, V ′, E ′) is a model such that
M ′ = M , R = R, χ′ = χ, ∀ψ0 ∈ Φ0, ψ0 6= φ0.V

′(ψ0) = V (ψ0), V ′(φ0) =
V (φ0) ∩ χ(i) and E ′ = E

– V (φ[add(i, j, π0)]) = V (φ) where M′ = (M ′, R′, χ′, V ′, E ′) is a model such
that M ′ = M , ∀α0 ∈ Π0, π0 6= α0.R

′(α0) = R(α0), R′(π0) = R(π0) ∪
(χ(i), χ(j)), χ′ = χ, V ′ = V and E ′ = E

– V (φ[del(i, j, π0)]) = V ′(φ) where M′ = (M,R′, χ′, V ′) is a model such that
M ′ =M , ∀α0 ∈ Π0, π0 6= α0.R

′(α0) = R(α0), R′(π0) = R(π0)∩ (χ(i), χ(j)),
χ′ = χ, V ′ = V and E ′ = E

– V (φ[i� j]) = V ′(φ) whereM′ = (M,R′, χ′, V ′) is a model such that M ′ =
M , ∀π0 ∈ Π0.R

′(π0) = R(π0) ∩ {(a, i) ∈ R(π0)} ∪ {(a, j)|(a, i) ∈ R(π0)},
χ′ = χ, V ′ = V and E ′ = E.

– V (φ[add(i)]) = V ′(φ) where M′ = (M ′, R′, χ′, V ′, E ′) is a model such that
M ′ =M , R′ = R, χ′ = χ, V ′ = V and E ′ = {S ∪ {i}|S ∈ E}

– V (φ[del(i)]) = V ′(φ) where M′ = (M ′, R′, χ′, V ′, E ′) is a model such that
M ′ =M , ∀π0, R′(π0) = R(π0) ∩ {(k, l)|k = i ∨ l = i}, χ′ = χ, ∀φ0.V ′(φ0) =
V (φ0) ∩ {i} and E ′ = {S ∩ {i}|S ∈ E}

where P(E) (resp. P2(E)) stands for the powerset of E (resp. the powerset of
the powerset of E), E is the complement of E w.r.t. the superset used in the
context. In the following, we write m |= A whenever m ∈ V (A) for m being an
element of the universe M and A is a formula. As usual, a formula A is said
to be satisfiable if there exist a model M = (M,R,χ, V) and an element m of
M such that m |= A. When it is not the case, A is said to be unsatisfiable. A is
said to be valid, written |= A, if ¬A is unsatisfiable, that is for every modelM,
for all elements m of M, m |= A, and invalid otherwise. We say that a model
M satisfies a formula A and write M |= A if there exists an element m in M
such that m |= A.

Intuitively, the function χ, which is surjective and such that χ(Σ1)∩χ(Σ2) =
∅, splits the universe into elements whose names are in Σ1 and those whose
names are in Σ2. This splitting of the universe M is motivated by the evolution

4

of models (graphs) that we consider in the forthcoming sections. M is split into
nodes that are initially part of the graph χ(Σ1) and nodes that may be used
in the future or may have been deleted in the past χ(Σ2). This is a way to
provide the logic with evolving sets that handle nodes that are either used or
potentially usable. So, for all φ0 ∈ Φ0, V (φ0) ∈ P(χ(Σ1)), thus for all n2 ∈
χ(Σ2), n2 6∈ V (φ0) which means that no atomic proposition is satisfied by any
unused node. For almost the same reason, for all π ∈ Π0, there is no m ∈ M
such that (n2,m) ∈ R(π) or (m,n2) ∈ R(π). Thus, all nodes of χ(Σ2) are
such that they satisfy no atomic proposition and they have no incoming or
outgoing edge. Moreover, as χ is surjective, νΣ is the usual universal role, that
is R(νΣ) =M ×M .

Example 1. Let’s say we want to speak about cities and roads. We define Σ, Φ0

and Π0 such that {R,P} ⊂ Σ1, A ∈ Σ2, C ∈ Φ0 and r ∈ Π0 where R is the name
associated with the city Rome, P is the name associated with the city of Paris,
A is the name associated with the city of Atlantis, C is the atomic proposition
associated with cities and r is the atomic program associated with roads.

The common saying that all roads lead to Rome then becomes cs ≡ [r]〈r∗〉R,
that is for all roads ([r]) it eventually leads(〈r∗〉) to Rome (R). Fig. 1 shows a
model and a counter-model of cs.

R : CP : C A

R : CP : C A

R : CP : C A : C

r

r

r

r

r

r

r

r

r

Fig. 1. Models and counter-model. White nodes correspond to names in Σ1, black ones
correspond to those in Σ2. The first example is a model and every node |= cs. The
second one is a model but P 6|= cs hence cs is not valid. The third example is not a
model since χ(A) ∈ V (C) which violates Definition3.

Consider now the formula ac ≡ 〈νΣ1∪{χ(A)}〉(C ∨A), it says that there exists
an initial node or Atlantis (〈νΣ1∪{χ(A)}〉) such that it is a city or Atlantis (C∨A).
It is an obvious tautology as Atlantis is Atlantis.

As a last example of a formula, we consider ac′ ≡ (〈νΣ1
〉C)[add(A, C)][add(A)]

which says that there exists a city (〈νΣ1〉C) after adding Atlantis ([add(A)]) and
making it a city ([add(A, C)]). It is noteworthy that A ∈ Σ2 initially but as
[add(A)] occurs first (that is on the right), it is in Σ1 when [add(A, C)] occurs
and thus ac′ is a (well-formed) formula of C2PDLS.

Let us consider the formula ac1 ≡ (〈νΣ1
〉C)[add(A, C)]. ac1 is a C2PDLS

formula only if we assume that A is in Σ1.

5

Finally, let us consider ac2 ≡ (〈νΣ1
〉C)[add(A)][add(A, C)]. ac2 is not a well-

formed C2PDLS formula since it impossible to find a E such that A ∈ E,
required for add(A, C), and A /∈ E, required for add(A).

3 C2PDLS vs C2PDL

In this section we investigate a relation between the logic C2PDLS and its
substitution free counterpart named C2PDL.
Definition 4. We define the logic C2PDL as the restriction of C2PDLS to
formulae without substitutions.

Definition 5. Two formulae A and A′ are said to be equivalent, written A ≡ A′
if, given any modelM = (M,R,χ, V, E), V (A) = V (A′). Similarly, two programs
α and α′ are said to be equivalent, written α ≡ α′, if R(α) = R(α′).

In the following we state that the logic C2PDL is as expressive as C2PDLS.
That is to say, that for every formula Φ of C2PDLS there exist a corresponding
one Φ′ in C2PDL such that φ and φ′ are equivalent.

Theorem 1. C2PDLS is as expressive as C2PDL.
To prove the theorem, we introduce a rewriting system RS. Its goal is to

transform any formula where substitutions occur into a substitution-free formula.
It is not always possible to do that in one step. The rewriting system thus
contains rules that remove substitutions completely and other rules that moves
the substitution inward. Each rule is such that the left-hand side and the right-
hand side are equivalent.

Let σ, σ′ ∈ Θ, σ ∈ {[add(i, j, α0)], [del(i, j, α0)],[add(i)], [i � j]}, φ0 and
φ1 ∈ Φ0, φ0 6= φ1, φ and ψ ∈ Φ, i ∈ Σ and α ∈ Π then RSφ is:
Rule φ1 : >σ > Rule φ2 : iσ i
Rule φ3 : φ0σ

′ φ0 Rule φ4 : φ0[add(i, φ1)] φ0
Rule φ5 : φ0[add(i, φ0)] φ0 ∨ i Rule φ6 : φ0[del(i, φ1)] φ0
Rule φ7 : φ0[del(i, φ0)] φ0 ∧ ¬i Rule φ8 : φ0[del(i)] φ0 ∧ ¬i
Rule φ9 : (¬φ)σ ¬(φσ) Rule φ10 : (φ ∨ ψ)σ (φσ) ∨ (ψσ)
Rule φ11 : (〈α〉φ)σ 〈ασ〉(φσ)

We now introduce rewriting rules allowing to get rid of the substitutions oc-
curring in programs. Let σ, σ′, σ′′ ∈ Θ, σ′ ∈ {[add(i1, φ)], [del(i1, φ)], [add(i2)]},
σ′′ /∈ {[add(i)], [del(i)]}, S ⊆ Σ, φ0 and φ1 ∈ Φ0 such that φ0 6= φ1, φ and
ψ ∈ Φ, α0, α

′
0 ∈ Π0, α0 6= α′0 and α, and β ∈ Π and i, j ∈ Σ, then RSα is:

Rule α1 : α0σ
′ α0 Rule α2 : α0[add(i, j, α

′
0)] α0

Rule α3 : α0[add(i, j, α0)] α0 ∪ (i?; νσ1
; j?) Rule α4 : α0[del(i, j, α

′
0)] α0

Rule α5 : α0[del(i, j, α0)] (¬i)?;α0 ∪ α0; (¬j)?
Rule α6 : α0[del(i)] (¬i)?;α0; (¬i)?
Rule α7 : α0[i� j] α0; ((¬i)? ∪ i?; ν; j?)
Rule α8 : νSσ

′′ νS Rule α9 : νS [add(i)] νS[add(i)]
Rule α10 : νS [del(i)] νS[del(i)] Rule α11 : (α;β)σ (ασ); (βσ)
Rule α12 : (α ∪ β)σ (ασ) ∪ (βσ) Rule α13 : (α−)σ (ασ)−

Rule α14 : (α∗)σ (ασ)∗ Rule α15 : (A?)σ (Aσ)?

6

The rules α9 and α10 introduce substitutions that affect sets and thus forces
the introduction of new rules. Let i ∈ Σ, S1, S2 ⊆ Σ:
Rule S1 : Σ1[add(i)] Σ1 ∪ {i} Rule S2 :] Σ1[del(i)] Σ1 ∩ {i}
Rule S3 : Σ2[add(i)] Σ2 ∩ {i} Rule S4 : Σ2[del(i)] Σ2 ∪ {i}
Rule S5 : (S1 ∪ S2)σ S1σ ∪ S2σ Rule S6 : (S1 ∩ S2)σ S1σ ∩ S2σ
Rule S7 : S1σ S1σ Rule S8 : {i}σ {i}

Proving that these rules are correct, that is that the valuations of the left-
and right-hand sides are equal, is not difficult. In order to save space, only few
of these proofs are reported here, the others being in the appendix.

Proof.

Rule φ2 : As nodes are never renamed, V (iσ) = V (i)
Rule α5 : As R(α0[del(i, j, α0)]) = R′(α0) = R(α0) ∩ {χ(i), χ(j)},

R(α0[del(i, jα0)]) = R((¬i)?;α0 ∪ α0; (¬j)?).
Rule S3 : As i is deleted from Σ2, χ(Σ2[add(i)]) = χ(Σ2) ∩ {i}

Example 2. Applying the rules given in the proof allows one to prove that the
formula ac′ rewrites to ac.

4 Deductive system for C2PDL

We now introduce a deductive system DS for C2PDL. It is composed of 17
axioms (from (Bool) to (Σ22)) and 5 deductive rules (from (Ax) to (Nec)). It is
noteworthy that formulae (resp. programs) of C2PDL are also formulae (resp.
programs) of DS and the other way round.

4.1 Deductive system DS

Let A and B ∈ Φ, α and β ∈ Π, c and d ∈ Σ, S ⊆ Σ,

– PDL axioms:
(Bool) All boolean tautologies
(�) [α](A⇒ B)⇒ ([α]A⇒ [α]B)
(;) 〈α;β〉A⇔ 〈α〉〈β〉A
(∪) 〈α ∪ β〉A⇔ 〈α〉A ∨ 〈β〉A
(?) 〈A?〉B ⇔ A ∧B
(*) 〈α∗〉A⇔ A ∨ 〈α〉〈α∗〉A
(-) A⇒ [α]〈α−〉A

– Names
(Σ1) 〈νΣ〉c
(Σ2) 〈νΣ〉(c ∧A)⇒ [νΣ](c⇒ A)

– Universal programs
(νS1) ∀c′, d′ ∈ S.c′ ⇒ 〈νS〉d′
(νS2) ∀{c′′, d′′} 6⊆ S.c′′ ⇒ [νS]¬d′′
(νS3) 〈νS〉〈νS〉A⇒ 〈νS〉A

7

(νS4) A⇒ [νS]〈νS〉A
(νΣ1) A⇒ 〈νΣ〉A
(νΣ2) 〈α〉A⇒ 〈νΣ〉A

– Names ∈ Σ2

(Σ21) ∀c ∈ Σ2,∀φ ∈ Φ0.c⇒ ¬φ
(Σ22) ∀c ∈ Σ2,∀α ∈ Π0.c⇒ [α]⊥ ∧ [α−]⊥

– Rules:
We give 5 deductive rules:
(Ax) If A is an axiom, ` A.
(MP) If ` A and ` A⇒ B, then ` B
(Ind) If ` [γ][αk]A, for all k < ω, then ` [γ][α∗]A
(Cov) If ` [γ]¬c, for all c ∈ Σ, then ` [γ]⊥
(Nec) If ` A, then ` [νΣ]A

Definition 6. We write ` A if A is an axiom of DS or A can be inferred from
the axioms using the deductive rules of DS. We call LDS the set of C2PDL-
formulae {A| ` A}.

4.2 Soundness

Theorem 2 (Soundness). Let A be a C2PDL formula, if ` A then � A.

The proof of the soundness theorem is a quite direct. The complete proof is
given in the appendix.

We discuss below the case of three axioms, namely the axioms (−), which is
not part of Combinatory PDL, (Σ2), which is not part of Converse PDL, and
(Σ21), which is introduced due to the splitting of the universe. The idea of the
proof consists, for a formula A such that ` A, to show that one can pick any
modelM = (M,V,R, χ), any element m of M and prove that m ∈ V (A).

(-) Let m be an element of a modelM then:
– Either m ∈ V (A) and then ∀m′, ((m,m′) 6∈ R(α) or ∃m′′ = m. such that

(m′,m′′) ∈ V (A)). Thus m ∈ V ([α]〈α−〉A),
– or m 6∈ V (A) and thus m ∈ V (¬A).

In all cases, m ∈ V ([α]〈α−〉A ∨ ¬A) thus m ∈ V (A⇒ [α]〈α−〉A).
(Σ2) Let m be an element of a modelM then:

– either χ(c) 6∈ V (A) and thus m ∈ V (〈νΣ〉(c ∧ ¬A)) but then ∀m′′. m′′ 6∈
V (c) = {χ(c)} or m′′ 6∈ V (A) thus m ∈ V ([νΣ](¬c ∨ ¬A). Thus m ∈
V ([νΣ](¬c ∨ ¬A) ∧ 〈νΣ〉(c ∧ ¬A)),

– or χ(c) ∈ V (A) and thus ∀m′,m′ 6∈ V (c) or m′ ∈ V (A) thus m ∈
V ([νΣ](¬c∨A). But then ∃m′′ = χ(c) such that m′′ ∈ V (c∧A) and thus
m ∈ V (〈νΣ〉(c ∧A)) thus m ∈ V ([νΣ](¬c ∨A) ∧ 〈νΣ〉(c ∧A))

In all possible cases, m ∈ V (([νΣ](¬c∨¬A)∧〈νΣ〉(c∧¬A))∧ ([νΣ](¬c∨A)∧
〈νΣ〉(c ∧A))) that is m ∈ V (〈νΣ〉(c ∧A)⇔ [νΣ](c⇒ A))

(Σ21) Let m be a element of a modelM, φ ∈ Φ0 then:
– Either m ∈ V (c) = {χ(c)} and then as V (φ) ⊆ χ(Σ1) and χ(Σ1) ∩
χ(Σ2) = ∅, m 6∈ V (φ) and thus m ∈ V (¬φ),

– or m 6∈ V (c) and thus m ∈ V (¬c).
In all possible cases, m ∈ V (¬c ∨ ¬φ) that is m ∈ V (c⇒ ¬φ)

8

4.3 Completeness

Theorem 3 (Completeness). Let A be a C2PDL formula, if � A then ` A.

The completeness proof is much more involved than the soundness proof.
The idea is to prove that if 6` A then 6� A, which is obviously equivalent to
Theorem 3.

The main argument of the proof makes use of the notion of extension of the
logic C2PDL:

Definition 7. A logic (over DS) is any set of C2PDL formulae L such that:

– L contains all axioms of DS
– L is closed under (MP), (Ind), (Cov) and (Nec).

To establish the completeness, the notion of logics that do not lead to incon-
sistencies is used.

Definition 8. A logic L is consistent if ⊥ 6∈ L.

We can now state the following theorem.

Theorem 4. If L is a consistent logic, then L has a model.

Let log(Γ,A) denote the least logic containing the set of formulae Γ and the
formula A. Then we can show that Theorem 3 is a consequence of Theorem 4.
Indeed, assume 6` A. Then, log(LDS,¬A) is consistent. Thus, from Theorem 4,
log(LDS,¬A) has a model. That is 6� A.

In order to prove Theorem 4, one may use the notion of maximal logics and
the Lindenbaum lemma.

Definition 9. A logic L is said to be maximal if for all C2PDL-formulae A,
either A 6∈ L or A ∈ L.

Lemma 1 (Lindenbaum lemma). If L is a consistent logic then there exists
a maximal consistent logic L∗ such that L ⊆ L∗.

The proof of Lemma 1 is quite straightforward. The set of C2PDL-formulae
being recursively enumerable, it is possible to make a list of them, say {φ1, φ2, . . .}.
Then, starting from L0 = L, we try adding the n-th formula φn to Ln−1. If
log(Ln−1, φn) is consistent, we define it at Ln, if not log(Ln−1,¬φn) is consis-
tent and it is defined as Ln. The final step consists in proving that the union of
all the Lns is a maximal consistent logic.

In order to build the model for the proof of Theorem 4, the main remaining
obstacle is that names can occur several times, at different nodes (elements of
the universe). Remember that each name can only name one element. Then,
to solve this issue, we introduce an equivalence relation over names: c ∼ d =
〈νΣ〉(c∧d) ∈ L∗. [c]∼ is defined as the equivalence class of c. Intuitively, c ∼ d if
both c and d name the same node. We define M∼ = (M∼, R∼, χ∼, V∼), where

9

M∼ = {[c]∼|c ∈ Σ}, for all α ∈ Π, R∼(α) = {([c]∼, [d]∼)|〈νΣ〉(c ∧ 〈α〉d) ∈ L∗},
for all c ∈ Σ, χ∼(c) = [c]∼ and for all A ∈ Φ, V∼(A) = {[c]∼|〈νΣ〉(c ∧A) ∈ L∗}.
One now has to prove that M∼ is a model. It is straightforward thanks to
the Lemma 1 that allows us to use a maximal logic. Indeed, let us show that
V∼(¬A) = V∼(A):

– Assume [c] ∈ V∼(A) then 〈νΣ〉(c ∧ A) 6∈ L∗. As L∗ is maximal, [νΣ](c ⇒
¬A) ∈ L∗. As (Σ2) is in L∗ so is 〈νΣ〉(c ∧ ¬A) 6∈ L∗ and thus [c] ∈ V∼(¬A).
Thus V∼(A) ⊆ V∼(¬A).

– Otherwise [c] ∈ V∼(A) then 〈νΣ〉(c∧A) ∈ L∗. If [c] ∈ V∼(¬A), then 〈νΣ〉(c∧
¬A) ∈ L∗. As (Σ2) is in L∗ so is [νΣ](c⇒ ¬A) ∈ L∗ and thus 〈νΣ〉(A∧¬A) ∈
L∗. As L∗ is consistent, this is impossible and thus V∼(¬A) ⊆ V (A).

Thus V∼(¬A) = V∼(A).
The complete, and much more precise, proof can be found in the appendix.

4.4 Decidability

Theorem 5 (Decidability). The validity problem of C2PDL is decidable.

The first step towards proving Theorem 5 is to find two semi-decision proce-
dures: one that stops when called upon if the formula given as argument is valid
and another one that stops if the formula is not valid. As a formula has to be
one of the two, the decision procedure will stop.

We start with the validity semi-decision procedure. The deductive system is
a good starting point but there are problems with the rules (Ind) and (Cov) as
they both quantify on infinite sets (the integers and the names respectively). We
thus drop them to form a new logic that generates the same set of valid formulae
but whose validity problem is decidable:

Definition 10. Let FDS be the deductive system obtained from DS by dropping
the rules (Ind) and (Cov) and adding the axiom (ind): (A∧ [α∗](A⇒ [α]A))⇒
[α∗]A. Let `F denote provability in FDS. We call LFDS the set of C2PDL-
formulae {A| `F A}.

As FDS is ω-rule-free, it is obvious that LFDS is a recursively enumerable
set. We now have to prove that every formula of LFDS is also a valid formula
of C2PDL.

Lemma 2. Let A be a formula of C2PDL, if `F A then ` A

The proof of Lemma 2 simply amounts to proving that ` ind.
The semi-decision procedure that decides whether a formula is valid is based

on Lemma 2.
To find an invalidity semi-decision procedure, we use the following theorem.

Theorem 6. Let A be a formula of C2PDL, if 6`F A then, for some finite model
M,M 6� A.

10

To prove Theorem 6 we build a canonical quasi-model.

Definition 11. We name canonical quasi-model the model Mc = (Mc, Rc, Vc)
where:

– Mc is the set of all maximal consistent sets of formulae
– for every program α and for all u, v ∈ Mc, u Rc(α) v iff, for every formula

A, if [α]A ∈ u then A ∈ v
– for every atomic proposition φ, Vc(φ) = {u ∈Mc|φ ∈ u}
– for every name i, Vc(i) = {u ∈Mc|i ∈ u}

Mc is still not a model but it’s possible to obtain a finite model from it by
doing a filtration [22] as defined below:

Definition 12. Let M = (M,R, χ, V) be a model and let Γ be any set of for-
mulae closed under sub-formulae. We define the equivalence relation ∼Γ on M
by:
∀s, t ∈M.s ∼Γ t iff ∀φ ∈ Γ , (s � φ iff t � φ).

We note [s]Γ the equivalence class of s with respect to ∼Γ . The structure
MΓ = (MΓ , RΓ , χΓ , VΓ) is called filtration ofMc with respect to Γ if:

– MΓ := {[s]Γ |s ∈Mc}
– for every program α ∈ Γ , if sRc(α)t, then [s]ΓRΓ (α)[t]Γ
– for every program α ∈ Γ , if [s]ΓRΓ (α)[t]Γ , then for all formulae A, [α]A ∈
s ∩ Γ only if A ∈ t

– for every name in o ∈ Γ , if o ∈ s, [s]Γ ∈ χΓ (o)
– for every atomic proposition φ0 ∈ Γ , VΓ (φ0) = {[s]Γ |s ∈ Vc(φ0)}

The proof thatMΓ is a model is not very involved, as it is a simple check of
all the conditions, but it will not be reported here for lack of space. The proof
thatMΓ 6� A is less obvious and it rests mainly on the fact that if 6`F A, then
there exists a maximal set of formulae u not containing A. Thus [u]Γ 6� A.

We introduce the Fisher-Ladner closure of a set of formulae which is a set
closed under sub-formulae that we will use for the filtration of the canonical
quasi-model.

Definition 13. The Fischer-Ladner closure of a set of formulae Ξ is the small-
est set FL that satisfies:

– Ξ ⊆ FL
– FL is closed under sub-formulae
– If [α ∪ β]A ∈ FL, [α]A ∈ FL and [β]A ∈ FL
– If [α;β]A ∈ FL, [α][β]A ∈ FL
– If [α∗]A ∈ FL, [α][α∗]A ∈ FL
– If [α−]A ∈ FL, [α]¬[α−]A ∈ FL

11

It is obvious that the Fisher-Ladner closure of a finite set of formulae is itself
finite and that it is closed under sub-formulae.

We can now prove that we obtain that way a finite model.

Lemma 3. If Γ is such that |Γ | = n, where |Γ | is the cardinality of Γ that is
the number of formulae it contains, then |MΓ | ≤ 2n.

The proof of Lemma 3 is obvious as there are at most 2n equivalence classes
for n formulae.

We can now go back to sketch the proof of Theorem 6. We can exhibit a finite
model M, the canonical quasi-model filtrated by the Fisher-Ladner closure of
{A} such that if 6`F A thenM 6� A.

Theorem 6 is used to prove that A is invalid. The procedure tries all finite
models and stops when it finds one such that 6� A. On the other hand, Lemma 2
gives us the assurance that, if A is valid, it will be generated eventually by FDS.
We can thus decide whether or not a C2PDL-formula A is valid. As usual, we
can also prove that a formula A is satisfiable by proving that ¬A is invalid.

The complete proof can be found in the appendix.
Another possible approach would be to use the Hybrid µ-calculus[21]. This

logic as almost the same constructors as C2PDL but replaces the closure with the
µ and ν constructors of µ calculus. It is known to be decidable. The translation
of the closure in µ-calculus is simple and well-known. The only difficulty is the
use of the sets in νS . This can be tackled by introducing new atomic propositions
that label the nodes in S and only them. One also has to had in the formula that
nodes named with elements of Σ2 are such that none of the atomic propositions
label them and they have neither incoming or outgoing edges.

5 Related work

We recall that our goal in defining C2PDLS was to introduce a logic that would
be both decidable and expressive enough to characterize basic substitutions over
graphs. Furthermore, we wanted the logic to be able to speak about named
nodes, and thus to contain nominals, and to be able to express reachability, and
thus contain the Kleene star.

Some expressive logics have been introduced that are able to deal with actions
over graphs. In [4], the authors introduced two ways to extend ’static’ modal
logics with actions that are similar to ours. The first one allows to modify node
and edge labelling globally while the second one modifies them locally. The first
one is proven to have the same status w.r.t. completeness and decidability as the
original ’static’ modal logic. The second one yields undecidable logics. Among
the crucial differences between their work and ours is that they allow actions,
that they introduce, and programs, that describe the models, to interact while we
separate them. Furthermore, their models are rooted in that the exact position
at which one is in the graph is key. We do not care on the other hand. The
second logic being undecidable does not meet our requirements and the first

12

one, by allowing only global modifications, prevents us from explicitly stating
where the modifications occur.

In [6], the authors introduced a quite expressive logic that extends both logics
of [4] by allowing global and local modifications of the labelings. This logic is
obviously very expressive but its validity problem is undecidable.

Some approaches introduce actions that are relevant for the subject they
deal with but cannot really be used when one tries, as we do, to define graph
transformations. Public Announcement Logic [18], for instance, deals with multi-
agent epistemic logic and adds operators for public communications of message
α that removes from the models all nodes that do not satisfy α. This approach
is generalized by van Ditmarsch et al. [23]. In a different direction, Fernandez-
Duque et al. [13] introduced an epistemic logic allowing to forget information.
These logics target some particular classes of graphs which limit their use for
graph transformations in general.

In [7], Balbiani et al. introduced the Dynamic Logic of Propositional Assign-
ment. This logic allows to dynamically assign propositional values. The expres-
sive power of this logic and C2PDLS are not comparable in the sense that there
are formulae that can be expressed in one logic but not in the other one and the
other way round. Furthermore, with C2PDLS one may reason about evolving
graph structures which is not that obvious in [7].

In [3] an operator is proposed to extend modal logic. It allows one to swap
an edge of the graph, in addition to the usual operators of modal logic, that is to
consider the graph where an edge {v, w} would be replaced by an edge {w, v}.
The logic presented in [3] and C2PDLS are both targeted to reason on graph
transformations but differ on the properties that can be expressed.

In [11], we have studied the same substitutions in the present paper, minus
the creation and deletion of nodes and the global redirection of edges, and looked
at whether or not some Description Logics are closed under them. Once again,
the main goal is to identify logics which are decidable and can also express
substitutions.

In [1], Ahmetaj et al. studied the logic ALCHOIQbr. It is an unusual De-
scription Logic that has been extended so that substitutions can be written as
part of the formulae . It is then used to solve planning problems. ALCHOIQbr
is finitely decidable but lacks the Kleene star.

One could hope to merge the gap between dynamic logics and description
logics to obtain a logic containing both regular role expressions and counting
quantifiers. This is particularly interesting as some important graph-like struc-
tures are defined using both. The logic that is reached, though, will not be
decidable as it has been proven, in [10], that logics with regular role expressions
and counting quantifiers are undecidable.

6 Conclusion

We introduced a new extension of dynamic logics, we called C2PDLS, to define
properties of evolving graphs. Our main goal in doing so was to provide a logic

13

able to express two different ideas that are usually associated with the dynamic
part of dynamic logics. First, the use of classical constructors of dynamic logics
(such as union, intersection, composition, ... of programs) to express complex
conditions on the way the various nodes of graphs can be connected. Meanwhile,
other constructs borrowed from Hoare logics and called substitutions are used
to express conditions on future states of graphs after performing some actions.
These differ from the usual programs of dynamic logic in that the effect of each
substitution in term of model is well-defined and not left to be chosen when
the model is built. In order to avoid confusion, these two dynamic aspects were
completely separated out with different notations.

In addition to the usual constructs of dynamic logic, we split the nodes of the
considered graphs into two sets: one contains the nodes that are actually part
of the graph at the inception of the formulae, the other contains all nodes that
do not belong to the graph. This second set of nodes is intended to store nodes
that will be created by future transformations.

Once the syntax of C2PDLS and its models have been properly defined,
we looked at the properties of C2PDLS. We proved that the substitutions do
not increase the expressive power of the logic and provided a rewriting system
allowing to translate a formula with substitutions (that is in C2PDLS) to a
substitution-free formula (that is in C2PDL). We provided a reasoning system
that we proved to be both sound and complete. We also proved that the va-
lidity (and thus also the satisfiability) problem in C2PDL (and consequently in
C2PDLS) is decidable.

An interesting way to continue this line of work would be to extend the
substitutions toward a more dynamic structure in which substitutions would
not only allow one action to be performed but full programs as is usual in
dynamic logic and then to see whether or not it would be possible to make
logical programs (those used to model the arcs of the graph) and the graph
transformations interact.

References

1. Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Man-
aging change in graph-structured data using description logics. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada., pages 966–973, 2014.

2. C Areces, P Blackburn, and M Marx. The computational complexity of hybrid
temporal logics. Logic Journal of IGPL, 8(5):653–679, 2000.

3. Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Swap logic. Logic Journal
of the IGPL, 22(2):309–332, 2014.

4. Guillaume Aucher, Philippe Balbiani, Luis Fariñas del Cerro, and Andreas Herzig.
Global and local graph modifiers. Electronic Notes in Theoretical Computer Sci-
ence, 231:293 – 307, 2009. Proceedings of the 5th Workshop on Methods for Modal-
ities (M4M5 2007).

5. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

14

6. Philippe Balbiani, Rachid Echahed, and Andreas Herzig. A modal logic for term-
graph rewriting. CoRR, abs/1003.4369, 2010.

7. Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Dynamic logic of propo-
sitional assignments: A well-behaved variant of PDL. In 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA,
June 25-28, 2013, pages 143–152, 2013.

8. Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook
of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier
Science Inc., New York, NY, USA, 2006.

9. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001. Cambridge Books Online.

10. Piero A. Bonatti. On the undecidability of description and dynamic logics with
recursion and counting. In IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003,
pages 331–336, 2003.

11. Jon Haël Brenas, Rachid Echahed, and Martin Strecker. On the closure of descrip-
tion logics under substitutions.

12. Jon Haël Brenas, Rachid Echahed, and Martin Strecker. A hoare-like calculus
using the SROIQ σ logic on transformations of graphs. In Theoretical Computer
Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome,
Italy, September 1-3, 2014. Proceedings, pages 164–178, 2014.

13. David Fernández Duque, Ángel Nepomuceno-Fernández, Enrique Sarrión-Morillo,
Fernando Soler-Toscano, and Fernando R. Velázquez-Quesada. Forgetting complex
propositions. CoRR, abs/1507.01111, 2015.

14. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.

15. David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

16. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

17. Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic. Inf.
Comput., 93(2):263–332, 1991.

18. Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.
19. Christopher M. Poskitt and Detlef Plump. Verifying monadic second-order proper-

ties of graph programs. In Graph Transformation - 7th International Conference,
ICGT 2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014. Proceedings,
pages 33–48, 2014.

20. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

21. Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Proceedings of the
First International Joint Conference on Automated Reasoning, IJCAR ’01, pages
76–91, London, UK, UK, 2001. Springer-Verlag.

22. K. Segerberg. A completeness theorem in the modal logic of programs. In Universal
algebra and applications, pages 31–46. PWN-Polish Scientific Publishers, 1982.

23. Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld P. Kooi. Dynamic
epistemic logic and knowledge puzzles. In Conceptual Structures: Knowledge Ar-
chitectures for Smart Applications, 15th International Conference on Conceptual
Structures, ICCS 2007, Sheffield, UK, July 22-27, 2007, Proceedings, pages 45–58,
2007.

15

Appendix

In these appendices, we will report the proofs of the soundness (in Sect. 6.1)
and completeness (in Sect. 6.2) theorems. We also prove (in Sect. 6.3) that the
validity problem is decidable and (in Sect. 6.4) that the rules introduced in
Sect. 2 are correct.

We will need a few more definitions in order to shorten a few expressions.

Definition 14. We say that, given two sets of formulae, S1 and S2, S1 |= S2 if
∀φ ∈ S2, (

∧
ψ∈S1 ψ) ⇒ φ is valid. A set of formulae S is said to have a model

M = (M,R,χ, V) if, for every φ ∈ S, there exists an element m of M such that
m |= φ. In order to clarify which model is being used, we may write M,m ` A
instead of just m ` A.

6.1 Soundness

Theorem 2 (Soundness) . Let A be a C2PDL formula, if ` A then � A.

The proof is a straightforward induction on `:

(Bool) Every node of the model M satisfies the boolean tautology A. Hence,
M � A.

(�) Let m be a node of the modelM then:
– Either ∃m′ such that (m,m′) ∈ R(α) and m′ ∈ V (A ∧ ¬B) and thus
m ∈ V (〈α〉(A ∧ ¬B)),

– or ∀m′.(m,m′) 6∈ R(α) or m′ ∈ V (¬A ∨ B). Then either ∃m′′ such that
(m,m′′) ∈ R(α) and m′′ ∈ V (¬A) and thus m ∈ V (〈α〉¬A),

– or ∀m′.(m,m′) 6∈ R(α) or m′ ∈ V (B) and then m ∈ V ([α]B).
In all possible cases, m ∈ V (〈α〉(A ∧ ¬B) ∨ 〈α〉¬A ∨ [α]B)). Thus m ∈
V ([α](A⇒ B)⇒ ([α]A⇒ [α]B)).

(;) Let m be a node of the modelM then:
– Either ∃m′,m′′ such that (m,m′) ∈ R(α) and (m′,m′′) ∈ R(β) and
m′′ ∈ V (A), that is m ∈ V (〈α〉〈β〉A), and thus ∃m′′ such that (m,m′′) ∈
R(α;β) and m′′ ∈ V (A) that is m ∈ V (〈α;β〉A),

– or ∀m′,m′′, (m,m′) 6∈ R(α) or (m′,m′′) 6∈ R(β) or m′′ 6∈ V (A), that is
m ∈ V ([α][β]¬A), and thus ∀m′′.(m,m′′) 6∈ R(α;β) or m′′ 6∈ V (A) that
is m ∈ V ([α;β]¬A).

In all possible cases, m ∈ V ((〈α〉〈β〉A ∧ 〈α;β〉A) ∨ ([α][β]¬A ∧ [α;β]¬A)).
Thus m ∈ V (〈α〉〈β〉A⇔ 〈α;β〉A).

(∪) Let m be a node of the modelM then:
– Either ∃m′ such that (m,m′) ∈ R(α) and m′ ∈ V (A), that is m ∈
V (〈α〉A) and m ∈ V (〈α〉A ∨ 〈β〉A), and thus ∃m′ such that (m,m′) ∈
R(α ∪ β) and m′ ∈ V (A), that is m ∈ V (〈α ∪ β〉A),

– or ∃m′ such that (m,m′) ∈ R(β) and m′ ∈ V (A), that is m ∈ V (〈β〉A)
and m ∈ V (〈α〉A ∨ 〈β〉A), and thus ∃m′ such that (m,m′) ∈ R(α ∪ β)
and m′ ∈ V (A), that is m ∈ V (〈α ∪ β〉A),

16

– or ∀m′, either (m,m′) 6∈ R(α) and (m,m′) 6∈ R(β) or m′ 6∈ V (A), that is
m ∈ V ([α]¬A∧ [β]¬A), and thus ∀m′, (m,m′) 6∈ R(α∪β) or m′ 6∈ V (A)
that is m ∈ V ([α ∪ β]¬A).

In all possible cases, m ∈ V (((〈α〉A ∨ 〈β〉A) ∧ 〈α ∪ β〉A) ∨ ([α]¬A ∧ [β]¬A ∧
[α ∪ β]¬A)). Thus m ∈ V (〈α ∪ β〉A⇔ 〈α〉A ∨ 〈β〉A)

(?) Let m be a node of the modelM then:
– Either m ∈ V (A) and m ∈ V (B), that is ∃m′ = m such that (m,m′) ∈
R(A?) andm′ ∈ V (B) and thusm ∈ V (〈A?〉B), and thenm ∈ V (A∧B),

– or m 6∈ V (A) or m 6∈ V (B), that is ∀m′.(m,m′) 6∈ R(A?) or m′ 6∈ V (B)
and thus m ∈ [A?]¬B, and then m ∈ V (¬A ∨ ¬B)

In all possible cases, m ∈ V ((〈A?〉B∧A∧B)∨ ([A?]¬B∧ (¬A∨¬B))). Thus
m ∈ V (〈A?〉B ⇔ A ∧B)

(*) Let m be a node of the modelM then:
– Either ∃k,m′ such that (m,m′) ∈ R(αk) and m′ ∈ V (A), that is m ∈
V (〈α∗〉A), and then either k = 0 thus m ∈ V (A) or k ≥ 1 and ∃m′′ such
that (m,m′′) ∈ R(α) and (m′′,m′) ∈ R(αk−1) thus m ∈ V (〈α〉〈α∗〉A),

– or ∀k, ∀m′, (m,m′) 6∈ R(αk) or m′ 6∈ V (A), that is m ∈ V ([α∗]¬A). In
particular, m 6∈ V (A) and ∀m′′, either (m,m′′) 6∈ R(α) or ∀k′, ∀m(3),
(m′′,m(3)) 6∈ R(αk) or m(3) 6∈ V (A), that is m ∈ V (¬A ∧ [α][α∗]¬A).

In all possible cases, m ∈ V ((〈α∗〉A ∧ (A ∨ 〈α〉〈α∗〉A) ∨ ([α∗]¬A ∧ ¬A ∧
[α][α∗]¬A)). Thus m ∈ V (〈α∗〉A⇔ A ∨ 〈α〉〈α∗〉A)

(-) Let m be a node of the modelM then:
– Either m ∈ V (A) and then ∀m′, ((m,m′) 6∈ R(α) or ∃m′′ = m. such that

(m′,m′′) ∈ V (A)). Thus m ∈ V ([α]〈α−〉A),
– or m 6∈ V (A) and thus m ∈ V (¬A).

In all cases, m ∈ V ([α]〈α−〉A ∨ ¬A) thus m ∈ V (A⇒ [α]〈α−〉A).
(Σ1) Let m be a node of the modelM, by definition of νΣ , (m,χ(c)) ∈ R(νΣ)

thus m ∈ V (〈νΣ〉c)
(Σ2) Let m be a node of the modelM then:

– either χ(c) 6∈ V (A) and thus m ∈ V (〈νΣ〉(c ∧ ¬A)) but then ∀m′′. m′′ 6∈
V (c) = {χ(c)} or m′′ 6∈ V (A) thus m ∈ V ([νΣ](¬c ∨ ¬A). Thus m ∈
V ([νΣ](¬c ∨ ¬A) ∧ 〈νΣ〉(c ∧ ¬A)),

– or χ(c) ∈ V (A) and thus ∀m′,m′ 6∈ V (c) or m′ ∈ V (A) thus m ∈
V ([νΣ](¬c∨A). But then ∃m′′ = χ(c) such that m′′ ∈ V (c∧A) and thus
m ∈ V (〈νΣ〉(c ∧A)) thus m ∈ V ([νΣ](¬c ∨A) ∧ 〈νΣ〉(c ∧A)).

In all possible cases, m ∈ V (([νΣ](¬c∨¬A)∧〈νΣ〉(c∧¬A))∧ ([νΣ](¬c∨A)∧
〈νΣ〉(c ∧A))) that is m ∈ V (〈νΣ〉(c ∧A)⇔ [νΣ](c⇒ A))

(νS1) Let m be a node of the modelM, S be a subset of Σ and c, d be elements
of S. Then:
– Either m ∈ V (c) = {χ(c)} and, as (χ(c), χ(d)) ∈ χ(S)2, (m,χ(d)) ∈
R(νS). Moreover as χ(d) ∈ V (d), m ∈ V (〈νS〉d) and thus m ∈ V (¬c ∨
〈νS〉d),

– or m 6∈ V (c) and thus m ∈ V (¬c ∨ 〈νS〉d).
In all possible cases, m ∈ V (¬c ∨ 〈νS〉d) that is m ∈ V (c⇒ 〈νS〉d)

(νS2) Let m be a node of the model M, S be a subset of Σ and c, d be such
that {c, d} 6⊆ S. Then:

17

– Either c 6∈ S and then:
• Either m ∈ V (c) = {χ(c)} which, as ∀m′ (χ(c),m′) 6∈ χ(S)2, means
m ∈ V ([νS]¬d) thus m ∈ V (¬c ∨ [νS]¬d),

• or m 6∈ V (c) thus m ∈ V (¬c ∨ [νS]¬d),
– or c ∈ S and d 6∈ S and then:
• Eitherm ∈ V (c) = {χ(c)} which, as (χ(c), χ(d)) 6∈ χ(S)2, ∀m′.(m,m′) 6∈
R(νS) or m′ 6∈ V (d) thus m ∈ V (¬c ∨ [νS]¬d),

• or m 6∈ V (c) and thus m ∈ V (¬c ∨ [νS]¬d).
In all possible cases, m ∈ V (¬c ∨ [νS]¬d) that is m ∈ V (c⇒ [νS]¬d)

(νS3) Let m be a node of the modelM then:
– Either ∃m′,m′′ such that (m,m′) ∈ R(νS), (m′,m′′) ∈ R(νS) and m′′ ∈
V (A), that ism ∈ V (〈νS〉〈νS〉A), and then, as (m,m′′) ∈ χ(S)2, (m,m′′) ∈
R(νS) and thus m ∈ V (〈νS〉A),

– or ∀m′,m′′. (m,m′) 6∈ R(νS) or (m′,m′′) 6∈ R(νS) or m′′ 6∈ V (A). But
then, ∀m′. (m,m′) 6∈ R(νS) or ∀m′′. (m′,m′′) 6∈ R(νS) or m′′ 6∈ V (A),
that is m ∈ V ([νS][νS]¬A).

In all possible cases,m ∈ V ([νS][νS]¬A∨〈νS〉A) that ism ∈ V (〈νS〉〈νS〉A⇒
〈νS〉A)

(νS4) Let m be a node of the modelM then:
– Either m ∈ V (A) and then:
• either m ∈ χ(S) and ∀m′ such that (m,m′) ∈ R(νS) then m′ ∈
χ(S) and thus (m′,m) ∈ R(νS) thus ∀m′. (m,m′) 6∈ R(νS) or
∃m′′ = m such that (m′,m′′) ∈ R(νS) and m′′ ∈ V (A), that is
m ∈ V ([νS]〈νS〉A),

• orm 6∈ χ(S) and then ∀m′. (m,m′) 6∈ R(νS), that ism ∈ V ([νS]〈νS〉A)
– or m 6∈ V (A) and thus m ∈ V (¬A).

In all possible cases, m ∈ V (¬A∨ [νS]〈νS〉A) that is m ∈ V (A⇒ [νS]〈νS〉A)
(νΣ1) Let m be a node of the modelM then:

– Either m ∈ V (A) and then ∃m′ = m such that (m,m′) ∈ R(νΣ) and
m′ ∈ V (A) thus m ∈ V (〈νΣ〉A),

– or m 6∈ V (A) and then m ∈ V (¬A)
In all possible cases, m ∈ V (¬A ∨ 〈νΣ〉A) that is m ∈ V (A⇒ 〈νΣ〉A).

(νΣ2) Let m be a node of the modelM then:
– Either m ∈ V (〈α〉A) and then ∃m′ such that (m,m′) ∈ R(α) and m′ ∈
V (A) but then (m,m′) ∈ R(νΣ) that is m ∈ V (〈νΣ〉A),

– or m 6∈ V (〈α〉A) and then m ∈ V ([α]¬A)
In all possible cases, m ∈ V ([α]¬A ∨ 〈νΣ〉A) that is m ∈ V (〈α〉A⇒ 〈νΣ〉A)

(Σ21) Let m be a node of the modelM, φ ∈ Φ0 then:
– Either m ∈ V (c) = {χ(c)} and then as V (φ) ⊆ χ(Σ1) and χ(Σ1) ∩
χ(Σ2) = ∅, m 6∈ V (φ) and thus m ∈ V (¬φ),

– or m 6∈ V (c) and thus m ∈ V (¬c).
In all possible cases, m ∈ V (¬c ∨ ¬φ) that is m ∈ V (c⇒ ¬φ)

(Σ22) Let m be a node of the modelM, α ∈ Π0 then:
– Either m ∈ V (c) and then as R(α) ⊆ χ(Σ1)

2 and χ(Σ1) ∩ χ(Σ2) = ∅,
∀m′, (m,m′) 6∈ R(α) and (m′,m) 6∈ R(α) thus m ∈ V ([α]⊥ ∧ [α−]⊥),

– or m 6∈ V (c) and thus m ∈ V (¬c).

18

In all possible cases, m ∈ V (¬c ∨ [α]⊥ ∧ [α−]⊥) that is m ∈ V (c ⇒ [α]⊥ ∧
[α−]⊥)

(MP) Assume ` A and ` A ⇒ B, then ∀m, m ∈ V (A) and m ∈ V (¬A ∨ B)
thus m ∈ V (B). That is ` B.

(Ind) Assume ` [γ][αk]A, for all k〈ω, then ∀m,m ∈ V ([γ][αk]A, for all k, that is
∀m′ such that (m,m′) ∈ R(γ), m′ ∈ V ([αk]A) for all k. As ∀m′′, (m′,m′′) ∈
R(αk) for some k or (m′,m′′) 6∈

⋃
k R(α

k) = R(α∗), that is (m′,m′′) 6∈ R(α∗)
or m′′ ∈ V (A). Thus m′ ∈ V ([α∗]A) and thus m ∈ V ([γ][α∗]A). That is
` [γ][α∗]A

(Cov) Assume ` [γ]¬c, for all c ∈ Σ, then ∀m, m ∈ V ([γ]¬c). Thus ∀m′,
(m,m′) 6∈ R(γ) or m′ 6∈ V (c) for all c. But, as χ(Σ) = M , ∃c′ such that
m′ = χ(c′) Thus ∀m′, (m,m′) 6∈ R(γ). Thus m ∈ V ([γ]⊥). That is ` [γ]⊥.

(Nec) Assume ` A, then ∀m, m ∈ V (A), then ∀m′,m′′, (m′,m′′) 6∈ R(νΣ) or
m′′ ∈ V (A), thus m′ ∈ V ([νΣ]A). That is ` [νΣ]A

6.2 Completeness

Theorem 3 (Completeness) . Let A be a C2PDL formula, if � A then ` A.

This proof is much more involved and requires several definitions and lem-
mata.

Definition 15. A logic (over DS) is any set of C2PDL formulae L such that:

– L contains all axioms of DS
– L is closed under (MP), (Ind), (Cov) and (Nec).

Definition 16. Let L be a logic, an L-theory is any set T ⊆ Φ such that:

– L ⊆ T
– T is closed under (MP), (Ind) and (Cov).

Definition 17. A logic L (resp. a theory T) is consistent if ⊥ 6∈ L (resp. ⊥ 6∈
T).

Definition 18. A formula A is said to be closed if ∃B such that ` A↔ 〈νΣ〉B.

Definition 19. A logic L (resp. a theory T) is maximal if ∀A ∈ Φ such that A
is closed, either A 6∈ L or A ∈ L (resp. ∀A ∈ Φ, either A 6∈ T or A ∈ T).

Definition 20. By log(Γ,A) (resp. th(Γ,A)), we denote the least logic (resp.
theory) containing Γ ∪ {A}.

Lemma 4 (Deduction lemma for theories). Let T be an L-theory, A,B ∈
Φ, then A⇒ B ∈ T iff B ∈ th(T,A).

Proof. ⇐ Assume B ∈ th(T,A) and let T0 be {D|A⇒ D ∈ T}. As A⇒ A ∈ T ,
A ∈ T0. Let’s prove that T0 is an L-theory:
– ∀D ∈ T , ¬A ∨D ∈ T and thus L ⊆ T ⊆ T0.

19

– Assume D0 ∈ T0 and D0 ⇒ D1 ∈ T0. As A ∨ ¬A ∈ T , (A ∧ (D ∨
¬D)) ∨ ¬A ∈ T thus (A ∧ ¬D) ∨ ¬A ∨ (A ∧ D) ∈ T that is (A ⇒
D) ⇒ (A ⇒ (A ∧ D)) ∈ T . By replacing D with D0, we obtain (A ⇒
D0)⇒ (A⇒ (A ∧D0)) ∈ T and, as A⇒ D0 ∈ T and T is closed under
(MP), A ⇒ (A ∧ D0) ∈ T . By replacing D with D0 ⇒ D1, we obtain
(A⇒ (D0 ⇒ D1))⇒ (A⇒ (A∧(D0 ⇒ D1))) ∈ T , A⇒ (D0 ⇒ D1) ∈ T
and, as T is closed under (MP), A ⇒ (A ∧ (D0 ⇒ D1)) ∈ T . Similarly,
(A∧¬D1)∨¬A∨¬D1 ∈ T thus (A∧¬D1∧ (D0∨¬D0))∨¬A∨¬D1 ∈ T
thus (A∧ (¬A∨ (D0 ∧¬D1)))∨ (A∧ (¬A∨¬D0))∨¬A∨¬D1 ∈ T that
is (A⇒ (A∧ (D0 ⇒ D1)))⇒ ((A⇒ (A∧D0))⇒ (A∧D1)) ∈ T . Then,
as (A ⇒ (A ∧ (D0 ⇒ D1))) ⇒ ((A ⇒ (A ∧ D0)) ⇒ (A ∧ D1)) ∈ T ,
A⇒ (A∧ (D0 ⇒ D1)) ∈ T and T is closed by (MP), (A⇒ (A∧D0))⇒
(A∧D1) ∈ T . As (A⇒ (A∧D0))⇒ (A∧D1) ∈ T , (A⇒ (A∧D0)) ∈ T
and T is closed under (MP), A∧D1 ∈ T thus D1 ∈ T0 thus T0 is stable
by (MP).

– Assume ∀k〈ω, [γ][αk]D ∈ T0, then ∀k〈ω,A ⇒ [γ][αk]D ∈ T and thus
∀k〈ω, [A?; γ][αk]D ∈ T . But, as T is stable by (Ind), [A?; γ][α∗]D ∈ T
and thus A ⇒ [γ][α∗]D ∈ T that is [γ][α∗]D ∈ T0. Thus T0 is stable by
(Ind).

– Assume ∀c ∈ Σ, [γ]¬c ∈ T0, then ∀c ∈ Σ,A ⇒ [γ]¬c ∈ T and thus
∀c ∈ Σ, [A?; γ]¬c ∈ T . But, as T is stable by (Cov), [A?; γ]⊥ ∈ T and
thus A⇒ [γ]⊥ ∈ T that is [γ]⊥ ∈ T0. Thus T0 is stable by (Cov).

Thus T0 is an L-theory. As th(T,A) is the smallest theory containing T ∪A
and T0 contains T ∪A, th(T,A) ⊆ T0 but, as B ∈ th(T,A) then B ∈ T0 that
is A⇒ B ∈ T .

⇒ Assume A ⇒ B ∈ T then, as th(T,A) is stable by (MP) and A ∈ th(T,A),
B ∈ th(T,A).

Lemma 5. If ∀B, (B ∈ Γ ∪ A implies [νΣ]B ∈ th(Γ,A)), then th(Γ,A) is a
logic.

Proof. As th(Γ,A) is a theory, L ⊆ th(Γ,A) and thus all axioms of DS are
contained in th(Γ,A) and th(Γ,A) is closed under (MP), (Cov) and (Ind).

Assume C ∈ th(Γ,A). We prove by induction that [νΣ]C ∈ th(Γ,A):

– If C ∈ Gamma ∪A, then [νΣ]C ∈ th(Γ,A).
– If C results from the application of (MP) on D ∈ th(Γ,A) and D ⇒ C ∈
th(Γ,A), from the induction hypothesis, [νΣ]D ∈ th(Γ,A) and [νΣ]D ⇒ C ∈
th(Γ,A). But th(Γ,A) contains the axiom � where A = D, B = C and α =
νS , that is [νΣ](D ⇒ C) ⇒ ([νΣ]D ⇒ [νΣ]C) ∈ th(Γ,A). Then, as th(Γ,A)
is stable under (MP) with A = [νΣ](D ⇒ C) and B = ([νΣ]D ⇒ [νΣ]C),
[νΣ]D ⇒ [νΣ]C ∈ th(Γ,A). Then, as th(Γ,A) is stable under (MP) with
A = [νΣ]D and B = [νΣ]C, [νΣ]C ∈ th(Γ,A).

– If C results from the application of (Ind) on ∀k〈ω.[γ][αk]D ∈ th(Γ,A) then
C = [γ][α∗]D. From the induction hypothesis, [νΣ ; γ][αk]D ∈ th(Γ,A). Then,
as th(Γ,A) is stable under (Ind), [νΣ ; γ][α∗]D ∈ th(Γ,A) and thus [νΣ]C ∈
th(Γ,A).

20

– If C results from the application of (Cov) on ∀c ∈ Σ.[γ]¬c ∈ th(Γ,A) then
C = [γ]⊥. From the induction hypothesis, ∀c ∈ Σ.[νΣ ; γ]¬c ∈ th(Γ,A).
Then, as th(Γ,A) is stable under (Cov), [νΣ ; γ]⊥ ∈ th(Γ,A) and thus [νΣ]C ∈
th(Γ,A).

Thus th(Γ,A) is stable under (Nec), thus th(Γ,A) is a logic.

Lemma 6. Let L be a logic and A be a closed formula, th(L,A) = log(L,A)

Proof. ⊆ Let B ∈ L ∪ A, if B ∈ L by the stability of L under (MP), [νΣ]B ∈
L ⊆ th(L,A).
Otherwise, B = A then, as A is closed, ∃C such that B ↔ 〈νΣ〉C ∈ L
and thus B ⇒ 〈νΣ〉C ∈ L ⊆ th(L,A). Then, as th(L,A) is stable under
(MP), B ∈ th(L,A) and B ⇒ 〈νΣ〉C inth(L,A), 〈νΣ〉C ∈ th(L,A). Then,
as th(L,A) contains (νS4) with S = Σ and A = 〈νΣ〉C, it yields 〈νΣ〉C ⇒
[νΣ]〈νΣ〉〈νΣ〉C and thus [νΣ]〈νΣ〉〈νΣ〉C ∈ th(Γ,A). Then, as th(L,A) con-
tains (νS3) with S = Σ and A = C, it yields 〈νΣ〉〈νΣ〉C ⇒ 〈νΣ〉C ∈
th(Γ,A). Thus [νΣ]〈νΣ〉C ∈ th(Γ,A) and thus [νΣ]B ∈ th(Γ,A). Thus, from
Lemma 5, th(L,A) is a logic containing L ∪A. Thus log(L,A) ⊆ th(L,A).

⊇ By definition, a logic is a theory and log(L,A) contains L∪A thus th(L,A) ⊆
log(L,A).

Lemma 7 (Deduction lemma for logics). Let L be a logic and A be a closed
formula. Then A⇒ B ∈ L iff B ∈ log(L,A)

Proof. As L is an L-theory, from Lemma 4, A ⇒ B ∈ L iff B ∈ th(L,A). But,
from Lemma 6, log(L,A) = th(L,A) and thus A⇒ B ∈ L iff B ∈ log(L,A)

Lemma 8 (Separation theorem for theories). Let T be a theory, A 6∈ T .
Then there exists a maximal theory T ∗ such that T ⊆ T ∗ and A 6∈ T ∗.

Proof. Let T0 = th(T,¬A). As A 6∈ T , ¬A ⇒ ⊥ 6∈ T . Then, from Lemma 4,
⊥ 6∈ T0 and thus T0 is consistent. Let B0, B1, . . . , be an enumeration of Φ.
By induction on n, we construct a chain T0 ⊆ T1 ⊆ . . . of consistent theories.
Their union will yield the required T ∗. The induction hypothesis is that Tn is a
consistent theory. It is the case for T0.

– If th(Tn, Bn) is consistent, then Tn+1 = th(Tn, Bn) is consistent.
– If th(Tn, Bn) is not consistent, then ⊥ ∈ th(Tn, Bn) and, from Lemma 4,
Bn ⇒ ⊥ ∈ Tn and thus 6 Bn ∈ Tn. Then:
• Either Bn 6= [γ]0 and Bn 6= [γ][α∗]A and then Tn+1 = Tn is consistent,
• or Bn = [γ]0. Let Bn,c = [γ]¬c, if ∀c ∈ Σ, Bn,c ∈ Tn then, because Tn is

stable by (Cov), and ¬Bn ∈ Tn then Tn is inconsistent which, due to the
induction hypothesis, is not the case. Thus ∃c ∈ Σ such that Bn,c 6∈ Tn.
Then, from Lemma 4, Tn+1 = th(Tn,¬Bn,c) is consistent,
• or Bn = [γ][α∗]A. Let Bn,k = [γ][αk]A, if ∀k〈ω, Bn,k ∈ Tn then, because
Tn is stable by (Ind), and ¬Bn ∈ Tn Tn is inconsistent which, due to the
induction hypothesis, is not the case. Thus ∃k〈ω such that Bn,k 6∈ Tn.
Then, from Lemma 4, Tn+1 = th(Tn,¬Bn,k) is consistent.

21

Let T ∗ =
⋃
{Tn|n〈ω}. We have:

– L ⊆ T ⊆ T0 ⊆ T ∗
– Let C0, C1 be such that C0 ∈ T ∗ and C0 ⇒ C1 ∈ T ∗, then ∃k0, k1〈ω such

that C0 ∈ Tk0 and C0 ⇒ C1 ∈ Tk1 that is C0 ∈ Tmax(k0,k1) and C0 ⇒ C1 ∈
Tmax(k0,k1). As Tmax(k0,k1) is closed under (MP), C1 ∈ Tmax(k0,k1) and thus
C1 ∈ T ∗. Then T ∗ is closed under (MP).

– As ∀k, ¬A ∈ T0 ⊆ Tk and Tk is consistent, A 6∈ T ∗
– Assume ⊥ ∈ T ∗ then, as ⊥ ⇒ A is a boolean tautology, both ⊥ ∈ T ∗ and
⊥ ⇒ A ∈ T ∗. As T ∗ is closed under (MP), then A ∈ T ∗. As it is not the
case, T ∗ is consistent.

– By construction, ∀B ∈ Φ either B ∈ T ∗ or ¬B ∈ T ∗
– Let Dc = [γ]¬c and D = [γ]0 = Bn. Suppose ∀c ∈ Σ.Dc ∈ T ∗ and D 6∈ T ∗

then, by construction, for some c0 ∈ Σ, ¬Bn,c0 ∈ Tn+1 ⊆ T ∗ but then
¬Bn,c0 ∈ T ∗ and Bn,c0 ∈ T ∗ which is impossible as T ∗ is consistent. Thus
T ∗ is closed under (Cov).

– Let Dk = [γ][αk]A and D = [γ][α∗]A = Bn. Suppose ∀k〈ω.Dk ∈ T ∗ and
D 6∈ T ∗ then, by construction, for some k0 ∈ Σ, ¬Bn,k0 ∈ Tn+1 ⊆ T ∗ but
then ¬Bn,k0 ∈ T ∗ and Bn,k0 ∈ T ∗ which is impossible as T ∗ is consistent.
Thus T ∗ is closed under (Ind).

Thus T ∗ is a maximal theory and T ⊆ T ∗ and A 6∈ T ∗.

Definition 21. LT = {A|[νΣ]A ∈ T}.

Lemma 9. If T is a maximal L-theory, then LT is a maximal logic and LT is
the greatest logic included in T .

Proof. – Let A be an axiom of DS then A ∈ L as L is a logic. As L is closed
under (MP), [νΣ]A ∈ L. As L ⊆ T , [νΣ]A ∈ T and thus A ∈ LT

– Assume C ∈ LT and C ⇒ D ∈ LT then [νΣ]C ∈ T and [νΣ](C ⇒ D) ∈ T . As
L ⊆ T and L contains (�) and T is closed under (MP), [νΣ]C ⇒ [νΣ]D ∈ T
and then, by (MP), [νΣ]D ∈ T and thus D ∈ LT . Thus LT is closed under
(MP).

– Assume ∀k〈ω.[γ][αk]A ∈ LT , then ∀k〈ω.[νΣ ; γ][αk]A ∈ T . As T is closed
under (Ind), [νΣ ; γ][α∗]A ∈ T and thus [γ][αk]A ∈ LT . Thus LT is closed
under (Ind).

– Assume ∀c ∈ Σ.[γ]¬c ∈ LT , then ∀c ∈ Σ.[νΣ ; γ]¬c ∈ T . As T is closed under
(Cov), [νΣ ; γ]⊥ ∈ T and thus [γ]⊥ ∈ LT . Thus LT is closed under (Cov).

– Assume C ∈ LT then [νΣ]C ∈ T . Assume 〈νΣ〉[νΣ]C ∈ T then as L ⊆ T and
L contains (νS3) with S = Σ and A = ¬C, [νΣ]C ⇒ [νΣ][νΣ]C ∈ T . As T is
closed under (MP), [νΣ][νΣ]C ∈ T and thus [νΣ]C ∈ T . Thus LT is closed
under (Nec).

– Let C be a closed formula. As T is maximal:
• either C ∈ T that is existsB.〈νΣ〉B ∈ T . As L ⊆ T and L contains

(νS4) for S = Σ and A = 〈νΣ〉B, 〈νΣ〉B ⇒ [νΣ]〈νΣ〉〈νΣ〉B ∈ T and
then, by (MP), [νΣ]〈νΣ〉〈νΣ〉B ∈ T . As L ⊆ T and L contains (νS3)

22

for S = Σ and A = B and L is closed under (Nec), [νΣ]〈νΣ〉〈νΣ〉B ⇒
[νΣ]〈νΣ〉B ∈ T and then, by (MP), [νΣ]〈νΣ〉B ∈ T and thus 〈νΣ〉B ∈ T
that is C ∈ LT ,

• or ¬C ∈ T that is ∃B.[νΣ]¬B ∈ T and thus ¬B ∈ LT . But, as LT is
closed under (Nec), [νΣ]¬B ∈ LT and thus ¬C ∈ LT .

That is LT is maximal.
– Let L′ be a logic such that L′ ⊆ T . Let A′ ∈ L′. As L′ is closed under (Nec),

[νΣ]A
′ ∈ L′ and thus [νΣ]A′ ∈ T that is A′ ∈ LT . Thus ∀L′ ⊆ T, L′ ⊆ LT .

– Let C ∈ LT then [νΣ]C ∈ T . As L ⊆ T and L contains (νΣ1) with A = ¬C,
¬C ⇒ 〈νΣ〉¬C ∈ T or, written in another way, [νΣ]C ⇒ C ∈ T . As T is
closed under (MP), C ∈ T . Thus LT ⊆ T .
Thus LT is a maximal logic and it is the greatest included in T .

Lemma 10 (Separation lemma for logics). Let L be a logic, A 6∈ L. Then
there exists a maximal logic L∗ such that L ⊆ L∗ and A 6∈ L∗.

Proof. L is an L-theory thus, from Lemma 8, there exists a maximal theory T ∗
such that L ⊆ T ∗ and A 6∈ T ∗. Then, from Lemma 9, LT∗ is a maximal logic
such that LT∗ ⊆ T ∗. Assume A ∈ LT∗ then A ∈ T ∗ which is not the case. Thus
LT∗ is a maximal L-logic, that is L ⊆ LT∗ , and A 6∈ LT∗ .

Lemma 11 (Lindenbaum lemma). If L is a consistent logic (resp. T is a
consistent theory) then there exists a maximal consistent logic L∗ (resp. a max-
imal consistent theory T ∗) such that L ⊆ L∗ (resp. T ⊆ T ∗).

Proof. It is a direct consequence of the Separation lemmata with A = ⊥.

Lemma 12. If L is a consistent logic, then L has a model.

Proof. From Lemma 11, there exists a maximal consistent logic L∗ such that
L ⊆ L∗. Let’s define c ∼ d = 〈νΣ〉(c ∧ d) ∈ L∗.

– As L contains (Σ1), so does L∗ and thus 〈νΣ〉(c ∧ c) ∈ L∗. Thus c ∼ c that
is ∼ is reflexive.

– Assume c ∼ d. As ∧ is commutative, 〈νΣ〉(c ∧ d) ↔ 〈νΣ〉(d ∧ c) ∈ L∗ and
thus, by (MP), d ∼ c that is ∼ is symmetric.

– Assume c ∼ d and d ∼ e. Then, as L∗ contains (Σ2) and is closed under
(MP), [νΣ](d ⇒ e) ∈ L∗ and [νΣ](c ⇒ d) ∈ L∗. Then, as [νΣ](c ⇒ d) ⇒
([νΣ](d ⇒ e) ⇒ ([νΣ](c ⇒ d) ∧ [νΣ](d ⇒ e))) is a boolean tautology and
thus in L∗, by applying (MP) twice, [νΣ](c ⇒ d) ∧ [νΣ](d ⇒ e) ∈ L∗. But,
as ([νΣ](c ⇒ d) ∧ [νΣ](d ⇒ e)) ⇒ [νΣ]((c ⇒ d) ∧ (d ⇒ e)) is a boolean
tautology and thus in L∗, by applying (MP), [νΣ]((c⇒ d) ∧ (d⇒ e)) ∈ L∗
and thus [νΣ](c⇒ e) ∈ L∗. Then, from (Σ2) using (MP), 〈νΣ〉(c ∧ e) ∈ L∗
and thus c ∼ e that is ∼ is transitive.

Thus ∼ is an equivalence relation. Let [c] = {d|c ∼ d}, we construct M∼ = Σ/∼,
χ∼(c) = [c], V∼(A) = {[c]|〈νΣ〉(c ∧ A) ∈ L∗} and R∗∼(α) = {([c], [d])|〈νΣ〉(c ∧
〈α〉d) ∈ L∗}. Let’s show thatM = (M∼, χ∼, V∼, R∼) is a model.

23

– χ∼ is obviously onto.
– Assume m ∈ χ∼(Σ2)∩χ∼(Σ1) that is ∃c2 ∈ Σ2, c1 ∈ Σ1 such that [c2] = [c1]

that is 〈νΣ〉c2 ∧ c1 ∈ L∗. As Σ0 ∪ Σ1 = ∅, c0 6∈ Σ1 and thus, from (ΣS2),
c0 ⇒ [νΣ1

]¬c1. Meanwhile, from (ΣS1), c1 ⇒ 〈νΣ〉c1. Thus 〈νΣ〉(〈νΣ1
〉c1 ∧

[νΣ]¬c1) ∈ L∗ which is false. As L∗ is consistent, χ∼(Σ2) ∩ χ∼(Σ1) = ∅.
– Let i ∈ Σ, then V∼(i) = {[c]|〈νΣ〉(c ∧ i) ∈ L∗} = {[i]} = {χ∼(i)}.
– Let φ0 ∈ Φ0, assume ∃c2 ∈ Σ2 such that [c2] ∈ V∼(φ0) then 〈νΣ〉(c2∧φ0) ∈ ∗.

As Σ21 is in L∗, c2 ⇒ ¬φ0 and thus 〈νΣ〉(¬φ0 ∧ φ0) ∈ ∗ which is impossible
as L∗ is consistent. Thus V∼(φ0) ∈ P(χ∼(Σ1)).

– • Assume [c] ∈ V∼(A) then 〈νΣ〉(c∧A) 6∈ L∗. As L∗ is maximal, [νΣ](c⇒
¬A) ∈ L∗. As (Σ2) is in L∗ so is 〈νΣ〉(c ∧ ¬A) 6∈ L∗ and thus [c] ∈
V∼(¬A). Thus V∼(A) ⊆ V∼(¬A).

• Otherwise [c] ∈ V∼(A) then 〈νΣ〉(c ∧ A) ∈ L∗. If [c] ∈ V∼(¬A), then
〈νΣ〉(c ∧ ¬A) ∈ L∗. As (Σ2) is in L∗ so is [νΣ](c ⇒ ¬A) ∈ L∗ and
thus 〈νΣ〉(A∧¬A) ∈ L∗. As L∗ is consistent, this is impossible and thus
V∼(¬A) ⊆ V∼(A).

Thus V∼(¬A) = V∼(A).
– • Assume [c] ∈ V∼(A) ∪ V∼(B) then:

∗ Either [c] ∈ V∼(A) and then 〈νΣ〉(c∧A) ∈ L∗ and thus 〈νΣ〉(c∧ (A∨
B)) ∈ L∗. Thus [c] ∈ V∼(A ∨B),

∗ or [c] ∈ V∼(B) and then 〈νΣ〉(c∧B) ∈ L∗ and thus 〈νΣ〉(c∧(A∨B)) ∈
L∗. Thus [c] ∈ V∼(A ∨B).

Thus V∼(A) ∪ V∼(B) ⊆ V∼(A ∨B)
• Otherwise [c] 6∈ V∼(A)∪V∼(B) that is [c] ∈ V∼(A) ∪ V∼(B) = (V∼(A))∩

(V∼(B). Thus [c] ∈ V∼(A) that is [c] ∈ V∼(¬A) from the previous point.
Thus 〈νΣ〉(c∧¬A) ∈ L∗. Similarly, [c] ∈ V∼(A) and thus 〈νΣ〉(c∧¬B) ∈
L∗. From (Σ2), [νΣ](c ⇒ ¬B) ∈ L∗ and thus 〈νΣ〉(c ∧ ¬(A ∨ B)) ∈ L∗.
Thus [c] ∈ V∼(¬(A ∨B)) that is [c] ∈ V∼(A ∨B) and thus [c] 6∈ V∼(A ∨
B). Thus V∼(A ∨B) ⊆ V∼(A) ∪ V∼(B)

Thus V∼(A ∨B) = V∼(A) ∨ V∼(B).
– • Assume [c] ∈ {s|∃[d] ∈ M∼.((s, [d]) ∈ R∼(α) ∧ [d] ∈ V∼(A)} then

([c], [d]) ∈ R∼(α) and [d] ∈ V∼(A). Thus 〈νΣ〉(c∧〈α〉d) ∈ L∗ and 〈νΣ〉(d∧
A) ∈ L∗. As (Σ2) in L∗, [νΣ](d⇒ A) ∈ L∗ and thus 〈νΣ〉(c∧〈α〉A) ∈ L∗
that is [c] ∈ V∼(〈α〉A). Thus {s|∃[d] ∈ M∼.((s, [d]) ∈ R∼(α) ∧ [d] ∈
V∼(A)} ⊆ V∼(〈α〉A).
• Otherwise [c] 6∈ {s|∃[d] ∈M∼.((s, [d]) ∈ R∼(α)∧ [d] ∈ V∼(A)} then ∀[d],

(([s], [d]) 6∈ R∼(α) or [d] 6∈ V∼(A)) that is ∀[d], (〈νΣ〉(c ∧ 〈α〉d) 6∈ L∗

or 〈νΣ〉(d ∧ A) 6∈ L∗). Then, by maximality of L∗, ∀[d], (¬〈νΣ〉(c ∧
〈α〉d) ∈ L∗ or ¬〈νΣ〉(d ∧ A) ∈ L∗ that is ∀[d], ([νΣ](c ⇒ [α]¬d) ∈ L∗
or [νΣ](d ⇒ ¬A) ∈ L∗. Then ∀[d], ([νΣ](c ⇒ [α](¬d ∨ ¬A)) ∈ L∗ or, by
(νΣ2) and (νS3), [νΣ ; c?;α](d⇒ ¬A)) ∈ L∗ that is [νΣ]c⇒ [α](¬c∨(d⇒
¬A)) ∈ L∗. Thus ∀[d], [νΣ ; c?;α;A?]¬d ∈ L∗. As L∗ is stable under
(Cov), [νΣ ; c?;α;A?]⊥ ∈ L∗ that is [νΣ](c ⇒ [α]¬A) ∈ L∗. By (Σ2),
〈νΣ〉(c ∧ [α]¬A) ∈ L∗ and thus [c] ∈ V∼([α]¬A) that is [c] 6∈ V∼(〈α〉A).
Thus V∼(〈α〉A) ⊆ {s|∃[d] ∈M∼.((s, [d]) ∈ R∼(α) ∧ [d] ∈ V∼(A)}.

Thus V∼(〈α〉A) = {s|∃[d] ∈M∼.((s, [d]) ∈ R∼(α) ∧ [d] ∈ V∼(A)}.

24

– Let α0 ∈ Π0, let c2 ∈ Σ2, c ∈ Σ:
• such that ([c2], [c]) ∈ R∼(α) then 〈νΣ〉(c2∧〈α0〉c) ∈ L∗. But, from (Σ22),
〈νΣ〉(c2∧ [α0]⊥) ∈ L∗ and thus, from (Σ2), [νΣ](c2 ⇒ [α0]⊥) ∈ L∗. Thus
〈νΣ〉([α0]¬c ∧ 〈α0〉c) ∈ L∗ which is impossible as L∗ is consistent.

• such that ([c], [c2]) ∈ R∼(α) then 〈νΣ〉(c∧〈α0〉c) ∈ L∗. But, from (Σ22),
〈νΣ〉(c2 ∧ [α−0]⊥) ∈ L∗ and thus, from (Σ2), [νΣ](c2 ⇒ [α−0]⊥) ∈ L∗.
Thus 〈νΣ〉(c ∧ 〈α0〉[α−0]⊥) ∈ L∗. But then, from (−), 〈νΣ〉(c ∧ ⊥) ∈ L∗
which is impossible as L∗ is consistent.

Thus ∀c0 ∈ Σ2,∀c ∈ Σ, ([c0], [c]) 6∈ R∼(α0) and ([c], [c0]) 6∈ R∼(α0). Thus
R∼(α0) ∈ P(χ∼(Σ1)).

– Let S ⊆ Σ:
• Let c0, c1 ∈ S, from (ΣS1), 〈νΣ〉(c0 ∧ 〈νS〉c1) ∈ L∗ and thus ([c0], [c1]) ∈
R∼(νS). Thus χ∼(S)2 ⊆ R∼(νS).
• Otherwise, {c0, c1} 6⊆ S and then, from (ΣS2), 〈νΣ〉(c0 ∧ [νS]¬c1) ∈ L∗.

Assume ([c0], [c1]) ∈ R∼(νS) then 〈νΣ〉(c0∧〈νS〉c1) ∈ L∗ and, from (Σ2),
[νΣ](c0 ⇒ 〈νS〉c1) ∈ L∗ and thus 〈νΣ〉(〈νS〉c1 ∧ [νS]¬c1) ∈ L∗ which is
impossible as L∗ is consistent. Thus R∼(νS) ⊆ χ∼(S)2.

Thus χ∼(S)2 = R∼(νS)
– • Let ([c], [d]) ∈ R∼(α) ∪R∼(β) then:

∗ either ([c], [d]) ∈ R∼(α) and thus 〈νΣ〉(c∧〈α〉d) ∈ L∗ and then, from
(∪); 〈νΣ〉(c ∧ 〈α ∪ β〉d) ∈ L∗ and thus ([c], [d]) ∈ R∼(α ∪ β),

∗ or ([c], [d]) ∈ R∼(β) and thus 〈νΣ〉(c ∧ 〈β〉d) ∈ L∗ and then, from
(∪); 〈νΣ〉(c ∧ 〈α ∪ β〉d) ∈ L∗ and thus ([c], [d]) ∈ R∼(α ∪ β)

Thus R∼(α) ∪R∼(β) ⊆ R∼(α ∪ β).
• Let ([c], [d]) ∈ R∼(α ∪ β) then 〈νΣ〉(c ∧ 〈α ∪ β〉d) ∈ L∗. Then, from (∪),
〈νΣ〉(c ∧ (〈α〉d ∨ 〈β〉d)) ∈ L∗. Then:
∗ either 〈νΣ〉(c ∧ 〈α〉d) ∈ L∗ and then ([c], [d]) ∈ R∼(α),
∗ or 〈νΣ〉(c ∧ 〈β〉d) ∈ L∗ and then ([c], [d]) ∈ R∼(β),
∗ or 〈νΣ〉(c∧[α]¬d∧[β]¬d) ∈ L∗ and thus, from (Σ2, [νΣ](c⇒ ([α]¬d∧
[β]¬d)) ∈ L∗. Then 〈νΣ〉((〈α〉d ∨ 〈β〉d) ∧ [α]¬d ∧ [β]¬d) ∈ L∗ which
is impossible as L∗ is consistent.

Thus R∼(α ∪ β) ⊆ R∼(α) ∪R∼(β)
Thus R∼(α ∪ β) = R∼(α) ∪R∼(β)

– • Let ([c], [d]) ∈ {(s, t)|∃[e].((s, [e]) ∈ R∼(α) and ([e], t) ∈ R∼(β))} then
〈νΣ〉(c∧〈α〉e) ∈ L∗ and 〈νΣ〉(e∧〈β〉d) ∈ L∗ that is, from (Σ2), [νΣ](e⇒
〈β〉d) ∈ L∗. Then 〈νΣ〉(c ∧ 〈α〉〈β〉d) ∈ L∗. Then, from (;), 〈νΣ〉(c ∧
〈α;β〉d) ∈ L∗ and then ([c], [d]) ∈ R∼(α;β). Thus {(s, t)|∃[e].((s, [e]) ∈
R∼(α) and ([e], t) ∈ R∼(β))} ⊆ R∼(α;β).

• Let ([c], [d]) 6∈ {(s, t)|∃[e].((s, [e]) ∈ R∼(α) and ([e], t) ∈ R∼(β))} that is
∀e. (([c], [e]) 6∈ R∼(α) or ([e], [d]) 6∈ R∼(β)). Assume 〈νΣ〉(c ∧ 〈α〉e) ∈
L∗ and 〈νΣ〉(e ∧ 〈β〉d) ∈ L∗ then ([c], [e]) ∈ R∼(α) and ([e], [d]) ∈
R∼(β) which is not the case. Thus ∀e. (〈νΣ〉(c ∧ 〈α〉e) 6∈ L∗ or 〈νΣ〉(e ∧
〈β〉d) 6∈ L∗). As L∗ is maximal, ∀e. ([νΣ](¬c ∨ [α]¬e) ∈ L∗ or [νΣ](¬e ∨
[β]¬d) ∈ L∗). Thus ∀e. ([νΣ](c ⇒ [α](〈β〉d ⇒ ¬e) ∈ L∗ or, from (νΣ2),
[νΣ ; c?;α](〈β〉d ⇒ ¬e) ∈ Then∗). Thus ∀e. [νΣ ; c?;α; (〈β〉d)?]¬e) ∈ L∗.
As L∗ is closed under (Cov), [νΣ ; c?;α; (〈β〉d)?]⊥ ∈ L∗ that is, from

25

(?) and (Σ2), [νΣ](c ⇒ [α](〈β〉d ⇒ ⊥)) ∈ L∗. Assume ([c], [d]) ∈
R∼(α;β) then 〈νΣ〉(c ∧ 〈α〉〈β〉d) ∈ L∗. Thus 〈νΣ〉([α](〈β〉d ⇒ ⊥) ∧
〈α〉〈β〉d) ∈ L∗ which is impossible as L∗ is consistent. Thus R∼(α;β) ⊆
{(s, t)|∃[e].((s, [e]) ∈ R∼(α) and ([e], t) ∈ R∼(β))}.

Thus R∼(α;β) = {(s, t)|∃[e].((s, [e]) ∈ R∼(α) and ([e], t) ∈ R∼(β))}.
– • Let ([c], [d]) ∈ {(s, t)|(t, s) ∈ R∼(α)} then 〈νΣ〉(d ∧ 〈α〉c) ∈ L∗. From

(Σ1), 〈νΣ〉c ∈ L∗. Assume 〈νΣ〉(c ∧ [α−]¬d) ∈ L∗ then, from (Σ2),
[νΣ](c ⇒ [α−]¬d) ∈ L∗ and thus 〈νΣ〉(d ∧ 〈α〉[α−]¬d) ∈ L∗. But, from
(−), 〈νΣ〉(d∧¬d) ∈ L∗ which is impossible as L∗ is consistent. Thus, as
L∗ is maximal, [νΣ](¬c∨ 〈α−〉d) ∈ L∗ that is [νΣ](c⇒ 〈α−〉d) ∈ L∗ and
thus ([c], [d]) ∈ R∼(α−). Thus {(s, t)|(t, s) ∈ R∼(α)} ⊆ R∼(α−).

• Let ([c], [d]) 6∈ {(s, t)|(t, s) ∈ R∼(α)}. If 〈νΣ〉(d ∧ 〈α〉c) ∈ L∗, ([c], [d]) ∈
{(s, t)|(t, s) ∈ R∼(α)} which is not the case thus, by maximality of L∗,
[νΣ](¬d∨[α]¬c) ∈ L∗. Assume ([c], [d]) ∈ R∼(α−), then 〈νΣ〉(c∧〈α−〉d) ∈
L∗ that is, using (Σ2), [νΣ](c ⇒ 〈α−〉d) ∈ L∗ and thus [νΣ](d ⇒
[α]〈α−〉d) ∈ L∗. Then, from (−), [νΣ](d ⇒ ¬d) ∈ L∗ that is, from
(Σ2), 〈νΣ〉(d ∧ ¬d) ∈ L∗ which is impossible as L∗ is consistent. Thus
R∼(α

−) ⊆ {(s, t)|(t, s) ∈ R∼(α)}.
Thus R∼(α−) = {(s, t)|(t, s) ∈ R∼(α)}.

– • Let ([c], [d]) ∈ R∼(α∗). Then, 〈νΣ〉(c∧〈α∗〉d) ∈ L∗. Assume ∀k. 〈νΣ〉(c∧
〈αk〉d) 6∈ L∗ then, as L∗ is maximal, ∀k. [νΣ](¬c ∧ [αk]¬d) ∈ L∗ that is
[νΣ ; c?;][α

k]¬d ∈ L∗. But L∗ is closed under (Ind) and thus [νΣ ; c?;][α∗]¬d ∈
L∗ that is [νΣ](c ⇒ [α∗]¬d) ∈ L∗ and thus 〈νΣ〉([α∗]¬d ∧ 〈α∗〉d) ∈ L∗
which is impossible as L∗ is consistent. Thus R∼(α∗) ⊆

⋃
k〈ω R∼(α

k)

• Let’s prove by induction that 〈αk〉A⇒ 〈α∗〉A ∈ L∗:
∗ From (∗), A⇒ 〈α∗〉A ∈ L∗ thus 〈α0〉A⇒ 〈α∗〉A ∈ L∗
∗ Assume 〈αk〉A⇒ 〈α∗〉A ∈ L∗, then [αk+1]¬A∨ 〈αk+1〉A ∈ L∗ being

a tautology, thus [αk+1]¬A ∨ 〈α〉〈αk〉A ∈ L∗ and then, from the
induction hypothesis, [αk+1]¬A ∨ 〈α〉〈α∗〉A ∈ L∗. But, from (∗),
〈α〉〈α∗〉A⇒ 〈α∗〉A ∈ L∗ and thus 〈αk+1〉A⇒ 〈α∗〉A ∈ L∗.

Then, assume ([c], [d]) ∈
⋃
k〈ω R∼(α

k). There exists k such that ([c], [d]) ∈
R∼(α

k) and thus 〈νΣ〉(c∧〈αk〉d) ∈ L∗ but then, as 〈αk〉A⇒ 〈α∗〉A ∈ L∗,
〈νΣ〉(c ∧ 〈α∗〉d) ∈ L∗ and thus ([c], [d]) ∈ R∼(α∗). Thus

⋃
k〈ω R∼(α

k) ⊆
R∼(α

∗).
Thus R∼(α∗) =

⋃
k〈ω R∼(α

k).
– • Let ([c], [d]) ∈ R∼(A?) then 〈νΣ〉(c ∧ 〈A?〉d) ∈ L∗. From (?), 〈νΣ〉(c ∧

A) ∈ L∗ and 〈νΣ〉(c ∧ d) ∈ L∗. Thus [c] = [d] and [c] ∈ V∼(A) thus
([c], [d]) ∈ {(s, s)|s ∈ V∼(A)}. Thus R∼(A?) ⊆ {(s, s)|s ∈ V∼(A)}

• Let ([c], [d]) ∈ {(s, s)|s ∈ V∼(A)} then [c] = [d] and [c] ∈ V∼(A) thus
〈νΣ〉(c ∧ A) ∈ L∗ and 〈νΣ〉(c ∧ d) ∈ L∗ thus 〈νΣ〉(c ∧ 〈A?〉d) ∈ L∗ and
thus ([c], [d]) ∈ R∼(A?). Thus {(s, s)|s ∈ V∼(A)} ⊆ R∼(A?).

Thus R∼(A?) ⊆ {(s, s)|s ∈ V∼(A)}.
ThusM is a model.

Let A ∈ L then, as L is closed under (Nec), [νΣ]A ∈ L and as L contains
(Σ1), 〈νΣ〉c ∈ L thus 〈νΣ〉(c ∧ A) ∈ L ⊆ L∗. ThusM, [c] � A which is the case
for each c ∈ Σ. ThusM � A. ThusM is a model of L.

26

We can now prove the theorem itself:

Proof. Assume 6` A thenA 6∈ LDS and also [νΣ]A 6∈ LDS thus log(LDS, 〈νΣ〉¬A)
is consistent and thus, from Lemma 12, has a modelM. ThusM � 〈νΣ〉¬A i.e.
M 6� A and thus 6� A.

6.3 Decidability

The idea is similar to the one for combinatory PDL, that is we prove that the
ω-rules, (Ind) and (Cov), can be replaced so that the set of valid formulae is
recursively enumerable. Then, we prove that if a formula is satisfiable then it
is satisfied by a finite model. In this case, there is a procedure, that may not
stop, deciding if the formula is valid and another one, that may not stop either,
deciding if the formula is invalid. As the formula can’t be both, one of them will
reach a result eventually.

Definition 22. Let FDS be the deductive system obtained from DS by dropping
the rules (Ind) and (Cov) and adding the axiom (ind): (A∧ [α∗](A⇒ [α]A))⇒
[α∗]A. Let `F denote provability in FDS. We call LFDS the set of C2PDL-
formulae {A| `F A}.

LFDS is a recursively enumerable set.

Lemma 13. Let A be a C2PDL-formula, if `F A then ` A

Proof. It amounts to prove that ` ind. Let γ = (A ∧ [α∗](A→ [α]A))?. Assume
there exists k < ω such that 〈γ〉〈αk〉¬A that is A ∧ [α∗](A → [α]A) ∧ 〈αk〉¬A.
From (∗), applied k times, one obtains A ∧

∧
0≤l<k[α

l](A → [α]A) ∧ [αk](A →
[α]A ∧ [α][α∗](A → [α]A)) ∧ 〈αk〉¬A. Then, A ∧

∧
0≤l<k[α

l](A → [α]A) yields∧
0≤l≤k[α

l]A and thus, adding 〈αk〉¬A an impossibility is reached.
Thus ∀k < ω, [γ][αk]A which, from (Ind), yields [γ][α∗]A that is (A ∧

[α∗](A→ [α]A))→ [α∗]A. Thus (ind) is a theorem of DS.

This gives us the first of the two semi-decision procedure that we need: FDS
generates only valid formulae and thus if it generates the C2PDL-formula A it
is valid.

Definition 23. The Fischer-Ladner closure of a set of formulae Ξ is the small-
est set FL that satisfies:

– Ξ ⊆ FL
– FL is closed under sub-formulae
– If [α ∪ β]A ∈ FL, [α]A ∈ FL and [β]A ∈ FL
– If [α;β]A ∈ FL, [α][β]A ∈ FL
– If [α∗]A ∈ FL, [α][α∗]A ∈ FL
– If [α−]A ∈ FL, [α]¬[α−]A ∈ FL

Lemma 14. The Fischer-Ladner closure of a finite set is finite.

27

Definition 24. We name canonical quasi-model the model Mc = (Mc, Rc, Vc)
where:

– Mc is the set of all maximal consistent sets of formulae
– for every program α and for all u, v ∈ Mc, u Rc(α) v iff, for every formula

A, if [α]A ∈ u then A ∈ v
– for every atomic proposition φ, Vc(φ) = {u ∈Mc|φ ∈ u}
– for every name i, Vc(i) = {u ∈Mc|i ∈ u}

Mc is named a quasi-model because it is not a model. It is the template of
the model we will create to prove the correctness though.

Lemma 15. For all u ∈Mc and all formulae A,Mc, u � A iff A ∈ u.

Proof. This is done by induction on the complexity of A.

– If A is an atomic proposition or a name, this is true by construction.
– If A = ¬B, by induction, Mc, u 6� B iff B 6∈ u. As u is maximal, B 6∈ u iff
A ∈ u and thus A ∈ u iffMc, u � A.

– If A = B∨C,Mc, u � A iff eitherMc, u ` B orMc, u � C iff , by induction,
either B ∈ u or C ∈ u iff, as u is maximal, B ∨ C ∈ u.

– If A = [α]B,

• Assume A ∈ u then for all v such that u Rc(α) v, B ∈ v by construction.
By induction,Mc, v � B and thusMc, u � A

• Assume Mc, u � A, then if v is such that u Rc(α) v, Mc, v � B. By
induction, B ∈ v. Assume A 6∈ u, A does not introduce additional con-
straints and thus u∪A is consistent. This is impossible as u is maximal.
Thus A ∈ u.

Lemma 16. A is a valid formula of C2PDLS iff A is true inMc.

Proof. If ` A, every maximal consistent set contains A and thus, from Lemma 15,
Mc, u ` A for all u ∈Mc. Thus A is true inMc. Otherwise, {¬A} is consistent
and, from Lemma 10, can thus be extended to a maximal consistent set x. As
x ∈Mc and A 6∈ x, x 6� A.

Lemma 17. ∀α, β, Rc(α ∪ β) = Rc(α) ∪Rc(β).

Proof. Assume uRc(α ∪ β)v and [α ∪ β]A ∈ u. Then, as u is maximal [α]A ∈ u
and [β]A ∈ u. Thus Rc(α) ∪Rc(β) ⊆ Rc(α ∪ β).

Assume neither uRc(α)v nor uRc(β)v. Then, there exists A and B such that
[α]A ∈ u, A 6∈ v, [β]B ∈ u and B 6∈ v. Then [α](A ∨ B) ∈ u and [β](A ∨ B) ∈ u
and thus, by maximality of u, [α ∪ β](A ∨ B) ∈ u. But A ∨ B 6∈ v thus it is
impossible that uRc(α ∪ β)v and thus Rc(α ∪ β) ⊆ Rc(α) ∪Rc(β).

Lemma 18. ∀α, β, Rc(α;β) = {(x, y)|∃z.(x, z) ∈ Rc(α) ∧ (z, y) ∈ Rc(β)}.

28

Proof. Assume uRc(α;β)v and [α;β]A ∈ u. Then, as u is maximal [α][β]A ∈ u.
Thus {(x, y)|∃z.(x, z) ∈ Rc(α) ∧ (z, y) ∈ Rc(β)} ⊆ Rc(α;β).

Assume uRc(α;β)v. Let Ci be the formulae in v. We define a new set of formu-
lae such that B0 = C0 and Bi = Bi+1∧Ci. We consider the set ∆ = {A : [α]A ∈
u} ∪ {¬[β]¬Bn : n〈ω}. Suppose ∆ is inconsistent. Then there are A0, . . . , An ∈
{A : [α]A ∈ u} and i0, . . . , im such that {A0, . . . , Am,¬[β]¬Bi0 , . . . ,
¬[β]¬Bim} is an inconsistent set. Let k = max(i0, . . . , im), then {A0, . . . , Am,
¬[β]¬Bk} is inconsistent. Thus � A0 ∧ . . . ∧ Am ⇒ [β]¬Bk and thus � [α]A0 ∧
. . . ∧ [α]Am ⇒ [α][β]¬Bk. Then [α][β]¬Bk ∈ u and thus [α;β]¬Bk ∈ u and thus
¬Bk ∈ v. As v is consistent, Bk 6∈ v which is contrary to the definition of Bk.
Thus ∆ is consistent. Thus, from Lemma 11, ∃x such that ∆ ⊆ x. Then, by
definition of Mc, uRc(α)x and xRc(α)y. Thus Rc(α;β) ⊆ {(x, y)|∃z.(x, z) ∈
Rc(α) ∧ (z, y) ∈ Rc(β)}.

Lemma 19. ∀α, β, Rc(α−) = {(x, y)|(y, x) ∈ Rc(α)}.

Proof. Assume uRc(α−)v. Pick A such that [α]A ∈ v. It is then impossible that
[α−]¬[α]A ∈ u thus ¬[α−]¬[α]A ∈ u. Hence A ∈ u. Therefore vRc(α)u and thus
{(x, y)|(y, x) ∈ Rc(α)} ⊆ Rc(α−).

Assume vRc(u)u. Pick A such that [α−]A ∈ u. It is then impossible that
¬[α−]¬[α]A ∈ v. HenceA ∈ v. Therefore uRc(α−)v and thusRc(α−) ⊆ {(x, y)|(y, x) ∈
Rc(α)}.

Definition 25. Let M = (M,R,χ, V) be a model and let Γ be any set of for-
mulae closed under sub-formulae. We define the equivalence relation ∼Γ on M
by:
s ∼Γ t iff ∀φ ∈ Γ , (M, s � φ iffM, t � φ).

We note [s]Γ the equivalence class of s with respect to ∼Γ . The structure
MΓ = (MΓ , RΓ , χΓ , VΓ) is called filtration [22] ofMc with respect to Γ if:

– MΓ := {[s]Γ |s ∈Mc}
– for every program α ∈ Γ , if sRc(α)t, then [s]ΓRΓ (α)[t]Γ
– for every program α ∈ Γ , if [s]ΓRΓ (α)[t]Γ , then all formulae A, [α]A ∈ s∩Γ

only if A ∈ t
– for every name in o ∈ Γ , if o ∈ s, [s]Γ ∈ χΓ (o)
– for every atomic proposition φ0 ∈ Γ , VΓ (φ0) = {[s]Γ |s ∈ Vc(φ0)}

Let’s prove that χΓ is a function. Assume o ∈ Γ , [s]Γ and [t]Γ such that
[s]Γ ∈ χΓ (o) and [t]Γ ∈ χΓ (o). Either s ∼Γ t and then [s]Γ = [t]Γ or there is φ
such thatM, s � φ andM, t 6� φ. But then, s being maximal, 〈νMΓ

〉(o u φ) ∈ s
and 〈νMΓ

〉(ou¬φ) ∈ s. This is impossible as s is consistent. Thus #(χΓ (o)) ≤ 1.
Moreover, 〈νMΓ

〉o is consistent and thus #(χΓ (o)) = 1. All nodes not named
with names occurring in Γ can be unnamed and renamed so that χΓ is onto.

Lemma 20. LetMΓ be the filtration ofMc with respect to a Γ . Then for each
formula A ∈ Γ and all s ∈Mc,Mc, s � A iffMΓ , [s]Γ � A.

29

Proof. The proof is by induction on A.

– For atomic propositions and names, this is by construction.
– If A = φ ∧ ψ, by the induction hypothesis, Mc, s � φ iff MΓ , [s]Γ � φ and
Mc, s � ψ iffMΓ , [s]Γ � ψ and thusMc, s � A iffMΓ , [s]Γ � A.

– If A = ¬φ, by the induction hypothesis,M, s � φ iffMΓ , [s]Γ � φ and thus
M, s � A iffMΓ , [s]Γ � A.

– If A = [α]B, then:
• AssumeMc, s � A then, from Lemma 15, A ∈ s and thus, by construc-

tion, B ∈ t for all t such that sRc(α)t. Then, by induction,MΓ , [t]Γ � B.
Thus, for all [t]Γ such that [s]Γ RΓ (α)[t]Γ ,MΓ , [t]Γ � B thusMΓ , [s]Γ �
A

• AssumeMΓ , [s] � A. Then for all t ∈Mc with sRc(α)t,MΓ , [t] � B and
thus, by induction,Mc, t � B. ThusMc, s � A.

Lemma 21. If Γ is such that |Γ | = n, that is finite, |MΓ | ≤ 2n.

Proof. There are at most 2n equivalence classes for n formulae.

Definition 26. Let Γ be a set of formulae closed under sub-formulae. LetM† =
{MΓ , R

†, VΓ , χΓ } be a model such that, for all atomic programs π ∈ Ψ , [u]ΓR†[v]Γ
iff ∃u0 ∼Γ u∃v0 ∼Γ v.(u0R(π)v0).

There can actually be a lot of them as there are no conditions on programs
π 6∈ Γ .

Lemma 22. ∀α ∈ Γ , if uRc(α)v, then [u]ΓR
†(α)[v]Γ .

Proof. This is done by induction on α.

– If α ∈ Π0, this true by construction.
– If α = β ∪ δ. Assume uRc(α)v then, by Lemma 17, uRc(β)v or uRc(δ)v so,

by induction, [u]ΓR†(β)[v]Γ or [u]ΓR†(δ)[v]Γ . In either case, [u]ΓR†(α)[v]Γ .
– If α = β; δ. Assume uRc(α)v then, by Lemma 18, there exists x such that
uRc(β)x and xRc(δ)v so, by induction, [u]ΓR

†(β)[x]Γ and [x]ΓR
†(δ)[v]Γ

that is [u]ΓR†(α)[v]Γ .
– If α = β−. Assume uRc(α)v then, by Lemma 19, vRc(β)u so, by induction,

[v]ΓR
†(β)[u]Γ that is [u]ΓR†(α)[v]Γ .

– If α = β∗. Assume uRc(α)v and not [u]ΓR
†(α)[v]Γ . Since M† is a model

with a finite universe, there exists B = o0 ∨ . . . ∨ on such that ∀w, B ∈ w
iff [u]ΓR

†(α)[w]Γ . In particular, B ∈ u. Moreover, as B 6∈ v, [α]B 6∈ u,
then, from (ind), [β∗](B → [β]B) 6∈ u. Thus, there exists x, y such that
uRc(β

∗)x, B ∈ x, xRc(β)y and B 6∈ y. Then, [u]ΓR†(β∗)[x]Γ and, by in-
duction, [x]ΓR†(β)[y]Γ and thus [u]ΓR

†(β∗)[y]Γ . Thus B ∈ y which is not
possible.

Lemma 23. ∀α ∈ Γ , if [u]ΓR†(α)[v]Γ , then ∀A ∈ Γ, [α]A ∈ u∩Γ only if A ∈ v.

Proof. This is done by induction on α.

30

– Assume α = β∪δ and [u]ΓR
†(α)[v]Γ . Take any A such that [β∪δ]A ∈ u∩Γ .

As Γ is closed under Fisher-Ladner conditions, [β]A ∈ u∩Γ and [δ]A ∈ u∩Γ .
As M† is a model, either [u]ΓR

†(β)[v]Γ or [u]cR
†(δ)[v]Γ . By induction, in

either case, A ∈ v.
– Assume α = β; δ and [u]ΓR

†(α)[v]Γ . Take any A such that [β; δ]A ∈ u ∩ Γ .
Then, as Γ is closed under Fischer-Ladner conditions, [β][δ]A ∈ Γ . Since
M† is a model, there exists x such that [u]ΓR†(β)[x]Γ and [x]cR

†(δ)[v]Γ . By
induction, [δ]A ∈ x and thus A ∈ v.

– Assume α = β− and [u]ΓR
†(α)[v]Γ . Take any A such that [β−]A ∈ u ∩ Γ .

As Γ is closed under Fischer-Ladner conditions, [β]¬[β−]A ∈ Γ . Assume
[β]¬[β−]A ∈ v∪Γ . AsM† is a model, [v]ΓR†(β)[u]Γ and thus, by induction,
¬[β−]A ∈ u which is impossible. Thus 〈β〉[β−]A ∈ v and thus A ∈ v.

– Assume α = β∗ and [u]ΓR
†(α)[v]Γ . Take any A such that [β∗]A ∈ u∩Γ . We

prove that ∀x, y, ∀i, if [x]Γ (R†(β))i[y]Γ then [β∗]A ∈ x only if [β∗]A ∈ y
by induction. The case i = 0 is trivial. Suppose the claim holds for n,
[x]Γ (R

†(β))n+1[y]Γ and [β∗]A ∈ x. Then, as Γ is closed under Fischer-
Ladner conditions, [β][β∗]A ∈ x. But then there is z such that [x]ΓR†(β)[z]Γ
and [z]Γ (R

†(β))n[y]Γ . By induction on the first hypothesis, [β∗]A ∈ z and,
by induction on the second hypothesis, [β∗]A ∈ y. As M† is a model,
[u]ΓR

†(β∗)[v]Γ implies that there is j such that [u]Γ (R
†(β))j [v]Γ and thus

[β∗]A ∈ v and thus A ∈ v.

Lemma 24. Let Γ be a finite set closed under Fischer-Ladner conditions. Then
M† is a filtration ofMc under Γ .

Proof. – MΓ := {[s]Γ |s ∈Mc} by construction
– for every program α ∈ Γ , if sRc(α)t, then [s]ΓRΓ (α)[t]Γ by Lemma 22.
– for every program α ∈ Γ , if [s]ΓRΓ (α)[t]Γ , then all formulae A, [α]A ∈ s∩Γ

only if A ∈ t by Lemma 23
– for every name in o ∈ Γ , if o ∈ s, [s]Γ ∈ χΓ (o) by construction
– for every atomic proposition φ0 ∈ Γ , VΓ (φ0) = {[s]Γ |s ∈ Vc(φ0)} by con-

struction

Lemma 25. Let A be a C2PDL-formula, if 6`F A then, for some finite model
M,M 6� A.

Proof. Assume 6`F A then, from Lemma 16, there exists x such that A 6∈ x. We
call Γ the Fischer-Ladner closure of {A}. It is finite. We define accordinglyM†.
By Lemma 24,M† is a filtration and, by Lemma 20,M†, [x]Γ 6� A andM† is a
model.

6.4 Equivalence of C2PDLS and C2PDL

The following lemmata prove that the rules introduced in Sect. 2 to translate
formulae of C2PDLS to formulae of C2PDL are correct that is that they conserve
the valuations.

31

Lemma 26. Let R be one of rules φ1 - φ7, Ar be the right-hand side and Al be
the left-hand side of R. Given any modelM = (M,R,χ, V), V (Al) = V (Ar).

Proof. Rule φ1 : As V (>) is independent of the definition of V , R, Σ1 and Σ2,
V (>σ) = V (>).

Rule φ2 : As nodes are never renamed, V (oσ) = V (o).
Rule φ3 : As σ = [add(i1, j1, α0)], σ = [del(i1, j1, α0)] or σ = [add(i2)] and

neither modifies V (φ), V (φσ) = V (φ).
Rule φ4 : As only V (φ′) is modified, V (φ[add(i1, φ

′)]) = V (φ).
Rule φ5 : As V (φ[add(i1, φ)]) = V ′(φ) = χ(i1)∪V (φ), V (φ[add(i1, φ)]) = V (φ∨

i1).
Rule φ6 : As only V (φ′) is modified, V (φ[del(i1, φ

′)]) = V (φ).
Rule φ7 : As V (φ[del(i1, φ)]) = V ′(φ) = V (φ)∩{χ(i1)}, V (φ[del(i1, φ)]) = V (φ∧
¬i1).

Lemma 27. Let R be one of rules α1 - α8, Ar be the right-hand side and Al be
the left-hand side of R. Given any modelM = (M,R,χ, V), R(Al) = R(Ar).

Proof. Rule α1 : As σ = [add(i1, φ)], σ = [del(i1, φ)] or σ = [add(i1)] and nei-
ther modifies R(α0), R(α0[σ]) = R(α0).

Rule α2 : As only R(α′0) is modified, R(α0[add(i1, j1, α
′
0)]) = R(α0).

Rule α3 : AsR(α0[add(i1, j1, α0)]) = R′(α0) = R(α0)∪{χ(i1), χ(j1)},R(α0[add(i1, j1, α0)]) =
R(α0 ∪ (i1?; νΣ1

; j1?).
Rule α4 : As only R(α′0) is modified, R(α0[del(i1, j1, α

′
0)]) = R(α0).

Rule α5 : As R(α0[del(i1, j1, α0)]) = R′(α0) = R(α0) ∩ {χ(i1), χ(j1)},
R(α0[del(i1, j1α0)]) = R((¬i1)?;α0 ∪ α0; (¬j1)?).

Rule α6 As R(α0[del(i1)]) = R′(α0) = R(α0) ∩ {(χ(i1),m′)} ∪ {(m′, χ(i1))},
R(α0[del(i1)]) = R((¬i1?);α0; (¬i1)?).

Rule α7 : As R(α0[i1 � j1]) = R′(α0) = R(pha0)∪{(m′, j1)|(m′, i1) ∈ R(α0)}∩
{(m′, i1) ∈ R(α0)}, R(α0[i1 � j1]) = R(α0; ((¬i1)? ∪ (i1?; νΣ1

; j1?)).
Rule α8 : As S is not modified by σ, R(νSσ) = R(νS).

We now prove that the rewriting of the sets is correct.

Proof. Rule S1 : As i2 is added to Σ1, χ(Σ1[add(i2)]) = χ(Σ1) ∪ {i2}
Rule S2 : As i2 is deleted from Σ1, χ(Σ1[del(i1)]) = χ(Σ1) ∩ {i1}
Rule S3 : As i1 is deleted from Σ2, χ(Σ2[add(i2)]) = χ(Σ2) ∩ {i2}
Rule S4 : As i1 is added to Σ2, χ(Σ2[del(i1)]) = χ(Σ2) ∪ {ii}
Rule S5 : As only Σ1 and Σ2 are modified by σ, χ((S1∪S2)σ) = χ(S1σ)∪χ(S2σ)
Rule S6 : As only Σ1 and Σ2 are modified by σ, χ((S1∩S2)σ) = χ(S1σ)∩χ(S2σ)
Rule S7 : As only Σ1 and Σ2 are modified by σ, χ(S2σ) = χ(S1σ)
Rule S8 : As only Σ1 and Σ2 are modified by σ, χ({i}σ) {i}

We now do the same with the other constructors:

Lemma 28. Let R be one of rules φ8 - φ10, Ar be the righthand side and Al be
the lefthand side of R. Given any modelM = (M,R, χ, V), V (Al) = V (Ar).

32

Proof. Rule φ8 : V ((¬A)σ′) = V ′(¬A) =M ∩ {V ′(A)} = V (¬(Aσ′)).
Rule φ9 : V ((A ∨B)σ′) = V ′(A ∨B) = V ′(A) ∪ V ′(B) = V ((Aσ′) ∨ (Bσ′)).
Rule φ10 : V ((〈α〉A)σ′) = V ′(〈α〉A) = {s|∃T ∈M.((s, t) ∈ R′(α)∧t ∈ V ′(A)} =

V (〈ασ〉(Aσ)).

Lemma 29. Let R be one of rules α10 - α14, Ar be the righthand side and Al
be the lefthand side of R. Given any modelM = (M,R, χ, V), R(Al) = R(Ar).

Proof. Rule α10 : R((α;β)σ) = R′(α;β) = {(s, t)|∃v.((s, v) ∈ R′(α) ∧ (v, t) ∈
R′(β)} = R((ασ); (βσ)).

Rule α11 : R((α ∪ β)σ) = R′(α ∪ β) = R′(α) ∪R′(β) = R((ασ) ∪ (βσ)).
Rule α12 : R((α−)σ) = R′(α−) = {(s, t)|(t, s) ∈ R′(α)} = R((ασ)−).
Rule α13 : R((α∗)σ) = R′(α∗) =

⋃
k≤ω R

′(αk) = R((ασ)∗).
Rule α14 : R((A?)σ) = R′(A?) = {(s, s)|s ∈ V ′(A)} = R((Aσ)?).

33

	A Combination of Combinatory and Converse PDL with Substitutions

