
1 23

Software & Systems Modeling
 
ISSN 1619-1366
Volume 14
Number 1
 
Softw Syst Model (2015) 14:173-199
DOI 10.1007/s10270-013-0323-y

Runtime verification of component-
based systems in the BIP framework with
formally-proved sound and complete
instrumentation

Yliès Falcone, Mohamad Jaber, Thanh-
Hung Nguyen, Marius Bozga & Saddek
Bensalem



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Softw Syst Model (2015) 14:173–199
DOI 10.1007/s10270-013-0323-y

SPECIAL SECTION PAPER

Runtime verification of component-based systems in the BIP
framework with formally-proved sound and complete
instrumentation

Yliès Falcone · Mohamad Jaber ·
Thanh-Hung Nguyen · Marius Bozga ·
Saddek Bensalem

Received: 24 March 2012 / Revised: 17 December 2012 / Accepted: 29 January 2013 / Published online: 18 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Verification of component-based systems still
suffers from limitations such as state space explosion since
a large number of different components may interact in
a heterogeneous environment. These limitations entail the
need for complementary verification methods such as run-
time verification. Runtime verification is a dynamic analysis
technique and is prone to scalability. In this paper, we inte-
grate runtime verification into the BIP (Behavior, Interaction
and Priority) framework. BIP is a powerful and expressive
component-based framework for the formal construction of
heterogeneous systems. Our method augments BIP systems
with monitors to check specifications at runtime. This method
has been implemented in RV-BIP, a prototype tool that we
used to validate the whole approach on a robotic application.

Communicated by Dr. Gerardo Schneider, Gilles Barthe,
and Alberto Pardo.

Y. Falcone (B)
Laboratoire d’Informatique de Grenoble, UJF,
University of Grenoble I, Grenoble, France
e-mail: Ylies.Falcone@ujf-grenoble.fr

M. Jaber
American University of Beirut, Beirut, Lebanon
e-mail: mj54@aub.edu.lb

T.-H. Nguyen
Hanoi University of Sciences and Technology,
Hanoi, Vietnam
e-mail: hungnt@soict.hut.edu.vn

M. Bozga · S. Bensalem
Verimag Laboratory, UJF, University of Grenoble I,
Grenoble, France
e-mail: Marius.Bozga@imag.fr

S. Bensalem
e-mail: Saddek.Bensalem@imag.fr

Keywords Runtime verification · Component-based
systems · Instrumentation · Formal methods

1 Introduction

Component-based systems. A component-based approach
consists in building complex systems by composing compo-
nents (building blocks). This confers numerous advantages
(e.g., productivity, incremental construction, compositional-
ity) that allow one to deal with complexity in the construc-
tion phase. Component-based systems (CBS) are desirable
because they allow reuse of subsystems as well as their incre-
mental modification without requiring global changes. The
development of CBS requires methods and tools supporting
a concept of architecture which characterizes the coordina-
tion between components. An architecture structures a sys-
tem and involves components and relationships between the
externally visible properties of those components. The global
behavior of a system can, in principle, be inferred from the
behavior of its components and its architecture. Component-
based design is based on the separation between coordina-
tion and computation. Systems are built from units executing
sequential code insulated from concurrent execution issues.
The isolation of coordination mechanisms allows a global
treatment and analysis on coordination constraints between
components even if local computations on components are
not visible (i.e., components are “black boxes”).

BIP (Behavior interaction priority). BIP is a general frame-
work supporting rigorous design. BIP uses a dedicated
language and an associated toolset supporting the design
flow. The BIP language allows building complex systems
by coordinating the behavior of a set of atomic compo-
nents. Behavior is described with labeled transition systems
(LTS) extended with data and functions written in C. The

123

Author's personal copy



174 Y. Falcone et al.

description of coordination between components is layered.
The first layer describes the interactions between compo-
nents. The second layer describes dynamic priorities between
the interactions and is used also to express scheduling poli-
cies. The combination of interactions and priorities char-
acterizes the overall architecture of a system and confers
strong expressiveness that cannot be matched by other exist-
ing formalism dedicated to CBS [1]. Moreover, BIP has
a rigorous operational semantics: the behavior of a com-
posite component is formally described as the composition
of the behaviors of its atomic components. This allows a
direct relation between the underlying semantic model and
its implementation.

Runtime verification (monitoring). Runtime Verification
(RV) [2–4] is an effective technique to ensure, at runtime,
that a system respects or meets a desirable behavior. It can
be used in numerous application domains, more particularly
when integrating together unreliable software components.
In RV, a run of the system under scrutiny is analyzed incre-
mentally using a decision procedure: a monitor. This monitor
may be generated from a user-provided high-level specifica-
tion (e.g., a temporal formula, an automaton). This monitor
aims to detect violation or satisfaction w.r.t. the given spec-
ification. Generally, it is a state machine processing an exe-
cution sequence (step by step) of the monitored program and
producing a sequence of verdicts (truth-values taken from
a truth-domain) indicating specification fulfillment or vio-
lation. Recently, a new framework has been introduced for
runtime verification [4]. This expressive framework, lever-
aged by a finite-trace semantics (initially proposed in [3])
and an expressive truth-domain, allows to monitor all speci-
fications expressing a linear temporal behavior. For a monitor
to be able to observe runs of the system, the system should be
instrumented in such a way that at runtime the program sends
relevant events that are consumed by the monitor. Usually,
one of the main challenges when designing an RV framework
is its performance. That is, adding a monitor in the system
should not deteriorate executions of the initial system time
and memory wise.

Motivations for using monitoring to validate component-
based systems. As is the case with monolithic systems, moni-
toring is a complementary technique to validate the behavior
of component-based systems. Monitoring has several advan-
tages when compared with static validation techniques. Com-
pared with static analysis, monitoring allows to check more
expressive behavioral specifications. Moreover, monitoring
does not rely on abstracting or over-approximating the state-
space, and thus does not produce false positives. Com-
pared with model-checking, monitoring is less sensitive
to the state-explosion problem which is rapidly occurring
when composing the behavior of several components. Com-
pared with compositional verification techniques, monitoring

remains applicable for BIP component-based systems (where
external functions can be called). Regarding BIP systems,
classical model-checking techniques rapidly become unus-
able because of the state-explosion problem. Consequently,
the currently available verification techniques are based on
compositional/incremental verification. However, in the BIP
framework, compositional verification is currently limited
to the verification of safety properties, and, more expres-
sive properties such as liveness properties remain out of the
scope. In Sect. 7.1, we provide a more detailed comparison
with static-verification techniques.

Challenges in monitoring component-based systems and BIP
systems. Contrary to monolithic systems (written for instance
in Java), component-based systems are not endowed with an
automatic and effective instrumentation technique. An auto-
matic instrumentation technique allows the programmer to
only indicate points of observation (in a more or less abstract
fashion) and automatically adds observation code at relevant
places in the original program. An effective instrumentation
techniques ensures that the performance of the instrumented
program is close to the performance of the original program.
Such an instrumentation technique is required when design-
ing or implementing a runtime verification framework for
a target system-domain. Consequently, we should design an
instrumentation technique that should enjoy several features.
As is the case with monolithic system, we require an auto-
matic and efficient instrumentation technique. Moreover, we
require a high-level of confidence on its correctness. The
instrumentation technique should not alter the behavior of
the initial system. Existing RV frameworks attempt to pre-
serve the behavior of the system by performing only obser-
vations. For instance, using aspect-oriented programming,
the used aspects only pick-up events without modifying the
control-flow of the original program. However, in the context
of component-based systems, such a desirable correctness
property is harder to obtain. Indeed, to monitor a component-
based system, one needs to add the monitor as a new com-
ponent, which is allowed to observe the system by adding
interactions. Such interactions should be inserted carefully
because they could modify not only the existing interac-
tions but also the internal behaviors of existing components.
Finally, we aim at providing a method that can be used in
critical systems and thus require a high-level of confidence
on the proposed instrumentation technique. Consequently,
the designed instrumentation technique should be defined
formally and its correctness formally proved.

Our approach (informal view). Let us depict a high-level
view of our approach. On the one hand, we consider an initial
component-based system C = (B1, . . . , Bn) built over exist-
ing atomic components B1, . . . , Bn . The atomic components
are designed independently regarding their data and their
behavior, but they can interact and synchronize at runtime.

123

Author's personal copy



Runtime verification of component-based systems 175

We assume a global clock operating on C in such a way that,
at each execution step, each atomic component can perform
one action independently. When components are interact-
ing together, we assume this communication to be reliable
and do not consider any issue regarding privacy or security.
On the other hand, a property ϕ specifies the desired run-
time behavior of C . The property ϕ is associated with an
abstract decision procedure (a monitor) Mϕ which is gener-
ated using standard monitor synthesis techniques. Verdicts
over the behavior are based on an expressive truth-domain
as in [4]. Verdicts can indicate current satisfaction and vio-
lation, or, definitive satisfaction or violation (in which case
no monitoring is needed).

We shall transform C into a new component-based sys-
tem C ′ = (B ′

1, . . . , B ′
n, M ′

ϕ). C contains a monitor M ′
ϕ as

a component generated from Mϕ . Atomic components are
instrumented (Bi transformed to B ′

i ) to interact with M ′
ϕ .

Moreover, we require some behavioral equivalence between
the initial and transformed systems. This behavioral equiva-
lence states that, up to some behavioral equivalence relation,
not only the sets of possible behaviors in the initial and trans-
formed system are equivalent, but, in addition, if the initial
system produces any execution, then the transformed system
produces an equivalent execution. At runtime, the component
monitor M ′

ϕ observes the relevant pieces of information in
B ′

1, . . . , B ′
n and emits verdicts according to the satisfaction

or violation of ϕ. The amount of information observed in the
components B ′

1, . . . , B ′
n is kept minimal so as to minimize

the overhead induced by the monitoring process.

Contributions. We introduce a complementary validation
technique for CBS in general and BIP systems in particular.
More precisely, the contributions of this paper are as follows:

1. Proposing a minimal formal introduction to BIP systems
providing a framework for rigorous design of CBS.

2. Extending the BIP framework by integrating an expres-
sive RV framework previously introduced in [4]. We
extend this framework for CBS by proposing a formal
instrumentation technique that allows to observe the rel-
evant parts in the behavior of a BIP system. This instru-
mentation technique is formally defined, proved sound
and complete, and leverages the formal semantics of BIP.
Given a specification, our method uniformly integrates a
monitor as an additional component in a BIP system that
is able to runtime check the satisfaction or violation of
the specification.

3. Proposing an implementation of the RV framework, RV-
BIP, allowing to automatically instrument BIP systems
from the description of an abstract monitor. Thanks to
the code generator of BIP, the generated self-monitoring
system can be directly translated into an actual C mod-
ule embedded in the global system whose behavior is
checked at runtime against the specification, and

4. evaluating and validating the relevance of the whole
approach on a real-world application.

This paper extends a previous contribution [5] that
appeared in the 9th International Conference on Software
Engineering and Formal Methods, with the following addi-
tional contributions:

– proposing a more complete and improved introduction to
the BIP framework;

– proposing a detailed and rigorous proof of the correctness
of the approach proposed in this paper;

– improving the presentation and editorial quality of the
previous paper by (i) formalizing some concepts that
remained informal in the conference version, (ii) pro-
viding more detailed explanations in each section, (iii)
correcting typos, and (iv) illustrating the concepts with
additional examples;

– proposing additional experiments on our case study, and
– proposing a deeper study of related work.

Paper organization. The paper is structured as follows: Sec-
tion 2 introduces the preliminary concepts needed in this
paper. In Sect. 3 we give a minimal introduction to the BIP
framework. Section 4 defines an abstract RV framework for
CBS described in BIP. Section 5 shows how the abstract
RV framework is implemented for BIP systems. Section 6
describes RV-BIP, an implementation used to evaluate our
method on a robot application. Section 7 is dedicated to
related work. Section 8 raises some concluding remarks and
open perspectives. Finally, to keep our RV framework for
CBS intuitive, some proofs and proof-specific definitions are
omitted in Sect. 5, and complete proofs are given in Appen-
dix A.

2 Preliminaries and notations

We introduce some preliminary concepts and notation.

Functions and partial functions. For two domains of ele-
ments E and F , we note [E → F] (resp. [E ⇁ F]) the
set of functions (resp. partial functions) from E to F . When
elements of E depend on the elements of F , we note {e ∈
E} f ∈F ′ , where F ′ ⊆ F , for {e ∈ E | f ∈ F ′} or {e} f ∈F ′
when clear from context. For two functions v ∈ [X → Y ]
and v′ ∈ [X ′ → Y ′], the substitution function noted v/v′,
where v/v′ ∈ [X ∪ X ′ → Y ∪ Y ′], is defined as follows:

v/v′(x) =
{

v′(x) if x ∈ X ′,
v(x) otherwise.

A predicate over some domain E is a function in the set
[E → {true,false}] where true and false are the
usual Boolean constants. Given, some predicate p over some

123

Author's personal copy



176 Y. Falcone et al.

domain E and some element e ∈ E , we abbreviate p(e) =
true (resp. p(e) = false) by p(e) (resp. ¬p(e)). Given
some sets of functions [X1 → Y1], . . . , [Xn → Yn], the set
of consistent merges of these functions, denoted

⊎{[X1 →
Y1], . . . , [Xn → Yn]}, is defined as

⊎
{[X1 → Y1], . . . , [Xn → Yn ]}

def=
⎧⎨
⎩ f ∈

[ n⋃
i=1

Xi →
n⋃

i=1

Yi

]
| ∀i ∈ [1, n] : x ∈ Xi ⇒ f (x) ∈ Yi

⎫⎬
⎭.

That is, the set of consistent merges is the set of functions
from the union of domains (

⋃n
i=1 Xi ) to the union of co-

domains (
⋃n

i=1 Yi ) where only consistent data bindings are
allowed.

Pattern-matching. We shall use the mechanism of pattern-
matching to define some functions more concisely. We recall
an intuitive definition for the sake of completeness. Evaluat-
ing the expression

match expression with

| pattern_1 → expression_1

| pattern_2 → expression_2

. . .

| pattern_n → expression_n

consists in comparing successively expression with the
patterns pattern_1, …, pattern_n in order. When a
pattern pattern_i fits expression, then the associated
expression_i is returned.

Sequences. Given a set of elements E , a sequence or a
list of length n over E is denoted e1 · e2 · · · en where
∀i ∈ [1, n] : ei ∈ E . When elements of a sequence are
assignments, the sequence is delimited by square brackets,
e.g., [x1 := expr1; . . . ; xn := exprn]. Concatenation of
assignments or sequences of assignments is denoted by “;”.
The empty sequence of assignments is noted [ ]. Assign-
ments in a sequence are executed according to their order in
the list (beginning with the first elements).1 The set of all
sequences over E is noted E∗. We shall use regular expres-
sions to concisely denote sets of sequences over E . A reg-
ular expression over E defines a set of sequences over E .
Given two regular expressions re1, re2 over E, re1 · re2

(resp. re1 + re2) is a regular expression and denotes the set
{s1 · s2 | s1 ∈ re1 ∧ s2 ∈ re2} (resp. re1 ∪ re2).

Transition systems. In the following, labeled transition sys-
tem (LTS) are used to define the semantics of BIP sys-
tems. An LTS defined over an alphabet Σ is a three-tuple
(Lab, Loc, Trans) where Lab is a set of labels, and Loc is a

1 Consequently, it does not forbid to have several assignments to a
variable in such sequences. In such a case, the last assignment to this
variable determines the final value of the variable.

non-empty set of locations. Trans ⊆ Loc × Lab × Loc is the
transition relation. A transition (l, e, l ′) ∈ Trans means that
the LTS can move from location l to location l ′ by consuming
label e. We abbreviate (l, e, l ′) ∈ Trans by l

e→Trans l ′ or by
l

e→ l ′ when clear from context. Moreover, l
e→ is a short

for ∃l ′ ∈ Loc : l
s→ l ′.

Monolithic/component-based versus centralized/distribu-
ted systems. As a last preliminary notion, we stress the
importance of the difference between two classifications of
systems. First, systems are categorized as monolithic (vs.
component-based) when they are designed as a single entity
(resp. an association of several entities). Second, systems are
categorized as centralized (vs. distributed) when they execute
on a single computation unit (vs. multiple computation units).
Consequently, we should stress that this paper does not target
runtime verification of distributed systems (cf. [6,7]). Note
also, that from a component-based system, one can generate
a distributed implementation (cf. [8]) or a centralized imple-
mentation (cf. [9]) by first transforming the component-based
system into an equivalent monolithic system.

3 Behavior interaction priority (BIP)

In this section we recall the necessary concepts of the BIP
framework [10]. BIP is a component-based framework for
constructing systems by superposing three layers of model-
ing: Behavior, Interaction, and Priority. The behavior layer
consists of a set of atomic components represented by transi-
tion systems. The interaction layer models the collaboration
between components. Interactions are described using sets of
ports and connectors between them [11]. The priority layer is
used to enforce scheduling policies applied to the interaction
layer, given by a strict partial order on interactions.

3.1 Component-based construction

BIP offers primitives and constructs for modeling and com-
posing complex behaviors from atomic components. Atomic
components are labeled transition systems (LTS) extended
with C functions and data. Transitions are labeled with sets of
communication ports. Composite components are obtained
from atomic components by specifying connectors and pri-
orities.

Atomic components. An atomic component is endowed with
a finite set of local variables X taking values in a domain
Data. Atomic components synchronize and exchange data
with other components through the notion of port.

Definition 1 (Port) A port p[x p], where x p ⊆ X , is defined
by a port identifier p and some data variables in a set x p

(referred as the support set).

123

Author's personal copy



Runtime verification of component-based systems 177

Fig. 1 An atomic component in BIP

Definition 2 (Atomic component) An atomic component B
is defined as a tuple (P, L , T, X, {gτ }τ∈T , { fτ }τ∈T ), where

– (P, L , T ) is an LTS over a set of ports P . L is a set of
control locations and T ⊆ L×P×L is a set of transitions.

– X is a set of variables.
– For each transition τ ∈ T :

• gτ is a Boolean condition over X : the guard of τ ,
• fτ ∈ {x := f x (X) | x ∈ X}∗: the computation step

of τ , a list of statements.

For τ = (l, p, l ′) ∈ T a transition of the internal LTS, l
(resp. l ′) is referred as the source (resp. destination) loca-
tion and p is a port through which an interaction with
another component can take place. Moreover, a transition
τ = (l, p, l ′) ∈ T in the internal LTS involves a transition in
the atomic component of the form (l, p, gτ , fτ , l ′) which can
be executed only if the guard gτ evaluates to true, and fτ
is a computation step: a set of assignments to local variables
in X .

In the rest of this article, we use the dot notation to denote
the elements of atomic components, e.g., B.P denotes the
set of ports of the atomic component B, B.L denotes its set
of locations, etc.

Example 1 (Atomic component) Figure 1 shows an example
of an atomic component with a variable x , two ports p1, and
p2 with support set {x}, and two control locations l1, l2. At
location l1, the transition labeled by port p1 is possible (the
guard evaluates to true by default). When an interaction
through p1 takes place, a random value is assigned to the
variable x through the assignment x := rand(). From the
control location l2, the transition labeled by the port p2 is
possible, the variable x is not modified, and the value of x is
printed and exported through p2.

Semantics of atomic components. The semantics of an atomic
component is an LTS over configurations and ports, formally
defined as follows:

Fig. 2 Connectors in BIP

Definition 3 (Semantics of atomic components) The seman-
tics of the atomic component (P, L , T, X, {gτ }τ∈T , { fτ }τ∈T )

is an LTS (P, Q, T0) such that

– Q = L × [X → Data] × (P ∪ {null}),
– T0 = {((l ′, v′, p′), p(vp), (l, v, p)) ∈ Q × P × Q |

∃τ = (l ′, p[x p], l) ∈ T : gτ (v
′) ∧ v = fτ (v′/vp)},

where vp ∈ [x p → Data].

A configuration is a triple (l, v, p) ∈ Q where l ∈ L is a
control location, v ∈ [X → Data] is a valuation of the vari-
ables in X , and p ∈ P is the port labeling the last-executed
transition ornullwhen no transition has been executed. The

evolution of configurations (l ′, v′, p′)
p(vp)→ (l, v, p), where

vp is a valuation of the variables x p attached to the port p, is
possible if there exists a transition (l ′, p[x p], gτ , fτ , l), such
that gτ (v

′) = true. As a result, the valuation v′ of variables
is modified to v = fτ (v′/vp).

Creating composite components. Assuming some available
atomic components B1, . . . , Bn , we show how to connect
the components in the set {Bi }i∈I with I ⊆ [1, n] using a
connector.

A connector γ is used to specify possible interactions, i.e.,
the sets of ports that have to be jointly executed. Two types of
ports (synchron, trigger) are defined to specify the feasible
interactions of a connector. A trigger port is active: the port
can initiate an interaction without synchronizing with other
ports. A trigger port is graphically represented by a triangle.
A synchron port is passive: the port needs synchronization
with other ports for initiating an interaction. A synchron port
is graphically represented by a circle. A feasible interaction of
a connector is a subset of its ports such that either it contains
some trigger, or it is maximal. Figure 2 shows two connectors:
Rendezvous (only the maximal interaction {s, r1, r2, r3, r4}
is possible), Broadcast (all the interactions containing the
trigger port s are possible). Formally, a connector is defined
as follows:

Definition 4 (Connector) A connector γ is a tuple (Pγ, t,
G, F), where

– Pγ = {pi [xi ] | pi ∈ Bi .P}i∈I such that ∀i ∈ I : Pγ ∩
Bi .P = {pi };

– t ∈ [Pγ → {true,false}] such that t (p) = true if
p is trigger (and t (p) = false if p is synchron);

123

Author's personal copy



178 Y. Falcone et al.

– G is a Boolean expression over the set of variables ∪i∈I xi

(the guard), and
– F is an update function defined over the set of variables

∪i∈I xi .

Pγ is the set of connected ports called the support set of γ.
The ports inPγ are tagged using function t indicating whether
they are trigger or synchron. Moreover, for each i ∈ I, xi is
a set of variables associated with the port pi .

A communication between the atomic components of
{Bi }i∈I through a connector (Pγ, t, G, F) is defined using
the notion of interaction:

Definition 5 (Interaction) A set of ports a = {p j } j∈J ⊆ Pγ

for some J ⊆ I is an interaction of γ if one of the following
conditions holds:

1. there exists j ∈ J such that p j is trigger;
2. for all j ∈ J, p j is synchron and {p j } j∈J = Pγ.

An interaction a has a guard and two functions Ga, Fa ,
respectively, obtained by projecting G and F on the variables
of the ports involved in a. We denote by I(γ) the set of inter-
actions of γ. Synchronization through an interaction involves
two steps. First, the guard Ga is evaluated. Then, the update
function Fa is applied.

Definition 6 (Composite component) A composite compo-
nent is defined from a set of available atomic components
{Bi }i∈I and a set of connectors Γ . The connection of the com-
ponents in {Bi }i∈I using the set Γ of connectors is denoted
Γ ({Bi }i∈I ).

Note that a composite component obtained by composi-
tion of a set of atomic components can be composed with
other components in a hierarchical and incremental fashion
using the same operational semantics.

Definition 7 (Semantics of composite components) A state
q of a composite component Γ ({B1, . . . , Bn}), where Γ con-
nects the Bi ’s for i ∈ [1, n], is an n-tuple q = (q1, . . . , qn)

where qi = (li , vi ) is a state of Bi . Thus, the semantics of
Γ ({B1, . . . , Bn}) is precisely defined as a transition system
(Q, A,−→), where

– Q = B1.Q × · · · × Bn .Q,
– A = ∪γ∈Γ {a ∈ I(γ)} is the set of all possible interac-

tions,
– −→ is the least set of transitions satisfying the following

rule:
∃ γ ∈ Γ : γ = (Pγ, t, G, F) ∃a ∈ I(γ) : Ga(v(X))

∀i ∈ I : qi
pi (vi )−→ i q ′

i ∧ vi = Fai (v(X)) ∀i ∈ I : qi = q ′
i

(q1, . . . , qn)
a−→ (q ′

1, . . . , q ′
n)

where a = {pi }i∈I , X is the set of variables attached to
the ports of a, v is the global valuation of variables, and

Fai is the partial function derived from F restricted to the
variable associated with pi .

The meaning of the semantic rule is the following: if there
exists an interaction a such that all its ports are enabled in
the current state and its guard (Ga(v(X))) evaluates totrue,
then the interaction can be fired. When a is fired, not-involved
components remain in the same state and involved compo-
nents evolve according to the interaction.

Notice that several distinct interactions can be enabled
at the same time, thus introducing non-determinism in the
product behavior. One can add priorities to reduce non-
determinism. In this case, one of the interactions with the
highest priority is chosen non-deterministically.2

Definition 8 (Priority) Let C = (Q, A,−→) be the behav-
ior of the composite component Γ ({B1, . . . , Bn}). A priority
model π is a strict partial order on the set of interactions A.
Given a priority model π , we abbreviate (a, a′) ∈ π by
a ≺π a′ or a ≺ a′ when clear from the context. Adding
the priority model π over Γ ({B1, . . . , Bn}) defines a new
composite component π(Γ ({B1, . . . , Bn})) noted π(C) and
whose behavior is defined by (Q, A,−→π ), where −→π is
the least set of transitions satisfying the following rule:

q
a−→ q ′ ¬(∃a′ ∈ A, ∃q ′′ ∈ Q : a ≺ a′ ∧ q

a′−→ q ′′)
q

a−→π q ′

An interaction a is enabled in π(C) whenever a is enabled
in C and a is maximal according to π among the active
interactions in C .

We adapt the notion of maximal progress to BIP systems.
In BIP, the maximal progress property is expressed at the
level of connectors. For a given connector γ, if one interaction
a ∈ I(γ) is contained in another interaction a′ ∈ I(γ), then
the latter has a higher priority, unless there exists an explicit
priority stating the contrary. Maximal progress is enforced
by the BIP engine.

Definition 9 (Maximal progress) Given a connector γ and a
priority model π,∀a, a′ ∈ I(γ): (a ⊂ a′)∧(a′ ≺ a /∈ π) ⇒
a ≺ a′.

Finally, we consider systems defined as a parallel compo-
sition of components together with an initial state.

Definition 10 (System) A BIP system S is a pair (B, Init)
where B is a component and Init ∈ B1.L ×· · ·× Bn .L is the
initial state of B.

For the sake of simpler notation, Init designates both the
initial state of the system at the syntax level and the initial
state of the underlying LTS.

2 The BIP engine implementing this semantics chooses one interaction
at random, when faced with several enabled interactions.

123

Author's personal copy



Runtime verification of component-based systems 179

Fig. 3 A composite component in BIP

Example 2 (Composite component) Figure 3 shows an
example of a composite component that consists of three
atomic components (Task1, Task2, and Controller). The
Controller component is composed of a set of ports {start,
finish, fail}, a set of locations L = {l0, l1}, a variable counter
initialized to 0, and a set of transitions containing

– (l0, start, true, [counter := counter+1], l1): from loca-
tion l0, the start port is enabled, the guard is true, when
the transition is executed the component goes to location
l1 and the variable counter is incremented,

– (l1, finish, true, [ ], l0): from location l1, the finish port
is enabled, the guard is true, when the transition is exe-
cuted the component goes to location l0 and no assign-
ment is executed,

– (l1, fail, true, [ ], l0): from location l1, the fail port is
enabled, the guard is true, when the transition is exe-
cuted the component goes to location l0 and no assign-
ment is executed.

The two tasks have an identical model. A task is composed
of a set of locations {l0, l1, l2, l3}, a set of ports {start, exec,
finish, fail, reset}, and a set of transitions containing

– (l0, start, true, [ ], l1): from location l0, the start port is
enabled, the guard is true, when the transition is exe-
cuted the component goes to location l1 and no assign-
ment is executed,

– (l1, exec, true, [ ], l2): from location l1, the exec port is
enabled, the guard is true, when the transition is exe-
cuted the component goes to location l2 and no assign-
ment is executed,

– (l2, finish, true, [ ], l0): from location l2, the finish port
is enabled, the guard is true, when the transition is
executed the component goes back to location l0 and no
assignment is executed,

– (l2, fail, true, [ ], l3): from location l2, the fail port is
enabled, the guard is true, when the transition is exe-
cuted the component goes to location l3 and no assign-
ment is executed,

– (l3, reset, true, [ ], l0): from location l3, the reset port
is enabled, the guard is true, when the transition is
executed the component goes back to location l0 and no
assignment is executed.

Task1 and Task2 must synchronize with Controller to start/
finish execution or to notify execution failure. Each Taski

synchronizes with the controller using three connectors:

– ({Taski .start, Controller.start}, {(Taski .start,
false), Controller.start,false)},true, [ ]),

– ({Taski .finish, Controller.finish}, {(Taski .finish,

false), (Controller.finish,false)},true, [ ]),
– ({Taski .fail, Controller.fail}, {(Taski .fail,
false), (Controller.fail,false)},true, [ ]).

For priorities, we consider that a task always has priority
to start. This can be modeled easily in BIP by adding pri-
orities between connectors: the connectors containing the
port start always have more priority than other connec-
tors, that is, all interactions involved in Start1 and Start2

have more priority than the interactions involved in other
connectors, for example, {Task1.start, Controller.start} ≺
{Task2.start, Controller.start}.

The composite component TasksControlled in this exam-
ple is composed of a set of components {Task1, Task2,

Controller} and the connectors described above.
The initial state is Init = (Task1.l0, Controller.l0,

Task2.l0), following Definition 10, the system is (Tasks
Controlled, Init).

4 An RV framework for component-based systems

We adapt classical RV frameworks dedicated to monitor-
ing of sequential monolithic programs to CBS in general,
and, to BIP systems in particular. We consider B =
π(Γ ({B1, . . . , Bn})), i.e., a priority modelπ over a composite
component Γ ({B1, . . . , Bn}), whose runtime semantics is
π(C), defined by an LTS (Q, A,−→π ) as introduced in Def-
initions 7 and 8.

123

Author's personal copy



180 Y. Falcone et al.

4.1 Specifications for component-based systems

For CBS, we consider state-based specifications to express
some desired behavior. We do not assume any particular spec-
ification formalism. We require the formalism to express
a subset of the possible linear-time behaviors of CBS. In
order to make our approach as general as possible, we only
describe the events of the possible specification language.
We also assume the existence of a monitor synthesis algo-
rithm from this specification formalism (see Sect. 4.2). For

this purpose, the existing solutions (e.g., [4,12–15]) provided
by the research efforts in RV can be easily adapted.

We follow a classical approach where events are built over
a set of atomic propositions AP. Intuitively, an atomic propo-
sition is a Boolean expression over the states of the compo-
nents (e.g., “in the component B1, the variable x should be
positive if in the component B2 the variable y is negative”).
More formally, an event of π(C) is defined as a state for-
mula over the atomic propositions expressed on components
involved in π(C). Let AP denote the set of atomic proposi-
tions defined with the following grammar:

Atom ::= component1.var1 == component2.var2

| component.var == val | component.var ≥ val

| component.loc == a_location

| component.port == a_port

component.var ::= x ∈ ∪i∈[1,n] Bi .X

val ::= v ∈ Data

a_location ::= s ∈ ∪i∈[1,n] Bi .L

a_port ::= p ∈ ∪i∈[1,n] Bi .P

An atomic proposition consists in a comparison of the values
of some variables, the current location, or the port that is on
the last executed transition.

Let Σ denote the set of events defined with the following
grammar:

Event ::= Event ∨ Event | Event ∧ Event

| Event ⇒ Event | ¬Event | Atom

In the remainder of this article, we suppose that all the atomic
propositions appearing in the property affect its truth-value.3

We use Prop :Σ → 2AP for the set of atomic propositions
used in an event e ∈ π(C). More formally, Prop is defined
inductively by using the following rules:

Prop(component1.var1 == component2.var2)
def= {component1.var1 == component2.var2},

Prop(component.var == val)
def= {component.var == val},

Prop(component.var ≥ val)
def= {component.var ≥ val},

Prop(component.loc == a_location)
def= {component.loc == a_location},

Prop(component.port == a_port)
def= {component.port == a_port},

Prop(e1 ∨ e2)
def= Prop(e1) ∪ Prop(e2),

Prop(e1 ∧ e2)
def= Prop(e1) ∪ Prop(e2),

Prop(e1 ⇒ e2)
def= Prop(e1) ∪ Prop(e2),

Prop(¬e)
def= Prop(e).

For ap ∈ Prop(e), used(ap) is the list of pairs formed by
the components and the variables (or locations or ports) that
are used to define ap. The expression used(ap) is defined
using a pattern-matching:

used (ap) = match (ap) with
| component1.var1 == component2.var2 →

(component1,var1) · (component2,var2)

| component.var == val → (component,var)
| component.var ≥ val → (component,var)
| component.loc == a_location → (component,loc)
| component.port == a_port → (component,port)

Example 3 (Atomic propositions, events) Suppose we want
to monitor the execution ordering of the tasks involved in
the composite component introduced in Example 2. Note
that such kind of properties is very difficult to enforce with
priorities. To verify such properties, we can observe the exe-
cution of the transitions involving the start ports of the two
components. The set of atomic propositions of such a prop-
erty is {Task1.port == start, Task2.port == start}. The set
of events is equal to the set of atomic propositions. More-
over, we have used(Task1.port == start) = (Task1, port)
and used(Task2.port == start) = (Task2, port).

3 Otherwise, some simplification of the specification shall be performed
beforehand. For instance, such simplification should rule out events of
the form a ∨ ¬a where a ∈ Atom.

123

Author's personal copy



Runtime verification of component-based systems 181

4.2 Verification monitors

A monitor is a procedure that consumes events fed by a BIP
system and producing an appraisal on the sequence of events
read so far. We follow a general approach in which verifi-
cation monitors are deterministic finite-state machines that
produce a sequence of truth-values (a sequence of verdicts)

in an expressive 4-valued truth-domain B4
def={⊥,⊥c,�c,�},

as introduced in [3] and used in [4]. B4 consists of the possible
evaluations of a sequence of events and its possible futures
relatively to the specification used to generate the monitor:

– The truth-value �c (resp. ⊥c) denotes “currently true”
(resp. “currently false”) and expresses the satisfaction
(resp. violation) of the specification “if the system exe-
cution stops here”.

– The truth-value � (resp. ⊥) is a definitive verdict denot-
ing the satisfaction (resp. violation) of the specification:
the monitor can be stopped.

Remark 1 (Other verdict domains and monitorable proper-
ties) As demonstrated in [4], several more restricted verdict
domains can be derived from B4 so as to fit a given specifica-
tion language. The set of verdicts (used for monitoring) deter-
mines the so-called monitorable properties (cf. [16]). Using
the four-valued domain B4 allows to monitor any linear-time
specification over finite executions, as demonstrated in [17].
Using a less expressive verdict domain such as B3 (defined
in [18]) is also possible up to a restriction on the monitorable
properties (cf. [17,18]). In this paper, we present the monitor-
ing framework with the most general verdict domain B4 and
thus do not consider any restriction on the set of monitorable
properties. See [4,17] for more details.

We define the notion of monitor for a specification defined
relatively to a set of events Σ expressed on a composite
component. Monitors are deterministic Moore (finite-state)
machines emitting a verdict on each state.

Definition 11 (Monitor) A monitor A is a tuple (�A, θA
init,

Σ,−→A, B4, verA). The finite set �A denotes the control
states and θA

init ∈ �A is the initial state. The complete function
−→A: �A ×Σ → �A is the transition function. In the fol-
lowing, we abbreviate −→A (θ, a) = θ ′ by θ

a−→A θ ′. The
function verA : �A → B4 is an output function, producing
verdicts (i.e., truth-values) in B4 from control states.

Such monitors are independent of any specification for-
malism used to generate them and are able to check any
specification expressing a linear temporal specification [4].
Intuitively, runtime verification of a specification with such
monitors works as follows. An execution sequence is
processed in a lock-step manner. On each received event,
the monitor produces an appraisal on the sequence read so

Fig. 4 The monitor Aalt for the alternation of task executions

far. For a formal presentation of the semantics of the monitor
and a formal definition of sequence checking, refer to [4].

Example 4 (Monitor) Let us write a monitor Aalt to run-
time verify the behavior of the composite component intro-
duced in Example 2. The considered property states that the
execution of Task1 and Task2 should alternate strictly,
starting with Task2. The monitor Aalt is defined by the five-
tuple (�Aalt , θ

Aalt
init ,ΣAalt ,−→Aalt , B4, verAalt ). A graph-

ical representation of Aalt is depicted in Fig. 4. The
set of states is �Aalt = {θ0, θ1, θ2}. The initial state is
θ

Aalt
init = θ0. The set of events is ΣAalt = {Task1.port ==

start, Task2.port == start} with e1
def=Task1.port == start

and e2
def=Task2.port == start. The set of transitions is

−→Aalt = {(θ0, e1, θ2), (θ0, e2, θ1), (θ0,¬(e1∨e2), θ0), (θ1,

e1, θ0), (θ1, e2, θ2), (θ1,¬(e1 ∨ e2), θ1), (θ2,true, θ2)}.
Only two verdicts from B4 are needed to monitor this
property: �c and ⊥. The verdicts associated with states
through the verdict function are as follows: verAalt (θ0) =
verAalt (θ1) = �c and verAalt (θ2) = ⊥, i.e., the property is
“currently true” when the monitor is in states θ0 and θ1 and
(definitely) false when Aalt is in θ2.

In the remainder, we consider a monitor A = (�A, θA
init,

Σ,−→A, B4, verA).

4.3 Runs and traces of BIP systems

Runtime monitors observe the evolving state of the system
by processing a so-called run of the system. Intuitively, a run
is the sequence of all states reached by a BIP system during
its execution. However, when monitoring a given property of
a system, some information related to the current state of a
system can be safely discarded to evaluate the property. In
this subsection, we present the notion of run of a CBS, and
how, using the vocabulary of the monitored property, we can
discard some information in the run. Such an abstraction of
a run is called a trace.
Runs of BIP systems. Each state q ∈ Q in the LTS of a com-
ponent can be seen as an environment that maps variables
used in the specification over an alphabet Σ to values. In

123

Author's personal copy



182 Y. Falcone et al.

each atomic component, we introduce two variables loc and
port to represent the current location and the last executed
port, respectively. Then, to construct the universe of possible
environments, we build the set of functions that are consis-
tent merges (using operator

⊎
introduced in Sect. 2) of the

functions from variables to data, from the variable Bi .loc to
Bi .L , from the variable port to Bi .P ∪ {null}, for each
atomic component Bi , i ∈ [1, n].
Definition 12 (Environments in a component) The universe
of possible environments for π(C) is

Env
def=

⊎ { [ ∪i∈[1,n] Bi .X → Data
]
,[

B1.loc → (B1.L)], . . . , [Bn .loc → (Bn .L)
]
,[

B1.port → B1.P ∪ {null}], . . . ,[
Bn .port → Bn .P ∪ {null}]}

where Bi .loc and Bi .port are variables containing a location
name and a port name for each atomic component Bi , respec-
tively. The environment defined by a state q = (q1, . . . , qn),
where qi = (li , vi , pi ) for each i ∈ [1, n], is [[q]] ∈ Env such
that

[[q]]def= ∪i∈[1,n]
(( ∪i∈[1,n] {Bi .loc �→ li }

) ∪
( ∪xi ∈Bi .X {xi �→ vi }

) ∪ ( ∪i∈[1,n] {Bi .port �→ pi }
))

.

After an interaction bringing the component in a state q,
an event e is fired if the state-formula associated with e holds,
noted q � e, ı.e., when e evaluates to true in [[q]]. Formally,
q satisfies e (denoted by q � e), as defined by the following
rules:

q � (component1.var1 == component2.var2)

⇔ [[q]](component1.var1) == [[q]](component2.var2),

q � (component.var == val) ⇔ [[q]](component.var) == val,

q � (component.var ≥ val) ⇔ [[q]](component.var) ≥ val,

q � (component.loc == a_location)

⇔ [[q]](component.loc) == a_location,

q � (component.port == a_port)

⇔ [[q]](component.port) == a_port,

q � (e1 ∨ e2) ⇔ (q � e1) ∨ (q � e2),

q � (e1 ∧ e2) ⇔ (q � e1) ∧ (q � e2),

q � (e1 ⇒ e2) ⇔ (q � e1) ⇒ (q � e2),

q � (¬e) ⇔ ¬(q � e).

Note that, after reaching a state of the LTS corresponding to
the runtime behavior of a BIP component, it is always possi-
ble to determine whether an event is fired or not by checking
whether the corresponding state-formula holds or not.

Some constraints on the monitors. For the monitor to properly
evaluate events in states, we impose two constraints on their
events and transition function, called readiness and determin-
ism. These constraints intuitively state that the events labeling
the transitions of an abstract monitor are such that exactly
one transition will be fired. This condition is expressed
using the Boolean conditions corresponding to the events
of the automaton. The following definition formalizes these
properties:

Definition 13 (Readiness and determinism of monitors) The
readiness and determinism properties of a monitor A =
(�A, θA

init,Σ,−→A, B4, verA) are defined as follows: for

θ ∈ �A, let events(A, θ) = {e ∈ Σ | θ
e−→}. Then

∀θ ∈ �A,∀q ∈ Env : q |� ∨
e∈events(A,θ) e (readiness)

∧ ∀e1, e2 ∈ events(A, θ) : e1 = e2 ⇒ q |� e1 ∧ e2 (determinism)

Readiness means that, in any state, the disjunction of Boolean
conditions corresponding to the possible events evaluates to
true. Determinism means that, in any state, each pairwise
conjunction of Boolean conditions corresponding to the pos-
sible events evaluates to false. Readiness and determinism
ensure that in a given state, exactly one transition is fired when
the monitor receives any event. Thus, given a behavior of the
underlying system, only one possible verdict is dictated by
the monitor.4

Monitoring a run of a composite component. We present the
notion of run of a composite component and how the run is
monitored.

Definition 14 (Run of a composite component) A run of
length m of a system (B, I ni t) whose runtime seman-
tics is π(C) = (Q, A,−→π ) is the sequence of envi-
ronments [[q0]] · [[q1]] · · · [[qm]] such that q0 = I ni t , and,

∀i ∈ [0, m − 1] : qi ∈ Q ∧ ∃ai ∈ A : qi ai−→π qi+1.

Example 5 (Run of T asks Controlled) Consider the fol-
lowing execution scenario for the composite component
TasksControlled: Task2 gets executed, then Task1 gets exe-
cuted and fails, and then Task2 gets executed twice. The

4 This is a reasonable and usual hypothesis in runtime verification since
one expects to characterize the behavior of an implementation in a deter-
ministic way. Moreover, these two constraints are easily and naturally
ensured by a monitor generation tool using specification written in a
higher-level formalism as input. Finally, note that readiness corresponds
to the standard concept of completeness in automata theory.

123

Author's personal copy



Runtime verification of component-based systems 183

desired property (stating that the execution of Task1 and
Task2 should alternate strictly, starting with Task2), is thus
violated by this execution. This execution yields the run
[[q0]] · [[q1]] · · · [[q11]], where

[[q0]] = {Task1.loc = l0, Task1.port = null}
∪{Controller.loc = l0, Controller.port = null}
∪ {Task2.loc = l0, Task2.port = null},

[[q1]] = {Task1.loc = l0, Task1.port = null}
∪{Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l1, Task2.port = start},

[[q2]] = {Task1.loc = l0, Task1.port = null}
∪{Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l2, Task2.port = exec},

[[q3]] = {Task1.loc = l0, Task1.port = null}
∪ {Controller.loc = l0, Controller.port = finish}
∪ {Task2.loc = l0, Task2.port = finish},

[[q4]] = {Task1.loc = l1, Task1.port = start}
∪{Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l0, Task2.port = finish},

[[q5]] = {Task1.loc = l2, Task1.port = exec}
∪ {Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l0, Task2.port = finish},

[[q6]] = {Task1.loc = l3, Task1.port = fail}
∪ {Controller.loc = l0, Controller.port = fail}
∪ {Task2.loc = l0, Task2.port = finish},

[[q7]] = {Task1.loc = l3, Task1.port = fail}
∪ {Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l1, Task2.port = start},

[[q8]] = {Task1.loc = l0, Task1.port = reset}
∪ {Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l1, Task2.port = start},

[[q9]] = {Task1.loc = l0, Task1.port = reset}
∪ {Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l2, Task2.port = exec},

[[q10]] = {Task1.loc = l0, Task1.port = reset}
∪ {Controller.loc = l0, Controller.port = finish}
∪ {Task2.loc = l0, Task2.port = finish},

[[q11]] = {Task1.loc = l0, Task1.port = reset}
∪ {Controller.loc = l1, Controller.port = start}
∪ {Task2.loc = l1, Task2.port = start}.

Definition 15 (Monitoring a run of a system) The verdict
[[A]](q0 ·q1 · · · qm) stated by A for a run [[q0]]·[[q1]] · · · [[qm]]
is verA(θm) where ∀i ∈ [0, m − 1] : θi

e−→A θi+1 and e

is the unique event5 in θi such that qi+1 |� e, θi ∈ �A and
θ0 = θA

init .

Example 6 (Monitoring a run of TasksControlled) Monitor-
ing the run [[q0]] · [[q1]] · · · [[q11]] of Example 5 with the
monitor Aalt introduced in Example 4 yields a verdict for
each of the prefixes of [[q0]] · [[q1]] · · · [[q11]]. More pre-
cisely, we have ∀i ∈ [0, 10] : [[Aalt ]](q0 · · · qi ) = �c and
[[Aalt ]](q0 · · · q11) = ⊥.

Building a trace from a run. One of the current challenges in
RV is to alleviate the performance impact on the target pro-
gram. We tackle this challenge by minimizing the informa-
tion sent to the monitor. Making the monitor processing the
run of the target program directly would yield a prohibitive
overhead. Our proposal is to send to the monitor only a rele-
vant abstraction of the run, called a trace. Intuitively, given a
run, the obtained trace is an abstraction that permits to evalu-
ate the specification as if the run was not abstracted, filtering
many irrelevant events that are guaranteed to be irrelevant
for the monitor. Given Spec(Σ), a specification defined over
a vocabulary of events Σ , we design an abstraction function
↓Σ

α building this minimal abstraction. We thus define a notion
of informativeness of environments built from states. Intu-
itively, an environment ρ1 is less informative than an envi-
ronment ρ2 if it has less variables defined, ı.e., ρ1 � ρ2 if
Dom(ρ1) ⊆ Dom(ρ2) and ∀x ∈ Dom(ρ1) : ρ1(x) = ρ2(x).
When monitoring a BIP system our aim will be to instrument
it so that the least informative environment is automatically
built. Moreover, according to property evaluation, monitor-
ing the instrumented system should be equivalent to moni-
toring the system with the global state.

Definition 16 (Abstraction function) The abstraction func-
tion ↓Σ

α : Q → Env is the function such that ∀q ∈ Q,∀x ∈
Dom([[q]]) :

↓Σ
α (q)(Bi .x) =

{ [[q]](Bi .x) if ∃e ∈ Σ, ∃ap ∈ Prop(e) : (Bi , x) ∈ used(ap),

undef otherwise.

It turns out that it might become impossible to evaluate
some atomic propositions in some abstracted environment:
when an abstraction function “erases” a piece of informa-
tion needed to evaluate an event e, it becomes impossible to
determine whether a state q satisfies e. Intuitively, the law
of excluded middle does not hold with some environments.
More formally

∀q ∈ Q,∀e ∈ Σ : (∃ap ∈ Prop(e) : (Bi , x) ∈ used(ap)

∧[[q]](Bi .x) = undef
) ⇒ ¬(q � e) ∧ ¬(q � e).

However, this situation does not arise with the abstrac-
tion function defined in Definition 16. Indeed, the proposed

5 This event is unique because of determinism (see Definition 13).

123

Author's personal copy



184 Y. Falcone et al.

abstraction function preserves event evaluation because it is
sound and complete. Soundness means that the abstracted
evaluations are the same as the concrete evaluations. Com-
pleteness means that evaluation of all specification events
remains possible: abstraction does not erase the needed
information from the environment. More formally, sound-
ness and completeness are expressed by the following
property:

Property 1 (Abstraction preserves event evaluation) The
previous abstraction function adheres to the two following
principles:

– soundness: ∀e ∈ Σ,∀q ∈ Q : ( ↓Σ
α (q) � e ⇒ q �

e
) ∧ ( ↓Σ

α (q) � e ⇒ q � e
)
,

– completeness: ∀e ∈ Σ,∀q ∈ Q : (
q � e ⇒↓Σ

α (q) �
e
) ∧ (

q � e ⇒↓Σ
α (q) � e

)
.

Proof Soundness is a straightforward consequence of the
definition of the abstraction function. The proof of the com-
pleteness property is done by induction on the structure of
the event.

– Induction basis. Consider an event e ∈ AP.

• Let us treat the case where e is of the form
component1.var1 == component2.var2. That is,
used(e) = (component1,var1) · (component2,var2).
Moreover, because e ∈ Σ then for all q, we have: ↓Σ

α

(q)(component1.var1) = [[q]](component1.var1) and
↓Σ

α (q)(component2.var2) = [[q]](component2.var2)

(see Definition 16). If q � e, it means that [[q]]
(component1.var1) == [[q]](component2.var2), and
then ↓Σ

α (q)(component1.var1) == ↓Σ
α (q)

(component2.var2) which implies that ↓Σ
α (q) � e.

If q � e, it means that [[q]](component1.var1) =
[[q]](component2.var2). Consequently, ↓Σ

α (q)

(component1.var1) =↓Σ
α (q)(component2.var2) and

then ↓Σ
α (q) � e.

• Let us treat the case where e is of the form compo-
nent.var == val. That is, used(e) = (component,var).
Moreover, because e ∈ Σ then for all q, we have
↓Σ

α (q)(component.var) = [[q]](component.var)
(see Definition 16). If q � e, it means that [[q]]
(component.var) == val, and then ↓Σ

α (q)

(component.var) == val which implies that ↓Σ
α

(q) � e. If q � e, it means that [[q]](component.var)
= val. Consequently, ↓Σ

α (q)(component.var) = val
and then ↓Σ

α (q) � e.
• The same principle can be followed in the cases where

e is of the following form: component.var ≥ val, or
component.loc == a_location, and component.port
== a_port.

– Induction step. Let us consider two events e1, e2 ∈ Event
such that the completeness property holds. We consider
now an event e ∈ Event built on e1 and e2. We distinguish
several cases according to how e is built.

• Let us treat the case where e is of the form e1 ∨ e2. If
(q � e) ⇒ (q � e1) ∨ (q � e2). As Prop(e1) ⊆
Prop(e) and Prop(e2) ⊆ Prop(e), the induction
hypothesis gives (↓Σ

α (q) � e1) ∨ (↓Σ
α (q) �

e2) ⇒↓Σ
α (q) � (e1 ∧ e2). The same principle is

applied for the case where q � e
• The same principle can be followed in the cases where

e is of the following form: e1 ∧e2, e1 ⇔ e2, or ¬e1.��

Definition 17 (Trace of a composite component) The trace
defined from a run [[q0]] · [[q1]] · · · [[qm]] through an abstrac-
tion function ↓Σ

α is the sequence of environments defined as
↓Σ

α (q0) · ↓Σ
α (q1) · · · ↓Σ

α (qm).

Example 7 (Trace of a composite component) From the run
[[q0]] · [[q1]] · · · [[q11]] described in Example 5, through the

abstraction function ↓ΣAact
α , we obtain the trace ↓ΣAact

α

(q0)· ↓ΣAact
α (q1) · · · ↓ΣAact

α (q11) where

↓ΣAact
α (q0) = {Task1.port = null} ∪ {Task2.port = null},

↓ΣAact
α (q1) = {Task1.port = null} ∪ {Task2.port = start},

↓ΣAact
α (q2) = {Task1.port = null} ∪ {Task2.port = exec},

↓ΣAact
α (q3) = {Task1.port = null} ∪ {Task2.port = finish},

↓ΣAact
α (q4) = {Task1.port = start} ∪ {Task2.port = finish},

↓ΣAact
α (q5) = {Task1.port = exec} ∪ {Task2.port = finish},

↓ΣAact
α (q6) = {Task1.port = fail} ∪ {Task2.port = finish},

↓ΣAact
α (q7) = {Task1.port = fail} ∪ {Task2.port = start},

↓ΣAact
α (q8) = {Task1.port = reset} ∪ {Task2.port = start},

↓ΣAact
α (q9) = {Task1.port = reset} ∪ {Task2.port = exec},

↓ΣAact
α (q10) = {Task1.port = reset} ∪ {Task2.port = finish},

↓ΣAact
α (q11) = {Task1.port = reset} ∪ {Task2.port = start}.

The notion of trace evaluation by a monitor directly fol-
lows from the notion of run evaluation. Moreover, the follow-
ing theorem, which is a direct consequence of Property 1,
states that, for runtime verification, there is no difference
regarding property evaluation to process the trace instead of
the run:

Theorem 1 (Trace evaluation versus run evaluation by a
monitor) For A defined on Σ , the abstraction function ↓Σ

α ,
and a run [[q0]] · [[q1]] · · · [[qm]], we have

[[A]]([[q0]] · [[q1]] · · · [[qm ]]) = [[A]](↓Σ
α (q0) · ↓Σ

α (q1) · · · ↓Σ
α (qm )

)
.

Proof By induction on the length of the trace and using Prop-
erty 1. ��

In the next section, we will instrument BIP systems in
such a way that, given a specification, the minimal abstraction
function (information-wise) is dynamically generated.

123

Author's personal copy



Runtime verification of component-based systems 185

5 Verifying the runtime behavior of BIP systems

This section presents how we instrument and integrate
an abstract monitor A = (�A, θA

init,Σ,−→A, B4, verA)

for some property into a BIP system
(
Γ ({B1, . . . , Bn}),

(l1
0 , . . . , ln

0 )
)

made of a composite component Γ ({B1, . . . ,

Bn}), a priority model π where the initial locations of the
atomic components B1, . . . , Bn are l1

0 , . . . , ln
0 , respectively.

We propose several transformations of the initial BIP sys-
tem. Our transformations result in a BIP system where the
property is automatically runtime checked against the execu-
tion of the system. More precisely, the work-flow proceeds
as follows (see Fig. 5):

1. From the input abstract monitor we extract the list of
components and their corresponding variables used by
the monitor (Sect. 5.1).

2. For each component Bi where i ∈ [1, n], and its corre-
sponding variables extracted from the monitor we instru-
ment the selected components so as to observe these vari-
ables (Sect. 5.2).

3. From the monitor we generate the corresponding atomic
component: the initial monitor is translated in BIP. This
component can receive the state of the underlying system
and then process the information to reach a verdict. Then,
we add the generated component to the input composite
component (Sect. 5.3).

4. Finally, we add the new connections between the instru-
mented atomic components and the monitor in BIP
(Sect. 5.4).

5.1 Extraction of the information needed

The first step is to retrieve from the monitor the set of compo-
nents and their corresponding variables that should be mon-
itored. For each selected component, transitions are instru-
mented to observe the just needed set of variables. For a
specification expressed over Σ(π(Γ ({B1, . . . , Bn}))) and its
monitor, comp(Σ) is the subset of {Bi | i ∈ [1, n]} corre-
sponding to the set of components that should be monitored.
We also define occur(Σ) to be the subset of {Bi .loc | i ∈
[1, n]} ∪ {Bi .port | i ∈ [1, n]} ∪ ∪i∈[1,n] Bi .X

denoting the set of variables used in the specification. Then
from occur(Σ), we sort the variables according to the com-
ponent Bi (where Bi ∈ comp(Σ)) that are related to c_v ∈[[1, n] → occur(Σ)

]
such that c_v(i) is the set of variables

related to component Bi . Formally

comp(Σ) = {Bi | ∃e ∈ Σ, ∃ap ∈ Prop(e),

∃x ∈ Bi .X : (Bi , x) ∈ used(ap)}, (1)

occur(Σ) = {Bi .x | ∃e ∈ Σ, ∃ap ∈ Prop(e) :
(Bi , x) ∈ used(ap) ∧ x ∈ Bi .X}, (2)

∀i ∈ [1, n] : c_v(i) = {B.x ∈ occur(Σ) | B = Bi } (3)

5.2 Instrumentation of atomic components

For a composite component Γ ({B1, . . . , Bn}), we transform
each atomic component Bi , i ∈ [1, n], so that Bi is able to
interact with the monitor, if necessary.

Definition 18 (Instrumenting atomic components) Given
B = (P, L , T, X, {gτ }τ∈T , { fτ }τ∈T ) such that B = Bi ∈
{B1, . . . , Bn} for some i ∈ [1, n], we define a new atomic
component

Bm =
{

B if B /∈ comp(Σ)

(Pm , Lm , T m , Xm , {gτ }τ∈T m , { fτ }τ∈T m ) otherwise

where, (Pm, Lm, T m, Xm, {gτ }τ∈T m , { fτ }τ∈T m ) is defined
as follows:

– Xm = X ∪ {loc | Bi .loc ∈ c_v(i)} ∪ {port | Bi .port ∈
c_v(i)}where loc and port are initialized to li

0 andnull,
respectively;

– Pm = P ∪ {pm[c_v(i)]},
– Lm = L ∪ {lτ }τ∈inst (T ), where, inst (T ) is defined as

follows:

inst (T )

=
⎧⎨
⎩

T if {Bi .loc, Bi .port}
∩c_v(i) = ∅

{τ ∈ T | c_v(i) ∩ var( fτ ) = ∅} otherwise

where, var( fτ ) = {x ∈ X | x := f x (X) ∈ fτ };
– T m = T \ inst(T )∪⋃

τ∈inst(T ){in(τ ), out(τ )}, where, for
a given τ = (l, p, gτ , fτ , l ′), we simultaneously generate
in(τ ) and out(τ ) as follows:

• in(τ ) = (l, p, gτ , fin(τ ), lτ ), where,

fin(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

fτ if Bi .loc /∈ c_v(i) ∧ Bi .port /∈ c_v(i)
fτ ; [loc := “l”] if Bi .loc ∈ c_v(i) ∧ Bi .port /∈ c_v(i)
fτ ; [port := “p”] if Bi .loc /∈ c_v(i) ∧ Bi .port ∈ c_v(i)
fτ ; [loc := “l”; port := “p”] if Bi .loc ∈ c_v(i) ∧ Bi .port ∈ c_v(i)

• out(τ ) = (lτ , pm,true, fout(τ ), l ′), where fout(τ ) = [ ].

123

Author's personal copy



186 Y. Falcone et al.

Fig. 5 Overview of the work-flow

Fig. 6 Instrumentation of an atomic component

We denote Bm = Instrum(B). In Xm, loc and port are
variables containing a location name and a port name, respec-
tively. In Pm, pm designates the fresh port created for inter-
acting with the monitor. Finally, inst(T ) is the set of tran-
sitions that should be instrumented: we instrument atomic
components whose variables are needed by the monitor. T m

designates the transitions in the instrumented atomic com-
ponent. We instrument the transitions in the corresponding
atomic component that are modifying a variable involved
with the monitor. If the state or the port of an atomic com-
ponent is needed, all transitions are instrumented. For each
transition τ ∈ inst(T), we add a fresh new transition to inter-
act with the monitor. Transitions are also instrumented by
adding new statements to record the state and the port name,
if necessary.

Example 8 (Instrumentation of an atomic component) Fig-
ure 6 illustrates the instrumentation of the atomic compo-
nent depicted on the left-hand side into the instrumented
component on the right-hand side. For instance, suppos-
ing that the state should be monitored, from the transition
τ0 = (l0, p1,true, fτ0 , l1) with fτ0 = [done := 0],
we create a new state lτ0 and the transitions in(τ0) =
(l0, p1,true, fin, lτ0) with fin = [done := 0; loc :=
“l0”; port := “p1”], and out(τ0) = (lτ0 , p1,true, [ ], l1).

5.3 Creating an atomic component from a monitor

We present how an abstract monitor A is transformed into a
BIP monitor MA that mimics the behavior of A. The gener-
ated BIP monitor receives events from the monitored system
and processes them to produce the same verdicts as the initial
abstract monitor. To do so, we expect monitors to adhere to
two properties that will be used to ensure that the monitored
system behave as the initial system.

Transformation of an abstract monitor into a BIP monitor
From an abstract monitor (cf. Definition 11) given as an XML
file, we construct the corresponding atomic component in
BIP that interacts with the instrumented atomic components
and produces verdicts following the behavior of the original
monitor.

Definition 19 (Building monitors in BIP) From a monitor
A = (�A, θA

init,Σ,−→A, B4, verA), we define the corre-
sponding atomic component MA = (P, L , T, X, {gτ }τ∈T ,

{ fτ }τ∈T ) as an atomic component implementing its behavior:

– X = occur(Σ),
– P = {pm[X ], pintern[∅]},
– L = �A ∪ {qmi | qi ∈ �A} where each qmi state is a

fresh state associated with a qi ,
– T = T1 ∪ T2, where

• T1 = {(qi , pm,true, [ ], qmi ) | qi ∈ �A},
• T2 = {(qmi , pintern, a,print(verA(q ′

i )), q ′
i ) | qi

a−→A q ′
i ∧ (qi , pm,true, [ ], qmi ) ∈ T1}.

We note MA = BuildMon(A) and call MA a BIP mon-
itor. T1 denotes the set of transitions used to interact with
the composite component. T2 is the set of transitions used to

123

Author's personal copy



Runtime verification of component-based systems 187

display verdicts following the behavior of the original moni-
tor A. The set of variables of the monitor is the set of variables
used in the specification (as in Sect. 5.1).

Example 9 (Transforming an abstract monitor into a BIP
monitor) Figure 7 illustrates the transformation of Defini-
tion 19. The atomic component in Fig. 7a is transformed into
the BIP monitor in Fig. 7b.

The following corollary states that if the initial abstract
monitor adheres to the readiness and determinism properties
(see Definition 13), then similar properties hold on the guards
of the generated monitor.

Corollary 1 (Generating a BIP monitor preserves readi-
ness and determinism) Under the hypothesis that A adheres
to readiness and determinism, the BIP monitor MA =
BuildMon(A) adheres to the readiness and determinism
properties in the following sense. We transpose the notion
of readiness and determinism defined for abstract monitors,
for l ∈ L; let guards(MA, l) = {gτ | τ = (l, _, _)} be the
set of guards of the transitions that can be fired in location l
in the BIP monitor MA. We have

∀l ∈ L ,∀v ∈ [X → Data] :∨
g∈guards(MA,l) g(v) (readiness)

∧ ∀g1, g2 ∈ guards(MA, l) : g1 = g2 ⇒ ¬(g1(v) ∧ g2(v)) (determinism)

5.4 Connections

The next step of our transformation is to define the connectors
between

– π(Γ ({Bm
1 , . . . , Bm

n })) the composite component con-
sisting of instrumented atomic components where for
i ∈ [1, n] Bm

i = Instrum(Bi) (see Definition 18), already
connected with a set of connectors Γ with a priority
model π , and

– the BIP monitor MA = BuildMon(A) obtained from an
abstract monitor A, (see Definition 19).

This is done by the following transformation that aug-
ments the existing set of connectors Γ and the priority model
π .

Definition 20 (Connections) Given MA a BIP monitor and
π(Γ ({Bm

1 , . . . , Bm
n })) a composite component obtained as

described above, the monitored composite component is
πm(Γ m(Bm

1 , . . . , Bm
n , MA)), where

– Γ m = Γ ∪ {γ1, γ2} where γ1 = (Pγ1, tγ1 ,true, Fγ1),

γ2 = (MA.pintern, tγ2 ,true,∅), and,

• Pγ1 = {Bi .pm[Xm
i ]}Bi ∈comp(Σ) ∪ {MA.pm};

• tγ1 : Pγ1 → {true,false}, where ∀Bi ∈
comp(Σ)tγ1(Bi .pm) = true and tγ1(MA.pm) =
false;

• Fγ1 , the update function, is the identity data transfer
from the variables in the ports of the interacting com-
ponents Bi (i ∈ [1, n]) to the corresponding variables
in the monitor port;

• the type of the port MA.pintern in the connector γ2

is synchron (tγ2(MA.pintern) = false, that is, one
and only one interaction is defined by this connector:
γ2, see Definition 5);

– πm = π∪{(a, a′) | a ∈ ∪γ∈Γ I(γ)∧a′ ∈ I(γ1)∪I(γ2)}.

Connecting the instrumented atomic components and the
BIP monitor consists in modifying the set of connectors and
the priority model. Two connectors are added: γ1, used by
the monitor to retrieve the state of the system (e.g., the values
of some variables), and, γ2 (which is internal), used by the
monitor to determine the verdict and move to a state where the
monitor can receive further information from the monitored

system. The priority model is augmented by giving more
priority to the interactions defined by γ1 and γ2 than those
defined by Γ (illustrated in Fig. 5). Modifying the priority
model ensures that, after execution of an interaction by the
involved components, the monitor produces a verdict before
involving other interactions.

5.5 Summary and discussion

We end up this section by providing a summary, giving intu-
ition about the correctness of our transformation and dis-
cussing some features about our framework. The complete
proof is in Appendix A.

Summary. We propose a four-stage approach to introduce
runtime verification for CBS. Our method directly integrates
an abstract monitor in a CBS. Thanks to the BIP framework,
monitoring of a specification can be taken into account at
design time. Moreover, the actual system, automatically gen-
erated from the augmented BIP model, is runtime-checked.

Some intuition about the correctness. The correctness proof is
omitted for the sake of readability and can be found in Appen-
dix A. We prefer here to give some intuition. The correctness
relies on the following informal arguments. Our transforma-

123

Author's personal copy



188 Y. Falcone et al.

(a) (b)

Fig. 7 Transforming an abstract monitor into a BIP Monitor

tions do not modify the data nor the behavior induced by the
initial interactions. No deadlock is introduced because the
synthesized BIP monitor is always ready to receive events
from the instrumented components. Finally, the priorities
introduced when connecting the instrumented components
to the BIP monitor (Sect. 5.4) guarantee that the monitor
always receives fresh data, i.e., the latest system state.

Remark 2 (About the initial state) In this section, we have
not detailed how the monitor retrieves the initial state of the
system. Actually, for each atomic component, the initial state
is modified so as to add a transition labeled with the port pm ,
synchronized with the monitor, so as to evaluate the initial
state of the system. Our implementation, RV-BIP, instrument
atomic components this way (see Sect. 6).

Remark 3 In the transformation proposed in this section, one
monitor is generated for the whole composite component. An
adaptation of this framework could consist in generating sev-
eral monitors according to the underlying architecture. Syn-
chronization between the monitors would have to be defined.

Remark 4 (Genericity and connection with other runtime
verification tools) The third stage of our transformation con-
sists in transforming an existing abstract monitor into a BIP
monitor mimicking its behavior. As we indicated before,
the abstract monitor can be obtained from various existing
tools dedicated to monitor synthesis. Another alternative, not
developed here, is to use external monitor connected to the
BIP monitor using the possibility of calling external func-
tions in BIP. Two placements of the monitor are possible
according to whether the monitor executes in the same mem-
ory space as the program (inline monitoring) or not (outline
monitoring). Inline monitoring is possible with a tool such as
R-MOR [19] where the BIP monitor directly queries a syn-
thesized C monitor. Outline monitoring, using potentially any
RV tool, remains also possible through some form of com-
munication initiated by some C code called by the monitor.

6 Implementation and evaluation

6.1 RV-BIP: a tool for runtime verification of BIP systems

RV-BIP is a Java implementation (∼2,500 LOC) of the trans-
formations described in Sect. 5 and is part of the BIP distribu-
tion. RV-BIP takes as input a BIP system and an abstract mon-
itor (an XML file) and then outputs a new BIP system whose
behavior is monitored. RV-BIP uses the following modules
(see Fig. 5):

– Extraction: this module extracts the components and the
corresponding variables used in the monitor. It takes as
input an abstract monitor and then outputs a list of com-
ponents with their corresponding variables,

– Atomic transformation: this module instruments the
atomic components selected from the extraction mod-
ule. It takes as input the output of the Extraction module
and a BIP file containing the original BIP system,

– Building monitor:this module takes as input an abstract
monitor and then outputs the corresponding atomic com-
ponent,

– Connections: this module constructs the new composite
component whose behavior is monitored. It takes as input
the output from the Atomic transformation and Building
Monitor modules and then outputs a new composite com-
ponent.

6.2 Case study: a robotic application

We experimented RV-BIP on a robotic application modeled in
BIP: Dala robot [20,21]. The Dala robot is a large and realistic
interactive system. Dala is an infinite system (in terms of
states and transitions) that cannot be directly model-checked.

The functional level of the Dala robot consists of a set
of modules. A module is composed of a set of services cor-
responding to different tasks and a set of posters where the
produced data are stored and exchanged between different
modules. In this section, due to lack of space, we present

123

Author's personal copy



Runtime verification of component-based systems 189

a simplified model of the modules with only the services
related to two properties among those we runtime checked.

Simple execution order.Figure 8 shows a simplified model
of Dala. It consists of three components: ProxyInterface,
InitService, and SetSpeedService. ProxyInterface communi-
cates with the control layer using the mailbox by executing
the transition check. InitService is responsible for the ini-
tialization of the module and SetSpeedService performs the
main task of the module. According to the received request,
Proxy triggers either InitService or SetSpeedService. Each
service has a status variable done: value 1 means that the
corresponding task has been successfully executed. A service
can be triggered through the port trigger, then it executes its
task by taking the transition start, and finally it returns to
the initial location by the transition finish when the task is
done. The execution order of some services is important. In
this module, InitService initializes the robot and should be
successfully executed before SetSpeedService sets the speed
parameter of the robot. This requirement is formalized as “ϕ1

and ϕ2”, see Table 1.

Data freshness. In Dala, the modules communicate by a set
of posters. Data generated by a module is written in a poster
that can be accessed by another module. The behavior of the
robot might depend on this data; therefore, it is necessary that
the data are up to date: the data read by a service of a module
(called Reader ) must be fresh enough compared with the
moment it has been written (by a service called Writer ). If
t1 and t2, respectively, are the moments of reading and writing
actions, then the difference between t2 and t1 must be less
than a specific duration δ, i.e., (t2 − t1) ≤ δ. In the model,
the time counter is implemented by a component Clock, and
the t ick transition occurs every second. This requirement is
formalized as “ϕ3 and ϕ4”, see Table 1.

Mutual exclusion. The services in robot Dala share the same
set of posters. Different services must not access and modify
data in a poster at the same time. This is an important and crit-
ical property for the robot to function correctly. We enforce
this property by adding a constraint: a poster allows a writer
to trigger its writing process only if the poster is not occupied
by any other writer. A variable concurrent is used to represent
the number of writers that are accessing a poster. This vari-
able is increased (or decreased) by one when a writer starts
(or finishes respectively) its writing process only if the poster
is not occupied by any other writer. A variable concurrent is
used to represent the number of writers that are accessing a
poster. This variable is increased (or decreased) by one when
a writer starts (or finishes respectively) its writing process.
The property is then checked by using this variable: a write
can use a poster only if the value of concurrent of the poster
is 0 meaning that no other writer is using the poster. This
requirement is formalized as “ϕ5”, see Table 1.

Complex execution order. A more complex property on the
execution order involves several writers: they periodically
write data to posters in a specific order. We considered this
property on three writers: Writer1, Writer2, and Writer3. The
writing order in every period must always be as follows:
Writer1 writes to a poster first, then Writer2 can write only
when Writer1 finishes, Writer3 can write only when Writer2

finishes, and the same for the next periods. To do so, each
writer is assigned a unique id that is passed to the poster when
it starts using the poster. This id is then used to determine the
last writer that used the poster. For example, when Writer2

wants to access a poster, it has to check whether the id stored
in the poster corresponds to Writer1 or not. This requirement
is formalized as “ϕ6”, see Table 1.

Experiments. Table 2 reports results on checking the ordering
and freshness properties of the Dala robot. Ordering violated
and Ordering guaranteed correspond to the model presented
in Fig. 8 where the first one might have the violation of the
ordering specification, whereas the second one always guar-
antees it. Likewise, Data freshness violated and Data fresh-
ness guaranteed correspond to the model presented in Fig. 8
where the first one might have the violation of the freshness
specification whereas the second always guarantees it.

In Table 2, the columns have the following meanings:
– the column time-no-monitor indicates the execution time

without monitoring, the column specification shows the
monitored specification

– the column optimized reports the execution time and the
overhead obtained with the monitor that interacts only
with the two components involved in the specification,
and

– the column not-optimized reports the execution time and
the overhead obtained with a monitor that observes all
components of the system (even the ones that are not
involved in the specification).

The results substantiate our claim that if we monitor only
components involved in the specification, using the abstrac-
tion technique defined in Sect. 4 and implemented in Sect. 5,
the overhead is reduced significantly.

7 Related work

We propose to overview and compare work related to the
approach proposed in this paper. We distinguish three kinds
of related approaches:
– static verification techniques (e.g., model-checking, sta-

tic analysis) dedicated to component-based systems
(Sect. 7.1);

– general-purpose runtime verification approaches dedi-
cated to monolithic programs (Sect. 7.2);

123

Author's personal copy



190 Y. Falcone et al.

Fig. 8 Two services involving
the ordering specification

Table 1 Formalization of the
requirements for the Dala robot ϕ1 : (e1)

∗ , where,

e1 : (SetSpeedService.port == trigger ∧ ProxyInterface.port == exec)

⇒ (InitService.done == 1)

ϕ2 : (e1 · e2)∗ , where,

e1 : InitService.port == finish

e2 : SetSpeedService.port == trigger

ϕ3 : (e1)
∗, where,

e1 : (Reader.port == read ∧ poster.port == read ∧ Clock.port == getTime)

⇒ (Clock.time − poster.wrtime ≤ 2)

ϕ4 : (e1 · (ε + e2 + e2 · e2) · e3)
∗, where,

e1 : Writer.port == write

e2 : Clock.port == tick

e3 : Reader.read == read

ϕ5 : (e1)
∗, where,

e1 : (poster.concurrent ≤ 1)

ϕ6 :
[[

(¬e2 + ¬e3)
∗.e1.(¬e2 + ¬e3)

∗].[
(¬e1 + ¬e3)

∗.e2.(¬e1 + ¬e3)
∗].[

(¬e1 + ¬e2)
∗.e3.(¬e1 + ¬e2)

∗]]∗
, where,

e1 : (Writer1.port == write ∧ poster.port == write ∧ clck.port == getTime)

e2 : (Writer2.port == write ∧ poster.port == write ∧ clck.port == getTime)

e3 : (Writer3.port == write ∧ poster.port == write ∧ clck.port == getTime)

– runtime verification approaches dedicated to component-
based systems (Sect. 7.3).

7.1 Static/design-time verification of component-based
systems

With the growing demand of scalability and complexity for
systems, it is even more important to use verification tech-
niques to determine whether a designed system meets its

requirements. Static formal verification [22–24] is based on
mathematical techniques to prove or disprove the correctness
of a design w.r.t. a given formal specification. These tech-
niques search for input patterns which lead to violations of
the desired properties and prove the correctness when such
violations do not exist. Existing formal verification meth-
ods for component-based systems are based on either static
analysis or on model-checking.

Approaches based on static analysis consist in comput-
ing specific invariants to abstract the state space. Although

123

Author's personal copy



Runtime verification of component-based systems 191

Table 2 Results of monitoring the requirements Execution order and Data freshness

Time-no-monitor Specification Optimized Not-optimized

Time (s) ovhd (%) Time (s) ovhd (%)

Ordering violated 1.896 ϕ1 2.045 7.8 9.163 383.0

ϕ2 1.953 3.0 9.192 384.0

Ordering guaranteed 1.836 ϕ1 1.984 8.0 8.900 384.0

ϕ2 1.889 2.8 8.896 384.0

Data freshness violated 1.638 ϕ3 1.684 2.8 4.337 164.0

ϕ4 1.682 2.6 3.773 130.0

Data freshness guaranteed 1.634 ϕ3 1.678 2.6 4.383 168.0

ϕ4 1.690 3.4 3.782 131.0

Complex ordering violated 5.359 ϕ5 5.555 3.66 6.410 19.6

Complex ordering guaranteed 7.057 ϕ5 7.405 4.9 8.415 19.2

Mutual exclusion violated 5.299 ϕ6 5.540 4.5 6.402 20.81

Mutual exclusion guaranteed 7.024 ϕ6 7.366 4.86 8.405 19.66

approaches based on static analysis are less sensitive to state
explosion, they still suffer from some limitations. First, these
techniques are rather limited in terms of the properties they
can check: they are mostly limited to safety properties and
thus some interesting behavioral properties remain out of the
scope of these techniques. Moreover, since these approaches
rely on abstraction and over approximation of the state space,
they usually yield several false positives.

Model-checking is based on an exhaustive exploration
of the state space of the model obtained from the opera-
tional semantics of the specification language. For large sys-
tems, this exploration leads to a very large number of states
(the well-known state explosion problem). Despite recent
advances in model-checking, the state-explosion problem is
far from being solved and limit the use of these methods
in component-based systems where the state space tends to
become huge due to the number of possible configurations
and interactions between components. Moreover, techniques
based on compositional verification [25–27] (less sensitive
to state explosion) require to over-approximate the behavior
of the unknown parts of the system—-as it can be the case in
BIP when using external C functions.

A compositional verification method based on invariants
for checking safety properties in component-based systems is
proposed in [28,29]. The method over-approximates the set
of reachable states using both local invariants that character-
ize local constraints of atomic components and global con-
straints that are induced by strong synchronization between
components. Although the method has been successfully
applied to large-scale and complex systems, the use of invari-
ants can deal only with safety properties and might produce
many false-positive counter examples.

Another compositional approach is design-by-contract
[30,31] that considers a property provided by a component

as a contract between this component and its environment.
A contract is expressed as a pair consisting of an assump-
tion (that the environment must satisfy) and a guarantee (the
property satisfied by each component). For instance [32], pro-
vides a method that searches an implementation model that
satisfies a given contract. Although the experimental results
are promising, it is not always possible to find an implemen-
tation model that satisfies a given property. Moreover, the
composition of contracts in concurrent systems can be very
expensive.

The limitations of static validation techniques led us to
investigate the use of runtime verification as an alternative
and complementary technique to validate CBS.

7.2 Runtime verification of monolithic programs
(with mathematically-proven guarantees)

Contrary to static-verification techniques which are exhaus-
tive, runtime verification techniques generally focus on a
single execution of the system under scrutiny. While static
verification techniques can produce false positives, runtime
verification techniques can miss some property violations.
However, runtime verification techniques are complemen-
tary since they apply to deployed systems.

Over more than a decade, the field of runtime verifica-
tion has produced many frameworks dedicated to the veri-
fication of the behavior of monolithic programs w.r.t. user-
defined specifications. Many tools have been proposed as
implementations of runtime verification frameworks. One of
the most successful frameworks is Java-MOP (see [15] for
an overview). Java-MOP can use input specifications written
in many formalisms (e.g., LTL, regular expressions, context-
free grammars). Java-MOP generates an AspectJ aspect that
instruments the underlying program (using weaving) and

123

Author's personal copy



192 Y. Falcone et al.

embeds the (automatically generated) monitor. Besides its
generality, Java-MOP is also efficient as demonstrated by
experimentation. A series of tools and approaches are based
on the (less efficient) paradigm of rewriting and focus on
expressiveness of the specification formalism. Some of the
main efforts are Eagle [33], RuleR [14,33], LogScope [34],
and TraceContract [35]. Eagle handles LTL formulae and
uses progression [36]. RuleR is a more general system where
specifications are encoded as a set of rewrite rules. This con-
fers RuleR the ability to handle very expressive specifica-
tions. From an abstract point of view, LogScope is a variant
of RuleR internally using state-machines. TraceContract is
an embedding of LogScope in the Scala programming lan-
guage (as an internal domain-specific language).

Other efforts include TraceMatches [37], JLO [38], and
LARVA [39,40]. TraceMatches extends AspectJ by allow-
ing to write regular expressions over pointcuts. JLO gener-
ates monitors from LTL formulae where events are AspectJ
pointcuts. Finally, LARVA monitors different specification
formalisms such as Lustre and duration calculus. LARVA
translates specifications into the so-called dynamic event
timed automata and then uses AspectJ to weave the monitor.
Runtime verification frameworks with mathematically proven
guarantees. Several runtime verification frameworks pro-
vide mathematical guarantees on their specifics. Most of the
frameworks prove the correctness of their monitor-synthesis
algorithms, i.e., the verdict produced by the monitor on any
trace follows the semantics of the specification used to gen-
erate the monitor. Similarly, Rosu et al. [41] recently pro-
vided proofs of the mathematical correctness of their algo-
rithms for monitoring parametric specifications. Monitoring
parametric specifications involves additional algorithms to
handle the data carried out in events. A different kind of
guarantee is provided by Barringer et al. in RuleR [14]: they
proved the correctness of a translation from LTL to RuleR
specifications.

Comparison with our approach. There are several notewor-
thy differences between our approach and existing runtime
verification techniques.

Our approach differs mainly because we do not target
monolithic programs but component-based systems. More-
over, related approaches rely on aspect-oriented program-
ming (AOP). For instance, Java-MOP automatically gen-
erates the needed AspectJ aspect while RuleR expects the
user to write an aspect. In all cases, existing runtime verifi-
cation frameworks use AOP to instrument the system (i.e.,
inserting code to observe relevant events). Since the tech-
nology of AOP is not available for component-based sys-
tems, we define our own instrumentation for BIP systems. In
some sense, the proposed instrumentation mimics the usual
workflow adopted by most runtime verification frameworks.
Indeed, we extract from the specification the relevant events

and variables that need to be observed and we directly add
instrumentation code at relevant places in the system. Deal-
ing with BIP system allows us to define a formal definition of
the performed instrumentation, contrary to other frameworks
using AspectJ.6

Compared with the existing approaches providing mathe-
matical guarantees about their correctness, we provide math-
ematically proven guarantees on the correctness of our instru-
mentation technique. In our approach, the monitor is consid-
ered to be an input. Previously described approaches remain
compatible and are complementary.

7.3 Runtime verification of component-based systems

Specification and runtime verification of the behavior of
CBS have received less research attention. A first series of
approaches specify the behavior of components in terms of
pre and post-conditions (e.g., with JML) or assertions (e.g.,
using Eiffel). More recently and closer to our work is the
LIME specification language [42] that allows runtime moni-
toring of temporal properties for component interfaces. Com-
ponents are black boxes and LIME specifications define how
components should interact with an external application by
describing a desired behavior on the calls and returns over
the interface. Concurrently and independently, Dormoy et
al. [43] proposed an approach to runtime check the correct
reconfiguration of components at runtime. They propose to
check configurations over a variant of RV-LTL where the
usual notion of state is replaced by the notion of compo-
nent configuration. RV-LTL is a four-valued variant of LTL
dedicated to runtime verification introduced in [3] and used
in [4].

Comparison with our approach. Compared with previous
dynamic techniques, our approach offers several advantages.
First, we use the latest advances in runtime verification using
an expressive four-valued truth-domain allowing our monitor
to be generated using any monitor synthesis framework. Our
RV framework only uses information about the events used in
the specification. Even though the monitors presented in this
paper are presented as regular properties7, the expressive-
ness of the BIP language confers our monitors a potential
to be Turing-complete. For instance, adding internal vari-
ables to the monitor can be done with no particular difficulty.
Moreover, compared with [42], our approach is not limited
to monitoring component interfaces. It is often the case that
components come with an abstract behavioral model, ı.e.,

6 There are some approaches proposing a formal semantics of aspect-
oriented programming, but these approaches work mainly on abstract
models of the underlying programming language. Moreover, to the best
of our knowledge, no RV framework has proposed a formalization of
its instrumentation process.
7 Because we use as input a monitor specified as a finite-state machine.

123

Author's personal copy



Runtime verification of component-based systems 193

components are gray boxes instead of black boxes. Our mon-
itoring framework supports the three kinds of approaches
(black, gray, and white). Furthermore, the specifications
considered for BIP systems use locations spanning over
several components allowing the specification of global
behaviors of the system in composition. Our approach offers
several advantages compared with Dormoy et al. [43]. First,
our approach is not bound to temporal logic since it only
requires a monitor written as a finite-state machine. This
state-machine can be then generated by several already exist-
ing tools (e.g., Java-MOP) since it uses a generic format
to express monitors. Thus, existing monitor synthesis algo-
rithms from various specification formalisms can be re-used,
up to a syntactic adaptation layer. Second, the instrumenta-
tion of the initial system and the addition of the monitor is
formally defined, contrary to [43] where the process is only
overviewed. Moreover, the whole approach leverages the for-
mal semantics of BIP allowing us to provide a formal proof of
the correctness of the proposed approach. All these features
confer to our approach a higher-level of confidence.

8 Conclusion and future work

Conclusion. This paper introduces runtime verification as
a complementary validation technique for component-based
systems written in the BIP framework. Our technique is based
on a general and expressive runtime verification framework
with a four-valued truth-domain. Our solution dynamically
builds a minimal abstraction of the current runtime state of
the system so as to lower the overhead. Generating monitors
directly as BIP components confers to our approach several
advantages. First, thanks to the C code generator of BIP, we
are able to generate actual monitored C programs that can be
directly deployed. Second, our approach remains compatible
with previously proposed runtime verification frameworks in
two respects. First, thanks to the generic format of the input
abstract monitor, a light adaptation layer is needed to adapt
monitors generated by other existing tools. Second, using the
possibility of calling external C code, our BIP monitors can
use external monitors as a service to evaluate the state of
the current system. Another advantage is that our approach
can adapt to different level of modeling since it does not
make any particular hypothesis except the ability to observe
the BIP events involved in the specification. A last advan-
tage is that, by targeting BIP systems, we can reuse several
tools and research insights proposed by previous endeav-
ors on this topic (e.g., [8,29,44]). Our approach has been
implemented in RV-BIP that smoothly integrates into the
existing BIP tool-set. Finally, experimental evaluations on
a robotic application substantiate our claims about the effec-
tiveness of our instrumentation and the feasibility of our
approach.

Some perspectives. Our aim with this article was to propose
a first formal approach to runtime verification of component-
based systems. Runtime verification as a field has contributed
to checking the correctness of object-oriented programs. We
believe that this first approach can serve as a headway towards
transferring the lessons learned and the frameworks devel-
oped to the new challenges that component-based systems
require. More specifically, we propose some research per-
spectives. A first direction is to combine the recent advances
in RV that use static analysis (see, e.g., [45]). In RV, using
static analysis techniques may reduce the overhead induced
by a monitor by disabling unnecessary runtime checks. Also
related to overhead reduction, a dynamic instrumentation
technique [46], enabling the monitor to remove connectors
when they are not needed anymore, would reduce the over-
head even more. Another possible direction is to extend the
proposed framework for runtime enforcement [47]. Runtime
enforcement is an extension of RV aiming at circumventing
property violation and provides better confidence in system
behaviors. A more practical direction is to connect RV-BIP to
the various existing monitor synthesis tools available within
the RV community. Finally, given the recent advances in the
multi-core and the Network on Chip technologies, we plan
to customize our transformations for generating distributed
monitors rather than a centralized monitor. Then, using the
techniques presented in [8,44], we plan to automatically gen-
erate correct and efficient distributed implementations run-
ning on distributed platforms.

Acknowledgments The authors would like to warmly thank the
anonymous reviewers for their insightful remarks.

Appendix A: A proof of correctness of the proposed
approach

In order to prove the correctness of our approach, we proceed
according to the following stages:

1. Introducing a suitable abstraction of the system. In this
abstraction, some data is discarded to focus only on the
behavior of the system (Sect. A.1).

2. Introducing some intermediate definitions and lemmas
(Sect. A.2).

3. Proving that the initial system and the instrumented sys-
tem are observationally equivalent by showing a weak bi-
simulation between them. This is the cornerstone of the
correctness of our approach in the sense that it demon-
strates that our transformation preserves the initial behav-
ior of the system up to some actions of the monitor. This
result is proved in Sect. A.3.

4. Proving that our transformation correctly transforms the
initial system (Sect. A.4), using some intermediate lem-
mas from previous stages.

123

Author's personal copy



194 Y. Falcone et al.

In the following proofs, we will consider several mathemati-
cal objects in order to prove the correctness of our framework:

– an abstract monitor A=(�A, θA
init,Σ,−→A, B4, verA);

– a BIP monitor MA = (P, L , T, X, {gτ }τ∈T , { fτ }τ∈T )

generated form A, i.e., MA = BuildMon(A);
– a composite component B = π(Γ ({Bi }i∈[1,n])) along

with its behavior C = (Q, A,−→);
– the instrumented composite component Bm = πm(Γ m

({Bm
i }i∈[1,n] ∪ {M A})) along with its behavior Cm =

(Qm, Am,−→m). Bm is obtained from B by following
the procedure described in Sect. 5.

A.1 Abstracting data

With the objective of simplifying the following proofs, we
introduce an abstraction consisting in analyzing the behavior
of the involved components without considering some of the
data. This abstraction is possible as one can notice that our
transformations modify the values of some newly introduced
variables but preserve the values of the variables that were
present in the initial system.

Recall that a state of an atomic component is defined
as a three-tuple q = (l, v, p) where l ∈ L is the control
state, v ∈ [X → Data] is a valuation of the variables X
of the atomic component, p ∈ P is the port labelling the
last executed transition. To simplify proofs, we introduce an
abstraction that consists in omitting the variables defined in
the original atomic components. This abstraction is obtained
by discarding some functions and guards defined in the con-
nectors and transitions. Moreover, a state of an atomic com-
ponent q = (l, v, p) for some l ∈ L , v ∈ [X → Data]) and
p ∈ P reduces to the actual control state l in the abstracted
semantics. Consequently, a (global) state of B is a tuple con-
sisting of the local states of its constituent atomic compo-
nents. That is, the behavior C of the composite component
B = Γ ({B1, . . . , Bn}) is a transition system (Q, γ,−→),
where Q = Q1 × · · · × Qn (with ∀i ∈ [1, n] : Qi = Bi .L)
and −→ is the least set of transitions satisfying the rule:

∃ γ∈Γ : γ=(Pγ, t) ∃a ∈I(γ) : a ={pi }i∈I ∧ I ⊆ [1, n]
∀i ∈ I : qi

pi−→i q ′
i ∀i ∈ I : qi = q ′

i

(q1, . . . , qn)
a−→ (q ′

1, . . . , q ′
n)

Note that since data is abstracted, an interaction γ now con-
sists of a set of ports Pγ and the function t specifying the
types of ports. The notion of execution (run) of composite
components, in this abstracted semantics, transposes easily
from Definition 14 to abstract behaviors. Moreover, in the
following, to lighten notation, given a state q ∈ Q we do not
make the distinction between [[q]] and q.

A.2 Preliminary definitions and lemmas

We recall and introduce some definitions and intermediate
results on our transformations that will be used when proving
our central result in Sect. A.3.

Observational equivalence and bi-simulation. Let us recall
the notion of observational equivalence of two transition sys-
tems. It is based on the usual definition of weak bisimilar-
ity [48], where β and β-transitions are considered unobserv-
able.

Definition 21 (Weak simulation) Given two transition sys-
tems S1 = (Q1, P1 ∪ {β},−→1) and S2 = (Q2, P2 ∪
{β},−→2), the system S1 weakly simulates the system S2, if
there is a relation R ⊆ Q1 × Q2 such that the two following
conditions hold:

1. ∀(q, r) ∈ R,∀a ∈ P : q
a−→A q ′ �⇒ ∃r ′ : (q ′, r ′) ∈

R ∧ r
β∗·a·β∗
−→ B r ′, and

2. ∀(q, r) ∈ R : q
β−→A q ′ �⇒ ∃r ′ : (q ′, r ′) ∈

R ∧ r
β∗

−→B r ′

Equation 1. says that if a state q simulates a state r and if
it is possible to perform a from q to end in a state q ′, then
there exists a state r ′ simulated by q ′ such that it is possible
to go from r to r ′ by performing some unobservable actions,
the action a, and then some unobservable actions. Equation
2. says that if a state q simulates a state r and it is possible
to perform an unobservable action from q to reach a state
q ′, then it is possible to reach a state r ′ by a sequence of
unobservable actions such that q ′ simulates r ′.

In that case, we say that the relation R is a weak simulation
over S1 and S2 or equivalently that the states of S1 are similar
to the states of S2. Similarly, a weak bi-simulation over S1

and S2 is a relation R such that R and R−1def={(q2, q1) |
(q1, q2) ∈ R} are both weak simulations. In this latter case,
we say that S1 and S2 are observationally equivalent and we
write S1 ∼ S2.

System stability. We define now a notion of system stability.
Intuitively, a system will be unstable when the system has
sent some event to the monitor and the monitor is currently
processing this event. Below, we exhibit some properties of
our transformed system related to stability.

Following Definition 20, the set Am of interactions of
Bm can be partitioned into (1) the set A of initial inter-
actions (present in the initial composite component), (2)
the set A1 = I(Bm . γ1) of interactions used by the mon-
itor to observe the behavior of the system, and (3) the set
A2 = I(Bm . γ2) of internal interactions of the monitor
to move to the next state. We have Am = A ∪ A1 ∪ A2.
Moreover, the pairwise intersection of A, A1, A2 is empty.

123

Author's personal copy



Runtime verification of component-based systems 195

Observational equivalence considers that all interactions in
A1 ∪ A2 are labeled by unobservable events, denoted by β.

Definition 22 (Stable) Given a state qm = (qm
1 , . . . , qm

n ,

qmon) ∈ Qm , the predicate is_stable ∈ [Qm → {true,

false}] is defined as follows:

is_stable(qm) iff ∀i ∈ [1, n] : qm
i ∈ Bi .L .

A state of a composite component, consisting of an n-tuple
of the state of some atomic components, is stable if each of
the n states of the atomic component belongs to the uninstru-
mented system. That is, the constituting local states were not
introduced by the transformation proposed in Definition 18.

We now introduce the notion of state stabilization. Stabi-
lizing a state consists in either doing nothing if this state is
already stable or returning the next stable state reached by
the system.

Definition 23 (State stabilization) Let qm = (qm
1 , . . . , qm

n ,

qmon) ∈ Qm be a state, the function stable : Qm →
Q is defined as follows: stable(qm) = q, where q =
(stable1(qm

1 ), . . . , stablen(qm
n )), where the intermediate

functions stablei ∈ [Bm
i .L → Bi .L], for i ∈ [1, n], are

defined as follows:

stablei (q
m
i ) =

{
qm

i if qm
i ∈ Bi .L

q ′ otherwise, where ∃q : (q, pm , q ′) ∈ Bm
i .T

Intermediate lemmas. We now propose some intermediate
results characterizing the status of the global system w.r.t. the
notion of stable states and stabilization. The first lemma is a
direct consequence of the definition of the predicate is_stable
and the notion of stabilization.

Lemma 1 For a given state qm = (qm
1 , . . . , qm

n , qmon), we
have is_stable(qm) ⇔ stable(qm) = (qm

1 , . . . , qm
n ).

The following lemma states that when the system is in
an unstable state, i.e., some constituting atomic components
have performed an instrumented transition, then the arriv-
ing state is such that the monitor can perform a transition
labeled by pm (and thus receive an environment from the
components).

Lemma 2 (When the system is not stable the monitor waits
for the system) For every state qm = (qm

1 , . . . , qm
n , qmon) ∈

Qm, the following property holds

¬is_stable(qm) ⇒ qmon
pm

−→MA

where −→MA is the transition relation of the monitor and
pm is the port used by components to communicate with the
monitor (see Definition 18).

Proof We distinguish two cases according to whether qm

is the initial state of the system or not. First, if qm is the

initial state of the system, then from Definition 19 we have

qmon
pm

−→MA . Second, if qm is not the initial state of the sys-
tem, let q ′m = (q ′m

1 , . . . , q ′m
n , qmon

′) be its predecessor and

a be the interaction leading to qm , that is, q ′m a−→m qm .
The interaction a belongs either to A, A1, or A2 (where
{A, A1, A2} is the partition of the interactions of the instru-
mented components as defined in the paragraph system sta-
bility):

– If a ∈ A, then the state of the monitor at state q ′m is
equal to the state of the monitor at state qm . Indeed, the
interactions in I(Bm . γ) consist only of the ports of the
atomic components {Bi | i ∈ [1, n]}. Since the inter-
action defined by I(Bm . γ2) has more priority than the
interactions in I(Bm . γ), then necessarily in the current
local state qmon of the monitor, it is not possible to fire

a transition with pintern (i.e., qmon

MA.pintern−→ MA ). Other-
wise the interaction {pintern} would be executed since the
interaction defined by I(Bm . γ2) consists only of the port
M A.pintern, such an interaction has more priority than
any other existing interaction in the system, and such an
interaction would be enabled because of readiness.

– If a ∈ A1, then a ⊆ ⋃n
i=1{Bm

i .pm}. Using Definition 18
with maximal progress (Definition 9) ensures that from
the local states qm

i , the port pm is not enabled for all
i ∈ [1, n]. Hence, we have ∀i ∈ [1, n] : qm

i ∈ Bi .L , that
is, is_stable(qm).

– If a ∈ A2, then qmon
′ pintern−→ MA . Thus, the fact that

qmon
pm

−→MA follows directly from Definition 19.

��

Lemma 3 (After an unstable state the system stabilizes)

Given a run q0 · q1 · · · qs of Bm such that qi ai−→m qi+1

holds for all i ∈ [0, s − 1], we have

∀i ∈ [0, s − 1] : ¬is_stable(qi ) ⇒ is_stable(qi+1).

Proof Let us consider qi = (qi
1, . . . , qi

n, qmon) a non stable
state (i.e., ¬is_stable(qi )) of the run with i ∈ [0, s−1] (hence
qi is not the last state8). Let qi+1 = (qi+1

1 , . . . , qi+1
n , q ′

mon)

be the successor state of qi in the run. Lemma 2 guarantees
that the monitor is able to perform a transition labeled by

pm in qi , that is, qmon
pm

−→MA . Let us consider Qu = {qi
j |

qi
j /∈ B j .L} be the set of locally unstable states. As qi is

not stable, Qu is not empty. The set of possible interactions
is the set of subsets of {Bm

j .pm | qi
j ∈ Qu} ∪ {MA.pm}.

Indeed, observe that first, these interactions have more pri-
ority than the interactions in I(Bm . γ), and second that the

8 Otherwise the lemma holds vacuously.

123

Author's personal copy



196 Y. Falcone et al.

monitor is ready qmon
pm

−→MA (it is not possible to execute
any interaction in I(Bm . γ2)). Moreover, maximal progress
(Definition 9) guarantees that the executed interaction is
{Bm

j .pm | qm
j ∈ Qu} ∪ {MA.pm}. In turn, Definition 18

ensures that from all local states qi+1
j , j ∈ [1, n], the port

pm is not enabled. Thus, we have is_stable(qi+1). ��

A.3 Observational equivalence between the original and
transformed BIP models

We are now ready to state and prove our central result.

Proposition 1 The non-instrumented system is bi-similar to
the instrumented system where interactions with the monitor
and internal interactions of the monitor are considered to be
unobservable actions, that is, Bm ∼ B.

Proof Following Sect. A.2, we need to exhibit a relation R
between the set of states Qm of Bm and the set of states Q of

B. We define R
def={(qm, q) | qm ∈ Bm ∧ stable(qm) = q}.

We shall prove the three next assertions to establish that R is
a weak bi-simulation:

(i) ∀(qm, q) ∈ R : qm β−→m rm �⇒ (rm, q) ∈ R.
(ii) ∀(qm, q) ∈ R : qm a−→m rm �⇒ ∃r ∈ Q : q

a−→
r ∧ (rm, r) ∈ R.

(iii) ∀(qm, q) ∈ R : q
a−→ r ⇒ ∃rm ∈ Qm : qm β∗a−→m

rm ∧ (rm, r) ∈ R. ��

Proof of (i) Let us suppose that qm β−→m rm , we have two
cases according to the partition of interactions proposed in
Sectionsec:proof:defslemmas:

– Case β ∈ A1. Then β ⊆ ⋃n
i=1{Bm

i .pm}. Let qm =
(qm

1 , . . . , qm
n , qmon) and rm = (rm

1 , . . . , rm
n , rmon).

Because (qm, q) ∈ R, we have q = stable(qm) =
(stable1(qm

1 ), . . . , stablen(qm
n )). We distinguish two sub-

cases according to whether qm
i is stable or not.

• Let us suppose that qm
i is a stable state, then we have

stablei (qm
i ) = qm

i . From the local state qm
i of the

atomic component Bi , port Bm
i .pm is not enabled,

hence after executing an interaction consisting only
of ports pm the local state qm

i does not change, that
is, qm

i = rm
i and stablei (rm

i ) = stablei (qm
i ).

• Let us suppose qm
i is not a stable state, then ∃q ′ ∈

Qm
i : stablei (qm

i ) = q ′ = qm
i . From the local state

qm
i , the port Bm

i .pm is enabled. Moreover, after exe-
cuting the interaction β, the local state qm

i becomes
rm

i , where rm
i = stablei (qm

i ) = q ′ (because of max-
imal progress, see Definition 9), and rm

i ∈ Bi .L
(see Definition 18), that is, stablei (rm

i ) = rm
i =

stablei (qm
i ). Therefore, stable(rm) = (stable1(qm

1 ),

. . . , stablen(qm
n )) = stable(qm) = q, thus (rm, q) ∈

R.

– Case β ∈ A2, that is, β = {M A.pintern}. Hence, after exe-
cuting β none of the local states qm

i for i ∈ [1, n] change
(that is, rm

i = qm
i for i ∈ [1, n]). Therefore, stable(rm) =

(stable1(qm
1 ), . . . , stablen(qm

n )) = stable(qm) = q, thus
(rm, q) ∈ R.

Proof of (ii) Suppose that qm a−→m rm . Then stable(qm) =
qm , that is, is_stable(qm). Let qm = (qm

1 , . . . , qm
n , qmon) and

q = (qm
1 , . . . , qm

n ), from state q interaction a is possible. Let

r be the next state after executing a, that is, q
a−→ r . We

distinguish two cases according to whether rm is stable or
not:

– If is_stable(rm), then r = (rm
1 , . . . , rm

n ) where rm =
(rm

1 , . . . , rm
n , rmon) (Definition 18). Hence, stable(rm) =

(stable1(rm
1 ), . . . , stablen(rm

n )) = (rm
1 , . . . , rm

n ) = r ,
that is, (rm, r) ∈ R.

– If ¬is_stable(rm), let sm be the next state in the run

after rm , that is, rm β−→m sm . Lemma 3 ensures that
sm is stable (is_stable(sm)), hence the interaction β is
such that β ⊆ ∪n

i=1{Bm
i .pm}. As sm is stable, then

stable(sm) = (sm
1 , . . . , sm

n ) (Lemma 1), where sm =
(sm

1 , . . . , sm
n , smon). Moreover, since β ⊆ ∪n

i=1{Bm
i .pm},

then stable(rm) = (sm
1 , . . . , sm

n ). Definition 18 ensures
that r = (sm

1 , . . . , sm
n ). That is, stable(rm) = r , thus

(rm, r) ∈ R.

Proof of (iii) Suppose that q
a−→ r . Let qm = (qm

1 , . . . ,

qm
n , qmon), where stable(qm) = (q1, . . . , qn). We have two

cases:

– If is_stable(qm), then qm a−→m rm and (rm, r) ∈ R. In
this case, we can conduct the same reasoning followed
for the case (ii), and consider two cases for rm .

– If ¬is_stable(qm), let q ′m be the next state after q ′m

(qm β−→m q ′m). Lemma 3 ensures that q ′m is stable
(is_stable(q ′m)). Hence, q ′m = (q1, . . . , qn, q ′

mon), that

is, q ′m a−→m rm and (rm, r) ∈ R. In this case, we can
conduct the same reasoning followed for the case (ii), and
consider two cases for rm .

A.4 Correctness of our approach

The correctness of our approach is supported by two argu-
ments.

First, the instrumented system is observationally equiva-
lent to the non-instrumented system where the actions used

123

Author's personal copy



Runtime verification of component-based systems 197

to monitor the system are considered unobservable (Propo-
sition 1). It is a standard assumption in runtime verifica-
tion frameworks for monolithic programs to assume that the
instrumentation code does not take part in the semantics of
the monitored program. Thus the behavior of a monitored
monolithic program that is considered to be relevant is built
by considering the original actions (present before instru-
mentation) to be observable, and, the behavior generated by
the instrumentation code plus the code of the monitor to be
unobservable. Our instrumentation thus ensures that if the
initial system produces an execution, then the same execu-
tion will be produced in the instrumented system, up to the
actions needed to monitor the system.

The second argument is the correctness of the verdicts
produced by the monitor. This is ensured by the freshness of
the data received by the monitor, and, the fact that the monitor
always receives the necessary information. Indeed, if the state
of the system is modified in such a way that it influences the
truth-value of the monitored property, it means that at least
one atomic proposition of one event in the specification has
possibly changed. Then, according to the definition of the
function c_v, the new values of the involved elements in the
specification are transmitted to the monitor. Lemma 2 and
the priorities given to the interactions of the monitor ensures
that the system cannot move before the monitor has finished
to treat the new state and has produced a verdict.

References

1. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for
component-based systems. In: van Breugel, F., Chechik, M. (eds.)
Proceedings of the 19th International Conference on Concurrency
Theory, CONCUR: Volume 5201 of Lecture Notes in Computer
Science, pp. 508–522. Springer, New York (2008)

2. Runtime Verification. http://www.runtime-verification.org (2001–
2012)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics
for runtime verification. J. Logic Comput. 20, 651–674 (2010)

4. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification
of safety-progress properties. In: Bensalem, S., Peled, D. (eds.)
Proceedings of the 9th International Workshop on Runtime Veri-
fication, RV: Selected Papers. Volume 5779 of LNCS, pp. 40–59.
Springer, Berlin (2009)

5. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.:
Runtime verification of component-based systems. In: Barthe, G.,
Pardo, A., Schneider, G. (eds.) Proceedings of the 9th International
Conference on Software Engineering and Formal Methods, SEFM:
Volume 7041 of LNCS, pp. 204–220. Springer, Berlin (2011)

6. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract
monitoring. In: Pimentel, E., Valero, V. (eds.) Proceedings of the
Fifth Workshop on Formal Languages and Analysis of Contract-
Oriented Software (FLACOS 2011). Volume 68 of EPTCS,
pp. 23–37 (2011)

7. Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: Gian-
nakopoulou, D., Méry, D. (eds.) Proceedings of the 18th Inter-
national Symposium on Formal Methods, FM: Volume 7436 of
LNCS, pp. 85–100. Springer, Berlin (2012)

8. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.:
From high-level component-based models to distributed imple-
mentations. In Carloni, L.P., Tripakis, S. (eds.) Proceedings of the
10th International conference on Embedded software (EMSOFT
2010), pp. 209–218. ACM (2010)

9. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture
transformation for performance optimization in BIP. In Carloni, L.,
Thiele, L. (eds.) Proceedings of the IEEE 4th International Sympo-
sium on Industrial Embedded Systems (SIES 2009), pp. 152–160.
IEEE (2009)

10. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time
components in BIP. In: Pandya, P., Hung, D.V. (eds.) Proceedings
of the 4th IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2006), pp. 3–12. IEEE Computer
Society (2006)

11. Bliudze, S., Sifakis, J.: The algebra of connectors—structuring
interaction in BIP. IEEE Trans. Comput. 57, 1315–1330 (2008)

12. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In:
Etessami, K., Rajamani, S.K. (eds.) Proceedings of 17th Interna-
tional Conference on Computer-aided Verification (CAV’05). Vol-
ume 3576 of LNCS, pp. 364–378. Springer, Berlin (2005)

13. Stolz, V.: Temporal assertions with parametrised propositions. In:
Sokolsky, O., Tasiran, S. (eds.) 7th International Workshop on Run-
time Verification, RV: Revised Selected Papers. Volume 4839 of
LNCS, pp. 176–187. Springer, Berlin (2007)

14. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-
time monitoring: from EAGLE to RuleR. J. Logic Comput. 20,
675–706 (2010)

15. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview
of the MOP runtime verification framework. Int. J. Softw. Tools
Technol. Transf. (STTT) (2011), 1–41. doi:10.1007/s10009-011-
0198-6

16. Pnueli, A., Zaks, A.: PSL model checking and run-time verification
via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) Proceed-
ings of the 14th International Symposium on Formal Methods, FM:
Volume 4085 of LNCS, pp. 573–586. Springer, Berlin (2006)

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify
and enforce at runtime? Softw. Tools Technol. Transf. 14, 349–382
(2012)

18. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for
LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 14
(2011)

19. Havelund, K.: Runtime verification of C programs. In: Suzuki, K.,
Higashino, T., Ulrich, A., Hasegawa, T. (eds.) Proceedings of the
20th IFIP TC 6/WG 6.1 International Conference on Testing of
Software and Communicating Systems, TestCom: and 8th Interna-
tional Workshop on Formal Aspects of TESting (TestCom/FATES
2008). Volume 5047 of LNCS, pp. 7–22. Springer, Berlin
(2008)

20. Fleury, S., Herrb, M., Chatila, R.: GenoM: A tool for the specifica-
tion and the implementation of operating modules in a distributed
robot architecture. In: Electrical, I., Engineer, E. (eds.) Proceedings
of Intelligent Robots and Systems (IROS 97), pp. 842–848. IEEE
(1997)

21. Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., Nguyen, T.H.:
Toward a more dependable software architecture for autonomous
robots. IEEE Robot. Autom. Mag. Spec. Issue Soft. Eng. Robot.
16, 67–77 (2008)

22. Umrigar, Z.D., Pitchumani, V.: Formal verification of a real-time
hardware design. In: Radke, C.E. (ed.) Proceedings of the 20th
Design Automation Conference (DAC ’83), pp. 221–227. IEEE
Press, Piscataway (1983)

23. Queille, J.P., Sifakis, J.: Specification and verification of concur-
rent systems in CESAR. In Dezani-Ciancaglini, M., Montanari,
U. (eds.) Proceedings of the 5th International Symposium on Pro-
gramming. Volume 137 of LNCS, pp. 337–351 (1982)

123

Author's personal copy

http://www.runtime-verification.org
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/s10009-011-0198-6


198 Y. Falcone et al.

24. Clarke, E.M., Emerson, E.A.: Synthesis of synchronisation skele-
tons for branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs: Workshop. Volume 131 of LNCS (1981)

25. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model
checking. In: Parikh, R. (ed.) Proceedings of the Fourth Annual
Symposium on Logic in Computer Science, pp. 353–362. IEEE
Computer Society Press (1989)

26. Chang, E., Manna, Z., Pnueli, A.: Compositional verification of
real-time systems. In: Abramsky, S., (ed.) Symposium on Logic in
Computer Science, IEEE (1994)

27. Long, D.E.: Model Checking, Abstraction, and Compositional Rea-
soning. Ph.D. thesis, Carnegie Mellon (1993)

28. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: Compositional
verification for component-based systems and application. Softw.
J. Spec. Issue Autom. Compos. Verif. 4, 181–193 (2010)

29. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan,
R.: Incremental component-based construction and verification
using invariants. In: Bloem, R., Sharygina, N. (eds.) Proceedings
of 10th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2010), pp. 257–256. IEEE (2010)

30. Meyer, B.: Applying “design by contract”. Computer 25, 40–51
(1992)

31. Abadi, M., Lamport, L.: Composing specifications. ACM Trans.
Program. Lang. Syst. 15, 73–132 (1993)

32. Hafaiedh, I.B., Graf, S., Quinton, S.: Reasoning about safety and
progress using contracts. In Dong, J.S., Zhu, H., eds.: Proceed-
ings of the 12th International Conference on Formal Engineering
Methods, ICFEM: Volume 6447 of LNCS, pp. 436–451. Springer,
Berlin (2010)

33. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based
runtime verification. In: Steffen, B., Levi, G. (eds.) Proceedings of
the 5th International Conference on Verification, Model Checking,
and Abstract Interpretation, VMCAI: Volume 2937 of LNCS, pp.
44–57. Springer, Berlin (2004)

34. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis
of log files. J. Aerospace Comput. Inf. Commun (2010)

35. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for trace
analysis. In: Butler, M., Schulte, W. (eds.) Proceedings of the 17th
International Symposium on Formal Methods, FM: Volume 6664
of LNCS, pp. 57–72. Springer, Berlin (2011)

36. Bacchus, F., Kabanza, F.: Planning for temporally extended goals.
In: Clancey, W.J., Weld, D.S. (eds.) AAAI/IAAI, vol. 2, AAAI
Press/The MIT Press, pp. 1215–1222 (1996)

37. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins,
S., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.:
Adding trace matching with free variables to AspectJ. SIGPLAN
Not. 40, 345–364 (2005)

38. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In:
Havelund, K., Núñez, M., Rosu, G., Wolff, B. (eds.) Proceed-
ings of the First combinned International Workshops on For-
mal Approaches to Software Testing and Runtime Verification
(FATES/RV 06). Volume 4262 of LNCS, pp. 109–124. Springer,
Berlin (2006)

39. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring
of real-time Java programs (tool paper). In: Hung, D.V., Krishnan,
P. (eds.) Proceedings of the 7th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2009), pp. 33–
37. IEEE Computer Society (2009)

40. Colombo, C., Gauci, A., Pace, G.J.: LarvaStat: Monitoring of sta-
tistical properties. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann,
N. (eds.) Proceedings of the 1st International Conference on Run-
time Verification (RV 10). Volume 6418 of LNCS, pp. 480–484.
Springer, Berlin (2010)

41. Rosu, G., Chen, F.: Semantics and algorithms for parametric mon-
itoring. Logic. Methods Comput. Sci. 8 (2012)

42. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME
interface specification language and runtime monitoring tool. In:
Bensalem, S., Peled, D. (eds.) Proceedings of the 9th International
Workshop on Runtime Verification, RV: Selected Papers. Volume
5779 of LNCS, pp. 93–100. Springer, Belrin (2009)

43. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic
for dynamic reconfigurations of components. In: Barbosa, L.S.,
Lumpe, M. (eds.) Proceedings of the 7th International Workshop
on Formal Aspects of Component Software, FACS: Volume 6921
of LNCS, pp. 200–217. Springer, Berlin (2010)

44. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.:
Automated conflict-free distributed implementation of component-
based models. In: Fummi, F., Hsieh, H. (eds.) Proceedings of the
IEEE 5th International Symposium on Industrial Embedded Sys-
tems (SIES 2010), pp. 108–117. IEEE (2010)

45. Bodden, E., Lam, P., Hendren, L.J.: Clara: A framework for par-
tially evaluating finite-state runtime monitors ahead of time. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I.,
Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Proceedings
of the 1st International Conference on Runtime Verification (RV
10). Volume 6418 of LNCS, pp. 183–197. Springer, Berlin (2010)

46. Bozga, M., Jaber, M., Maris, N., Sifakis., J.: Modeling dynamic
architectures using Dy-BIP. In: Gschwind, T., Paoli, F.D., Gruhn,
V., Book, M. (eds.) Proceedings of the 11th International Confer-
ence on Software Composition, SC: Volume 7306 of LNCS, pp.
1–16. Springer, Berlin (2012)

47. Falcone, Y.: You should better enforce than verify. In: Barringer,
H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J.,
Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Proceedings of the 1st
International Conference on Runtime Verification (RV 10). Volume
6418 of LNCS, pp. 89–105. Springer, Berlin (2010)

48. Milner, R.: Communication and concurrency. Prentice Hall Inter-
national (UK) Ltd., Hertfordshire (1995)

Author Biographies

Yliès Falcone received the
Master degree (2006) and Ph.D.
(2009) in computer science from
the University of Grenoble at
Verimag Laboratory. His research
interests concern formal runtime
validation techniques for var-
ious application domains, i.e.
techniques aiming at evaluating
whether a system meets a set of
desired properties during its exe-
cution. He has been a member
of the organization committee of
CAV’09, RV’10 and IsoLA’12.
He usually serves as a program

committee member of the Runtime Verification conference. Since Sep-
tember 2011, he is an associate professor at University of Grenoble and a
researcher at Laboratory of Informatics Grenoble. From December 2009
to August 2011, he has been a postdoctoral researcher at INRIA Rennes
in the VerTeCs project. He has been an invited researcher in several
places such as NASA JPL in Pasadena, NICTA Canberra, Manchester
University and University of Illinois.

123

Author's personal copy



Runtime verification of component-based systems 199

Mohamad Jaber is an Assis-
tant Professor at the Ameri-
can University of Beirut. He
received his Ph.D. degree in
Computer Science from Greno-
ble University-Verimag Labora-
tory, France in 2010. He received
his M.S. degree in Computer
Science from Grenoble Uni-
versity, France in 2007, and
B.E. degree in Computer Sci-
ence from Lebanese University,
Lebanon in 2006, respectively.
After one year as a post-doc at
Verimag, he has joined the Sys-

tem Level Synthesis Group at TIMA Laboratory. His current research
interests are in the domain of distributed and parallel systems,
component-based design and implementation, model checking, runtime
verification.

Thanh-Hung Nguyen is an
assistant professor at the Depart-
ment of Software Engineering,
Hanoi University of Science
and Technology, Vietnam. His
research interests are in the
modeling and verification of
component-based systems. Nguyen
holds a Ph.D. in computer sci-
ence from the University of
Grenoble.

Marius Bozga graduated the
Faculty of Mathematics and
Computer Science, “Babes-
Bolyai” University of Cluj-
Napoca (Romania) in 1995 and
obtained his Ph.D. in Computer
Science from the University of
Grenoble (France) in 1999. Cur-
rently, Marius BOZGA is CNRS
research engineer and mem-
ber of the VERIMAG research
laboratory in Grenoble. His
research interests are focused on
component-based design for dis-
tributed real-time systems and

include formal models for components, model-based design and imple-
mentation, automatic validation methods and tools.

Saddek Bensalem (http://www-
verimag.imag.fr/~bensalem/), is
Professor at the University of
Joseph Fourier in Grenoble
France. He received his Ph.D. in
Computer Science from Greno-
ble INP. His area of expertise is
modeling and validation of real-
time systems. He has an excel-
lent background and experience
in software and system verifica-
tion. He has spent two years at
the Stanford Research Institute
(SRI International) in California
and one year at the University of

Stanford as visiting scientist. He has consulted for NASA Ames. Cur-
rently, he works on component-based modeling focusing on embedded
applications.

123

Author's personal copy

http://www-verimag.imag.fr/~bensalem/
http://www-verimag.imag.fr/~bensalem/

	Runtime verification of component-based systems in the BIP framework with formally-proved sound and complete instrumentation
	Abstract 
	1 Introduction
	2 Preliminaries and notations
	3 Behavior interaction priority (BIP)
	3.1 Component-based construction

	4 An RV framework for component-based systems
	4.1 Specifications for component-based systems
	4.2 Verification monitors
	4.3 Runs and traces of BIP systems

	5 Verifying the runtime behavior of BIP systems
	5.1 Extraction of the information needed
	5.2 Instrumentation of atomic components
	5.3 Creating an atomic component from a monitor
	5.4 Connections
	5.5 Summary and discussion

	6 Implementation and evaluation
	6.1 RV-BIP: a tool for runtime verification of BIP systems
	6.2 Case study: a robotic application

	7 Related work
	7.1 Static/design-time verification of component-based systems
	7.2 Runtime verification of monolithic programs  (with mathematically-proven guarantees)
	7.3 Runtime verification of component-based systems

	8 Conclusion and future work
	Acknowledgments
	Appendix A: A proof of correctness of the proposed approach
	Appendix A: A proof of correctness of the proposed approach
	A.1 Abstracting data
	A.1 Abstracting data
	A.2 Preliminary definitions and lemmas
	A.2 Preliminary definitions and lemmas
	A.3 Observational equivalence between the original and transformed BIP models
	A.3 Observational equivalence between the original and transformed BIP models
	A.4 Correctness of our approach
	A.4 Correctness of our approach

	References



