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Runtime enforcement is a verification/validation technique aiming at correcting possibly 
incorrect executions of a system of interest. In this paper, we consider enforcement 
monitoring for systems where the physical time elapsing between actions matters. 
Executions are thus modelled as timed words (i.e., sequences of actions with dates). 
We consider runtime enforcement for timed specifications modelled as timed automata. 
Our enforcement mechanisms have the power of both delaying events to match timing 
constraints, and suppressing events when no delaying is appropriate, thus possibly allowing 
for longer executions. To ease their design and their correctness-proof, enforcement 
mechanisms are described at several levels: enforcement functions that specify the input–
output behaviour in terms of transformations of timed words, constraints that should be 
satisfied by such functions, enforcement monitors that describe the operational behaviour 
of enforcement functions, and enforcement algorithms that describe the implementation 
of enforcement monitors. The feasibility of enforcement monitoring for timed properties is 
validated by prototyping the synthesis of enforcement monitors from timed automata.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Runtime enforcement [1–5] is a verification and validation technique aiming at correcting possibly-incorrect executions of 
a system of interest. In traditional (untimed) approaches, the enforcement mechanism is a monitor modelled as a transducer 
that inputs, corrects, and outputs a sequence of events. How a monitor transforms the input sequence is done according 
to a specification of correct sequences, formalised as a property. Moreover, a monitor should satisfy some requirements: 
it should be sound in the sense that only (prefixes of) correct sequences are output; it should also be transparent meaning 
that the output sequence preserves some relation with the input sequence, depending on the authorised operations.

Runtime enforcement monitors can be used in various application domains. For instance, enforcement monitors can be 
used for the design of firewalls, to verify the control-flow integrity and memory access of low-level code [6], or implemented 
in security kernels or virtual machines to protect the access to sensitive system resources (e.g., [7]). In [8], we discuss some 
other uses of enforcement monitors such as resource allocation and the implementation of robust mail servers.
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In this paper, we consider runtime enforcement of timed properties, initially introduced in [5,9]. In timed properties (over 
finite sequences), not only the order of events matters, but also their occurrence dates affect the satisfaction of the property. 
It turns out that considering time constraints when specifying the behaviour of systems brings some expressiveness that 
can be particularly useful in some application domains when, for instance, specifying the usage of resources. In Section 2, 
we present some running and motivating examples of timed specifications related to the access of resources by processes. 
We shall see that, in contrast to the untimed case, the amount of time an event is stored influences the satisfaction of 
properties.

In [5], we propose preliminary enforcement mechanisms restricted to safety and co-safety timed properties. Safety and 
co-safety properties allow to express that “something bad should never happen” and that “something good should happen 
within a finite amount of time”, respectively. In [9], we generalise and extend the initial approach of [5] to the whole class 
of timed regular properties. Indeed, some regular properties may express interesting behaviours of systems belonging to a 
larger class that allows to specify some form of transactional behaviour. Regular properties are, in general, neither prefix 
nor extension closed, meaning that the evaluation of an input sequence w.r.t. the property also depends on its possible 
future continuations. For instance, an incorrect input sequence alone may not be correctable by an enforcement mechanism, 
but the reception of some events in the future may allow some correction. Hence, the difficulty that arises is that the 
enforcement mechanism should take conservative decisions and change its behaviour over time taking into account the 
evaluation (w.r.t. the property) of the current input sequence and its possible continuations. Roughly speaking, in [5,9], 
enforcement mechanisms receive sequences of events composed of actions and delays between them, and can only increase 
those delays to satisfy the desired timed property; while in this paper, we consider absolute dates and allow to reduce 
delays between events (as described in detail in the following paragraph).

Contributions In this paper, we extend [9] in several directions. The main extension consists in increasing the power of 
enforcement mechanisms by allowing them to suppress input events, when the monitor determines that it is not possible 
to correct the input sequence, whatever is its continuation. Consequently, enforcement mechanisms can continue operating, 
and outputting events, while in our previous approaches the output would have been blocked forever. This feature and 
other considerations also drove us to revisit and simplify the formalisation of enforcement mechanisms. We now consider 
events composed of actions and absolute dates, and enforcement mechanisms are time retardant with suppression in the fol-
lowing sense: monitors should keep the same order of the actions that are not suppressed, and are allowed to increase 
the absolute dates of actions in order to satisfy timing constraints. Note, this allows to decrease delays between actions, 
while it is not allowed in [5,9]. As in [5,9], we specify the mechanisms at several levels, but in a revised and simplified 
manner: the notion of enforcement function describes the behaviour of an enforcement mechanism at an abstract level 
as an input–output relation between timed words; requested properties of these functions are formalised as soundness, 
transparency, optimality, and additional physical constraints1; we design adequate enforcement functions and prove that 
they satisfy those properties; the operational behaviour of enforcement functions is described as enforcement monitors, and 
it is proved that those monitors correctly implement the enforcement functions; finally enforcement algorithms describe 
the implementation of enforcement monitors and serve to guide the concrete implementation of enforcement mechanisms. 
Interestingly, although all untimed regular properties over finite sequences can be enforced [10], some enforcement limita-
tions arise for timed properties (over finite sequences). Indeed, we show that storing events in the timed setting influences 
the output of enforcement mechanisms. In particular, because of physical time, an enforcement mechanism might not be 
able to output certain correct input sequences. Finally, we propose an implementation of the enforcement mechanisms for 
all regular properties specified by one-clock timed automata (while [5,9] feature an implementation for safety and co-safety 
properties only).

Paper organisation The rest of this paper is organised as follows. In Section 2, we introduce some motivating and running 
examples for the enforcement monitoring of timed properties, and illustrate the behaviour of enforcement mechanisms and 
the enforceability issues that arise. Section 3 introduces some preliminaries and notations. Section 4 recalls timed automata. 
Section 5 introduces our enforcement monitoring framework and specifies the constraints that should be satisfied by en-
forcement mechanisms. Section 6 defines enforcement functions as functional descriptions of enforcement mechanisms. 
Section 7 defines enforcement monitors as operational description of enforcement mechanisms in the form of transition 
systems. Section 8 proposes algorithms that effectively implement enforcement monitors. In Section 9, we present an im-
plementation of enforcement mechanism in Python and evaluate the performance of synthesised enforcement mechanisms. 
In Section 10, we discuss related work. In Section 11, we draw conclusions and open perspectives. Finally, to ease the 
reading of this article, some proofs are sketched and their complete versions can be found in Appendix A.

2. General principles and motivating examples

In this section, we describe the general principles of enforcement monitoring of timed properties, and illustrate the 
expected input/output behaviour of enforcement mechanisms on several examples.

1 The two latter constraints are specific to runtime enforcement of timed properties.
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Fig. 1. Illustration of the principle of enforcement monitoring.

Fig. 2. Behaviour of an enforcement mechanism.

2.1. General principles of enforcement monitoring in a timed context

As illustrated in Fig. 1, the purpose of enforcement monitoring is to read some (possibly incorrect) input sequence of 
events σ produced by a system, referred to as the event emitter, to transform it into an output sequence of events o that 
is correct w.r.t. a specification formalised by a property ϕ . This output sequence is then transmitted to an event receiver. In 
our timed setting, events are actions with their occurrence dates. Input and output sequences of events are then formalised 
by timed words and enforcement mechanisms can be seen as transformers of timed words.

Fig. 2 illustrates the behaviour of an enforcement mechanism when correcting an input sequence. The dashed and solid 
curves respectively represent input and output sequences of events (occurrence dates in abscissa and actions in ordinate). 
The behaviour of an enforcement mechanism should satisfy some constraints, namely physical constraint, soundness, and 
transparency. Intuitively, the physical constraint states that an enforcement mechanism cannot modify what it has already 
output, i.e., the output forms a continuously-growing sequence of events; soundness states that the output sequence should 
be correct w.r.t. the property (note, soundness is not represented in the figure, since this would require to represent an 
area containing only the sequences admitted by the property); transparency states that the output sequence is obtained by 
delaying or suppressing actions from the input sequence (and not changing the order of actions); thus, if the events of the 
input curve are not suppressed, they appear later in the output curve, in the same order. For example, actions a1, a3 and 
a4 are delayed but a2 is suppressed. Notice that by delaying dates of events the enforcement mechanism allows to reduce 
delays between events. For example, action a4 occurs strictly after action a3, but both actions are released at the same date. 
Moreover, the actions should be released as output as soon as possible, which will be described by an optimality property.

2.2. Motivating examples

We introduce some running and motivating examples related to the usage of resources by some processes. We also 
provide some intuition on the expected behaviour of our enforcement mechanisms, and point out some issues arising in the 
timed context. We discuss further these issues and their relation to the expected constraints on enforcement mechanisms.

Let us consider the situation where two processes access to and operate on a common resource. Each process i (with 
i ∈ {1, 2}) has three interactions with the resource: acquisition (acqi ), release (reli ), and a specific operation (opi ). Both 
processes can also execute a common action op. System initialisation is denoted by action init. In the following, variable t
keeps track of global time. Figs. 3, 4, and 5 illustrate the behaviour of enforcement mechanisms for several specifications on 
the behaviour of the processes and for particular input sequences.2

2 We shall see in Section 3.2 how to formalise these specifications by timed automata.
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Fig. 3. Behaviour of an enforcement mechanism for specification S1 on σ1.

Fig. 4. Behaviour of an enforcement mechanism for specification S2 on σ2.

Specification S1 The specification states that “Each process should acquire the resource before performing operations on it and 
should release it afterwards. Each process should keep the resource for at least 10 time units (t.u.). There should be at least 1 t.u. 
between any two operations.”

Let us consider the input sequence σ1 = (1, acq1) · (3, op1) · (3.5, op1) · (4.5, acq1) · (5, op1) · (10, rel1) (where each event 
is composed of an action associated with a date, indicating the time instant at which the action is received as input). The 
monitor receives the first action acq1 at t = 1, followed by op1 at t = 3, etc. At t = 1 (resp. t = 3), the monitor can output 
action acq1 (resp. op1) because both sequences (3, op1) and (1, acq1) · (3, op1) satisfy specification S1. At t = 3.5, when the 
second action op1 is input, the enforcer determines that this action should be delayed by 0.5 t.u. to ensure the constraint 
that 1 t.u. should elapse between occurrences of op1 actions. Hence, the second action op1 is released at t = 4. At t = 4.5, 
when action acq1 is received, the enforcer releases it immediately since this action is allowed by the specification with no 
time constraint. Similarly, at t = 5, an op1 action is received and is released immediately because at least 1 t.u. elapsed 
since the previous op1 action was released as output. At t = 10, when action rel1 is received, it is delayed by 1 t.u. to ensure 
that the resource is kept for at least 10 t.u. (the first acq1 action was released at t = 1). Henceforth, as shown in Fig. 3, the 
output of the enforcement mechanism for σ1 is (1, acq1) · (3, op1) · (4, op1) · (4.5, acq1) · (5, op1) · (11, rel1).

Specification S2 The specification states that “After system initialisation, both processes should perform an operation (actions opi ) 
before 10 t.u. The operations of the different processes should be separated by 3 t.u.”

Let us consider the input sequence σ2 = (1, init1) · (3, op1) · (4, op1) · (5, op2) · (6, op2). At t = 1, 3, 4, when the enforcement 
mechanism receives the actions, it cannot release them as output but memorises them since, upon each reception, the 
sequence of actions it received so far cannot be delayed so that a known continuation may satisfy specification S2. At t = 5, 
upon the reception of action op2, the sequence received so far can be delayed to satisfy specification S2. Action init1 is 
released at t = 5 because it is the earliest possible date: a smaller date would be already elapsed. The two actions op1 are 
also released at t = 5, because there are no timing constraints on them. The first action op2 is released at t = 8 to ensure 
a delay of at least 3 t.u. with the first op1 action. The second action op2, received at t = 6, is also released at t = 8, since 
it does not need to be delayed more than after the preceding action. Henceforth, as shown in Fig. 4, the output of the 
enforcement mechanism for σ2 is (5, init1) · (5, op1) · (5, op1) · (8, op2) · (8, op2).

Specification S3 The specification states that “Operations op1 and op2 should execute in a transactional manner. Both actions 
should be executed, in any order, and any transaction should contain one occurrence of op1 and op2 . Each transaction should com-
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Fig. 5. Behaviour of an enforcement mechanism for specification S3 on σ3.

plete within 10 t.u. Between operations op1 and op2 , occurrences of operation op can occur. There is at least 2 t.u. between any two 
occurrences of any operation.”

Let us consider the input sequence σ3 = (2, op1) · (3, op1) · (3.5, op) · (6, op2). At t = 2, the monitor cannot output action 
op1 because this action alone does not satisfy the specification (and the monitor does not yet know the next events i.e., 
actions and dates). If the next action was op2, then, at the date of its reception, the monitor could output action op1
followed by op2, as it could choose dates for both actions in order to satisfy the timing constraints. At t = 3 the monitor 
receives a second op1 action. Clearly, there is no possible date for these two op1 actions to satisfy specification S3, and 
no continuation could solve the situation. The monitor thus suppresses the second op1 action, since this action is the one 
that prevents satisfiability in the future. At t = 3.5, when the monitor receives action op, the input sequence still does not 
satisfy the specification, but there exists an appropriate delaying of such action so that with future events, the specification 
can be satisfied. At t = 6, the monitor receives action op2, it can decide that action op1 followed by op and op2 can be 
released as output with appropriate delaying. Thus, the date associated with the first op1 action is set to 6 (the earliest 
possible date, since this decision is taken at t = 6), 8 for action op (since 2 is the minimal delay between those actions 
satisfying the timing constraint), and 10 for action op2. Henceforth, as shown in Fig. 5, the output of the enforcer for σ3 is 
(6, op1) · (8, op) · (10, op2).

Specification S4 The specification states that “Processes should behave in a transactional manner, where each transaction consists 
of an acquisition of the resource, at least one operation on it, and then its release. After the acquisition of the resource, the operations 
on the resource should be done within 10 t.u. The resource should not be released less than 10 t.u. after acquisition. There should be no 
more than 10 t.u. without any ongoing transaction.”

Let us consider the input sequence σ4 = (1, acqi) · (2, opi) · (3, reli). Before t = 3, no output can be produced, since no 
transaction is complete, and events must be stored. At t = 3, when the monitor receives reli , it can decide that the three 
events acqi, opi , and reli can be released as output with appropriate delaying. Thus, the date associated with the two first 
actions acqi and opi is set to 3, since this is the minimal decision date. Moreover, to satisfy the timing constraint on release 
actions after acquisitions, the date associated to the last event reli is set to 13. The output of the enforcement mechanism 
for σ4 is then (3, acqi) · (3, opi) · (13, reli).

Let us now consider the input sequence σ ′
4 = (3, acqi) · (7, opi) · (13, reli). The monitor observes action acqi followed by an 

opi and a reli actions only at date t = 13. Hence, the date associated with the first action in the output should be at least 13, 
which is the minimal decision date. However, if the monitor chooses a date for acqi which is strictly greater than 10, the 
timing constraint cannot be satisfied. Consequently, the output of the monitor remains always empty. Notice however that 
the input sequence provided to the monitor satisfies the specification. Nevertheless, the monitor cannot release any event 
as output as it cannot take a decision until it receives action reli at date t = 13, which affects the date (i.e., the absolute 
time instant when it can be released as output) of the first action acqi , thus falsifying the constraints.

Discussion Specification S4 illustrates an important issue of enforcement in the timed setting, exhibited in this paper: 
because input timed words are seen as streams of events with dates, for some properties, there exist some input timed 
words that cannot be enforced, even though they either already satisfy the specification, or could be delayed to satisfy the 
specification (if they were known in advance). For instance, we shall see that specifications S1, S2, and S3 do not suffer 
from this issue, while S4 does. Actually, it turns out that enforcement monitors face some constraints due to streaming: 
they need to memorise input timed events before taking decision, but meanwhile, time elapses and this influences the 
possibility to satisfy the considered specification. Nevertheless, the synthesis of enforcement mechanisms proposed in this 
paper works for all regular timed properties, which means that the synthesised enforcement mechanisms still satisfy their 
requirements (soundness, transparency, optimality, and physical constraint), even though the output may be empty for some 
input timed words.
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3. Preliminaries and notation

We first recall some basic notions on untimed languages (Section 3.1). We then introduce timed words and languages 
(Section 3.2) and extend previous notions in a timed setting (Section 3.2). Finally, we introduce some orders on timed words 
that will be used in runtime enforcement (Section 3.3).

3.1. Untimed languages

A (finite) word over an alphabet A is a finite sequence w = a1 · a2 · · ·an of elements of A. The length of w is n and 
is noted |w|. The empty word over A is denoted by εA , or ε when clear from the context. The set of all (respectively 
non-empty) words over A is denoted by A∗ (respectively A+). A language over A is any subset L of A∗ .

The concatenation of two words w and w ′ is noted w · w ′ . A word w ′ is a prefix of a word w , noted w ′ � w , whenever 
there exists a word w ′′ such that w = w ′ · w ′′ , and w ′ ≺ w if additionally w ′ �= w; conversely w is said to be an extension
of w ′ .

The set pref(w) denotes the set of prefixes of w and subsequently, pref(L) def= ⋃
w∈L pref(w) is the set of prefixes of words 

in L. A language L is prefix-closed if pref(L) =L and extension-closed if L · A∗ =L.
Given two words u and v , v−1 · u is the residual of u by v and denotes the word w , such that v · w = u, if this word 

exists, i.e., if v is a prefix of u. Intuitively, v−1 · u is the suffix of u after reading prefix v . By extension, for a language 
L ⊆ A∗ and a word v ∈ A∗ , the residual of L by v is the language v−1 · L def= {w ∈ A∗ | v · w ∈L}. It is the set of suffixes 
of words that, concatenated to v , belong to L. In other words, v−1 · L is the set of suffixes of words in L after reading 
prefix v .

For a word w and i ∈ [1, |w|], the i-th letter of w is noted w[i] . Given a word w and two integers i, j, s.t. 1 ≤ i ≤ j ≤ |w|, 
the subword from index i to j is noted w[i··· j] .

Given two words w and w ′ , we say that w ′ is a subsequence of w , noted w ′ 	 w , if there exists an increasing mapping 
k : [1, |w ′|] → [1, |w|] (i.e., ∀i, j ∈ [1, |w ′|] : i < j =⇒ k(i) < k( j)) such that ∀i ∈ [1, |w ′|] : w ′[i] = w[k(i)] . Notice that, k being 
increasing entails that |w ′| ≤ |w|. Intuitively, the image of [1, |w ′|] by function k is the set of indexes of letters of w that 
are “kept” in w ′.

Given an n-tuple of symbols e = (e1, . . . , en), for i ∈ [1, n], �i(e) is the projection of e on its i-th element (�i(e) def= ei ). 
Operator �i is naturally extended to sequences of n-tuples of symbols to produce the sequence formed by the concatenation 
of the projections on the i-th element of each tuple.

3.2. Timed words and languages

As sketched in Section 2, input and output streams are seen as sequences of events composed of a date and an action, 
where the date is interpreted as the absolute date when the action is received by the enforcement mechanism. In what 
follows, we formalise input and output streams with timed words, and related notions, generalising the untimed setting.

Let R≥0 denote the set of non-negative real numbers, and � a finite alphabet of actions. An event is a pair (t, a) ∈
R≥0 × �, where date((t, a)) def= t ∈ R≥0 is the absolute time instant at which action act((t, a)) def= a ∈ � occurs.

A timed word over alphabet � is a finite sequence of events σ = (t1, a1)· (t2, a2) · · · (tn, an), where (ti)i∈[1,n] is a non-

decreasing sequence in R≥0. We denote by start(σ ) def= t1 the starting date of σ and end(σ ) def= tn its ending date (with the 
convention that the starting and ending dates are equal to 0 for the empty timed word ε).

The set of timed words over � is denoted by tw(�). A timed language is any set L ⊆ tw(�). Note that even though the 
alphabet (R≥0 × �) is infinite in this case, previous notions and notations defined in the untimed case (related to length, 
prefix, subword, subsequence etc) naturally extend to timed words.

The concatenation of timed words however requires more attention, as when concatenating two timed words, one should 
ensure that the result is a timed word, i.e., dates should be non-decreasing. This is ensured as soon as the ending date 
of the first timed word does not exceed the starting date of the second one. Formally, let σ = (t1, a1) · · · (tn, an) and 
σ ′ = (t′

1, a
′
1) · · · (t′

m, a′
m) be two timed words with end(σ ) ≤ start(σ ′), their concatenation is σ · σ ′ def= (t1, a1) · · · (tn, an) ·

(t′
1, a

′
1) · · · (t′

m, a′
m). By convention σ · ε def= ε · σ def= σ . Concatenation is undefined otherwise.

The untimed projection of σ is ��(σ ) def= a1 · a2 · · ·an in �∗ (i.e., dates are ignored).
Given t ∈ R≥0, and a timed word σ ∈ tw(�), we define the observation of σ at date t as the prefix of σ that can be 

observed at date t . It is defined as the maximal prefix of σ whose ending date is lower than t:

obs(σ , t)
def= max�

{
σ ′ ∈ pref(σ ) | end(σ ′) ≤ t

}
.

3.3. Preliminaries to runtime enforcement

Apart from the prefix order � (defined in Section 3.1), the following partial orders on timed words will be useful for 
enforcement.
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Delaying order �d For σ , σ ′ ∈ tw(�), we say that σ ′ delays σ (noted σ ′ �d σ ) iff they have the same untimed projection 
but the dates of events in σ ′ exceed the dates of corresponding events in σ . Formally:

σ ′ �d σ
def= ��(σ ′) = ��(σ ) ∧ ∀i ∈ [1, |σ |] : date(σ ′[i]) ≥ date(σ[i]).

Sequence σ ′ is obtained from σ by keeping all actions, but with a potential increase in dates.
For example, (4, a) · (7, b) · (9, c) �d (3, a) · (5, b) · (8, c). Note that delays between events may be decreased, e.g., between 

b and c, but absolute dates are increased.

Delaying subsequence order 	d For σ , σ ′ ∈ tw(�), we say that σ ′ is a delayed subsequence of σ (noted σ ′ 	d σ ) iff there exists 
a subsequence σ ′′ of σ such that σ ′ delays σ ′′ . Formally:

σ ′ 	d σ
def= ∃σ ′′ ∈ tw(�) : (σ ′′ 	 σ ∧ σ ′ �d σ ′′) .

Sequence σ ′ is obtained from σ by first suppressing some actions, and then increasing the dates of the actions that are kept. 
This order will be used to characterise output timed words with respect to input timed words in enforcement monitoring 
when suppressing and delaying events.

For example, (4, a) · (9, c) 	d (3, a) · (5, b) · (8, c) (event (5, b) has been suppressed while a and c are shifted in time).

Lexical order �lex This order is useful to choose a unique timed word among some with same untimed projection. For two 
timed words σ , σ ′ with same untimed projection (i.e., ��(σ ) = ��(σ ′)), the order �lex is defined inductively as follows: 
ε �lex ε , and for two events with identical actions (t, a) and (t′, a), (t, a) · σ �lex (t′, a) · σ ′ if t ≤ t′ ∨ (t = t′ ∧ σ �lex σ ′). For 
example (3, a) · (5, b) · (8, c) · (11, d) �lex (3, a) · (5, b) · (9, c) · (10, d).

Choosing a unique timed word with minimal duration min�lex,end Given a set of timed words with same untimed projection, 
min�lex,end selects the minimal timed word w.r.t. the lexical order among timed words with minimal ending date: first the 
set of timed words with minimal ending date are considered, and then, from these timed words, the (unique) minimal 
one is selected w.r.t. the lexical order. Formally, for a set E ⊆ tw(�) such that ∀σ , σ ′ ∈ E : ��(σ ) = ��(σ ′) (i.e., such that 
all words have the same untimed projection), we have min�lex,end(E) = min�lex

(
min�end(E)

)
where σ �end σ ′ if end(σ ) ≤

end(σ ′), for σ , σ ′ ∈ tw(�).

4. Timed languages and properties as timed automata

Timed automata is a usual model used to specify properties of sequences of events where timing between them matters. 
In this section, we introduce timed automata as a specification formalism for timed properties (Section 4.1). We describe 
a partitioning of the states of timed automata (Section 4.2). The partitioning allows to distinguish behaviours according to 
i) whether they currently satisfy or violate the property, and ii) whether or not this remains true for future behaviours. 
Finally, we present some sub-classes of regular properties (Section 4.3).

4.1. Timed automata

A timed automaton [11] is a finite automaton extended with a finite set of real valued clocks. Let X = {x1, . . . , xk} be 
a finite set of clocks. A clock valuation for X is an element of RX≥0, that is, a function from X to R≥0. For ν ∈ RX≥0 and 
δ ∈ R≥0, ν + δ is the valuation assigning ν(x) + δ to each clock x of X . Given a set of clocks X ′ ⊆ X , ν[X ′ ← 0] is the 
clock valuation ν where all clocks in X ′ are assigned to 0. G(X) denotes the set of guards, i.e., clock constraints defined as 
Boolean combinations of simple constraints of the form x �	 c with x ∈ X , c ∈ N and �	 ∈ {<, ≤, =, ≥, >}. Given g ∈ G(X)

and ν ∈ RX≥0, we write ν |= g when g holds according to ν .

Definition 1 (Timed automata). A timed automaton (TA) is a tuple A = (L, l0, X, �, 	, F ), such that L is a finite set of locations
with l0 ∈ L the initial location, X is a finite set of clocks, � is a finite set of actions, 	 ⊆ L ×G(X) ×�×2X × L is the transition 
relation. F ⊆ L is a set of accepting locations.

Example 1 (Timed automata). Let us consider again the specifications introduced in Section 2 where two processes access 
to and operate on a common resource. The global alphabet of events is � def= {init,acq1, rel1,op1,acq2, rel2,op2,op}. The 
specifications on the behaviour of the processes introduced in Section 2 are formalised with the TAs in Fig. 6. Accepting 
locations are denoted by squares.

S1 The specification is formalised by the automaton depicted in Fig. 6a with alphabet �i
1

def= {
reli,acqi,opi

}
for process i, 

i ∈ {1,2}. The automaton has two clocks x and y, where clock x serves to keep track of the duration of the resource 
acquisition whereas clock y keeps track of the time elapsing between two operations. Both locations of the automaton 
are accepting and there are two implicit transitions from location l1 to a trap state: i) upon action reli when the value 
of clock x is strictly lower than 10, and ii) upon action opi when the value of clock y is strictly lower than 1.
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Fig. 6. Some examples of timed automata.

S2 The specification is formalised by the automaton depicted in Fig. 6b with alphabet �2
def= {init,op1,op2}. The automaton 

has two clocks, where clock x keeps track of the time elapsed since initialisation, whereas clock y keeps track of the 
time elapsing between the operations of the two different processes.

S3 The specification is formalised by the automaton depicted in Fig. 6c with alphabet �3
def= {op,op1,op2}. Clock x keeps 

track of the time elapsing since the beginning of the transaction, whereas clock y keeps track of the time elapsing 
between any two operations.

S4 The specification is formalised by the automaton depicted in Fig. 6d with alphabet �i
4

def= {
acqi,opi, reli

}
. Clock x keeps 

track of the duration of a currently executing transaction, whereas clock y keeps track of the time elapsing between 
two transactions.

The semantics of a TA is defined as follows.

Definition 2 (Semantics of timed automata). The semantics of a TA is a timed transition system �A� = (Q , q0, 
, →, Q F ) where 
Q = L × RX≥0 is the (infinite) set of states, q0 = (l0, ν0) is the initial state where ν0 is the valuation that maps every clock 
in X to 0, Q F = F × RX≥0 is the set of accepting states, 
 = R≥0 × � is the set of transition labels, i.e., pairs composed 

of a delay and an action. The transition relation →⊆ Q × 
 × Q is a set of transitions of the form (l, ν)
(δ,a)−−−→(l′, ν ′) with 

ν ′ = (ν + δ)[Y ← 0] whenever there exists (l, g, a, Y , l′) ∈ 	 such that ν + δ |= g for δ ∈ R≥0.

In the following, we consider a timed automaton A = (L, l0, X, �, 	, F ) with its semantics �A�. A is said to be deter-
ministic whenever for any location l and any two distinct transitions (l, g1, a, Y1, l′1) and (l, g2, a, Y2, l′2) with source l and 
same action a in 	, the conjunction of guards g1 and g2 is unsatisfiable. A is said to be complete whenever for any loca-
tion l ∈ L and any action a ∈ �, the disjunction of the guards of the transitions leaving l and labelled by a is valid. In the 
remainder of this paper, we shall consider only deterministic and complete timed automata, and, automata refer to timed 
automata.

Remark 1 (Completeness and determinism). Although we restrict the presentation to deterministic TAs, results may easily be 
extended to non-deterministic TAs, with slight adaptations required to the vocabulary and when synthesising an enforce-
ment monitor. Regarding completeness, for readability of TA examples, if no transition can be triggered upon the reception 
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of an event, a TA implicitly moves to a non-accepting trap location (i.e., where all actions are looping with no timing 
constraint).

Remark 2 (Other definitions of timed automata). The definition of timed automata used in this paper is as the initial (and 
general) one proposed in [11] except that we do not use the Büchi acceptance condition because we deal with finite words. 
Even though we restrict constants in guards to be integers, and will see in Section 7 that TAs with rational constants may 
be necessary in the computation, those TAs can be transformed into integral TAs. Other definitions of timed automata have 
been proposed (see e.g., [12] for details). For instance, timed safety automata [13] are a simplified version of the original 
timed automata where invariants on locations replace the Büchi condition, as used in UPPAAL [14]. Several classes of deter-
minisable automata with restrictions on the resets of clocks have been proposed. Event-recording (resp. event-predicting) 
timed automata [15] are timed automata with a clock associated to each action that records (resp. predicts) the time elapsed 
since the last occurrence (resp. the time of the next occurrence) of that action; event-clock automata have event-recording 
and event-predicting clocks.

A run ρ of A from a state q ∈ Q is a sequence of moves in �A�: ρ = q 
(δ1,a1)−−−−→ q1 · · ·qn−1

(δn,an)−−−−→ qn , for some n ∈ N. The 
set of runs from the initial state q0 ∈ Q is denoted Run(A) and RunQ F (A) denotes the subset of those runs starting in q0
and accepted by A, i.e., ending in an accepting state qn ∈ Q F .

The trace started at date t of the run ρ is the timed word (t1, a1) · (t2, a2) · · · (tn, an) where ∀i ∈ [1, n] : ti = t + ∑i
j=1 δ j

(the date of ai is the sum of delays of the i first events plus t). We note q w→t qn in this case, and generalise to q w→t P

when qn ∈ P for a subset P of Q . We note w−→ for w→0 . We note L(A) the set of traces started at date 0 of Run(A). We 
extend this notation to LQ F (A) as the set of traces of runs in RunQ F (A). We thus say that a timed word is accepted by A
if it is the trace started at date 0 of an accepted run.

Example 2 (Runs and traces of a timed automaton). Consider the automaton in Fig. 6a. A possible run of this automaton 

from the initial state (l0, 0, 0) is the sequence of moves (l0, 0, 0) 
(1,acq1)−−−−−→ (l1, 0, 0) 

(2,op1)−−−−→ (l0, 2, 0) 
(1,op1)−−−−→ (l1, 3, 0) 

(0.5,acq1)−−−−−−→
(l1, 3.5, 0.5) 

(0.5,op1)−−−−−→ (l1, 4, 0). The trace starting at date 0 of this run is the timed word wt = (1, acq1) · (3, op1) · (4, op1) ·
(4.5, acq1) · (5, op1). We have (l0, 0, 0) wt−−→ (l1, 4, 0).

We now introduce the product of timed automata which is useful to intersect languages recognised by timed automata.

Definition 3 (Product of timed automata). Given two TAs A1 = (L1, l01, X1, �, 	1, F1) and A2 = (L2, l02, X2, �, 	2, F2) with 

disjoint sets of clocks, their product is the TA A1 × A2
def= (L, l0, X, �, 	, F ) where L = L1 × L2, l0 = (l10, l

2
0), X = X1 ∪ X2, 

F = F1 × F2, and 	 ⊆ L × G(X) × � × 2X × L is the transition relation, with ((l1, l2), g1 ∧ g2, a, Y1 ∪ Y2, (l′1, l′2)) ∈ 	 if 
(l1, g1, a, Y1, l′1) ∈ 	1 and (l2, g2, a, Y2, l′2) ∈ 	2.

It is easy to check that L(A) = L(A1) ∩L(A2).

4.2. Partition of states of �A�

Given a TA A = (L, l0, X, �, 	, F ), with semantics �A� = (Q , q0, 
, →, Q F ), the set of states Q of �A� can be parti-
tioned into four subsets good (G), currently good (Gc), currently bad (Bc) and bad (B), based on whether a state is accepting 
or not, and whether accepting or non-accepting states are reachable or not.

Formally, Q is partitioned into Q = GC ∪ G ∪ BC ∪ B where Q F = GC ∪ G and Q \ Q F = BC ∪ B and

• GC = Q F ∩ pre∗(Q \ Q F ) i.e., the set of currently good states is the subset of accepting states from which non-accepting 
states are reachable,

• G = Q F \ GC = Q F \ pre∗(Q \ Q F ) i.e., the set of good states is the subset of accepting states from which only accepting 
states are reachable,

• BC = (Q \ Q F ) ∩ pre∗(Q F ) i.e., the set of currently bad states is the subset of non-accepting states from which accepting 
states are reachable,

• B = (Q \ Q F ) \ pre∗(Q F ) i.e., the set of bad states is the subset of non-accepting states from which only non-accepting 
states are reachable,

where, for a subset P of Q , pre∗(P ) denotes the set of states from which the set P is reachable.
It is well known that reachability of a set of locations is decidable using the classical zone (or region) symbolic represen-

tation (see [16]) and is PSPACE-complete. Since Q F is the set of states with location F , this result can be used to compute 
the partition of Q .
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By definition, from good (resp. bad) states, one can only reach good (resp. bad) states. Consequently, a run of a TA 
traverses currently good and/or currently bad states, and may eventually reach a good state and remain in good states, or 
a bad state and remain in bad states, or in pathological cases, it can directly start in good or bad states. This partition will 
be useful to characterise the classes of safety and co-safety timed properties, as explained in Section 4.3, and later for the 
synthesis of enforcement mechanisms.

4.3. Some sub-classes of regular timed properties

Regular, safety, and co-safety timed properties In this paper, a timed property is defined by a timed language ϕ ⊆ tw(�)

that can be recognised by a timed automaton. That is, we consider the set of regular timed properties. Given a timed 
word σ ∈ tw(�), we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ . Safety (resp. co-safety) properties are sub-classes of 
regular timed properties. Informally, safety (resp. co-safety) properties state that “nothing bad should ever happen” (resp. 
“something good should happen within a finite amount of time”). In this paper, the classes are characterised as follows:

Definition 4 (Regular, safety, and co-safety properties). We consider the following three classes of timed properties.

• Regular properties are the properties that can be defined by languages accepted by a TA.
• Safety properties are the non-empty prefix-closed timed languages that can be accepted by a TA.
• Co-safety properties are the non-universal3 extension-closed timed languages that can be accepted by a TA.

The sets of safety and co-safety properties are subsets of the set of regular properties.

Safety and co-safety timed automata In the sequel, we shall only consider the properties that can be defined by deterministic 
and complete timed automata (Definition 1). Note that some of these properties can be defined using a timed temporal 
logic such as a subclass of MTL, which can be transformed into timed automata using the technique described in [17,18].

We now define syntactic restrictions on TAs that guarantee that a regular property defined by a TA defines a safety or a 
co-safety property.

Definition 5 (Safety and co-safety TA). Let A = (L, l0, X, �, 	, F ) be a complete and deterministic TA, where F ⊆ L is the set 
of accepting locations. A is said to be:

• a safety TA if l0 ∈ F ∧ �(l, g, a, Y , l′) ∈ 	 : l ∈ L \ F ∧ l′ ∈ F ;
• a co-safety TA if l0 /∈ F ∧ �(l, g, a, Y , l′) ∈ 	 : l ∈ F ∧ l′ ∈ L \ F .

It is then easy to check that safety (respectively co-safety) TAs define safety (respectively co-safety) properties.4 Intu-
itively, a safety TA starts in the accepting location l0 and has no transition from non-accepting to accepting locations. Thus, 
either all reachable locations are accepting (in this case, the TA recognises the universal language since it is complete), or 
the TA stays in accepting locations before possibly jumping definitively to non-accepting locations. At the semantic level a 
safety TA either has only good states (case of the universal language), or its runs start in the set of currently good states 
and may definitively jump in either the set of bad or the set of good states (no currently bad state can be reached). Thus, 
a safety TA defines a prefix-closed language. Conversely, a co-safety TA starts in the non-accepting location l0 and has no 
transition from accepting to non-accepting locations. Thus, either all reachable locations are non-accepting (in this case, the 
TA recognises the empty language), or it stays in non-accepting locations before possibly jumping definitively to accepting 
locations. At the semantic level, a co-safety TA either only has bad states (case of the empty language), or its runs start in 
the set of currently bad states and may definitively jump in either the set of good states or the set of bad states (currently 
good state cannot be reached). Thus, a co-safety TA defines an extension-closed language.

Example 3 (Classes of timed automata). Let us consider again the specifications introduced in Example 6. We formalise specifi-
cation Si as property ϕi , i = 1, . . . , 4. Property ϕ1 is a safety property specified by the safety TA in Fig. 6a (leaving accepting 
locations is definitive). Property ϕ2 is a co-safety property specified by the co-safety TA in Fig. 6b (leaving non-accepting 
locations is definitive). Property ϕ3 is specified by the TA in Fig. 6c. Property ϕ4 is specified by the TA in Fig. 6d. Both prop-
erties ϕ3 and ϕ4 are regular, but neither safety nor co-safety properties. In the underlying automata, runs may alternate 
between accepting and non-accepting locations, thus the languages that they define are neither prefix nor extension-closed.

3 The universal property over R≥0 × � is tw(�).
4 As one can observe, these definitions of safety and co-safety TAs slightly differ from the usual ones by expressing constraints on the initial state. As 

a consequence of these constraints, consistently with Definition 4, the empty and universal properties are ruled out from the set of safety and co-safety 
properties, respectively.
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Fig. 7. Enforcement function.

5. Enforcement monitoring in a timed context

We now introduce our enforcement monitoring framework (Section 5.1) and specify the expected constraints on the 
input/output behaviour of enforcement mechanisms (Section 5.2).

5.1. General principles

To ease the design and implementation of enforcement monitoring mechanisms in a timed context, we describe enforce-
ment mechanisms at three levels of abstraction: enforcement functions, enforcement monitors, and enforcement algorithms. An 
enforcement function describes the transformation of an input timed word into an output timed word at an abstract level 
where the whole input timed word is considered. In this section, we first formalise the constraints enforcement functions 
must satisfy, which reflect both physical constraints related to time, and required properties relating the input to the out-
put. In Section 6, we shall define such enforcement functions, and prove that they satisfy the constraints. An enforcement 
monitor is a more concrete view and defines the operational behaviour of the enforcement mechanism over time. In Sec-
tion 7, we shall define enforcement monitors as extended transition systems and we prove that, for a given property ϕ , 
the associated enforcement monitor implements the corresponding enforcement function. In other words, an enforcement 
function serves as an abstract description (black-box view) of an enforcement monitor, and an enforcement monitor is the 
operational description of an enforcement function. An enforcement algorithm (see Section 8) is an implementation of an 
enforcement monitor.

5.2. Constraints on an enforcement mechanism

At an abstract level, an enforcement mechanism for a given property ϕ can be seen as a function which takes as input a 
timed word and outputs a timed word. At this level, the input is considered as a whole, and the output is the corresponding 
whole timed word eventually produced, after an unbounded time elapse. In other words, the delay to observe the input and 
to produce the output is not considered. This is schematised in Fig. 7 and defined in Definition 6.

Definition 6 (Enforcement function signature). For a timed property ϕ , an enforcement mechanism behaves as a function, 
called enforcement function Eϕ : tw(�) → tw(�).

An enforcement function Eϕ models a mechanism that reads some input timed word σ from an event emitter, which is 
possibly incorrect w.r.t. ϕ , and transforms it into a timed word that satisfies ϕ which is output to the event receiver.

Before providing the actual definition of enforcement function in Section 6, we define the constraints that should be 
satisfied by an enforcement mechanism. The following constraints can serve as a specification of the expected behaviour of 
enforcement mechanisms for timed properties, that can delay and suppress events.

An enforcement mechanism should first satisfy some physical constraint reflecting the streaming of events: the output 
stream can only be modified by appending new events to its tail. Second, it should be sound w.r.t. the monitored property, 
meaning that it should correct input words according to ϕ if possible, and otherwise produce an empty output. Third, it 
should be transparent, which means that it is only allowed to shift events in time while keeping their order (we refer to 
such kind of mechanisms as time retardants) and suppress some events. These constraints are formalised in the following 
definition:

Definition 7 (Constraints on an enforcement mechanism). Given a timed property ϕ , an enforcement function Eϕ : tw(�) →
tw(�), should satisfy the following constraints:

– Physical constraint:

∀σ ,σ ′ ∈ tw(�) : σ � σ ′ =⇒ Eϕ(σ ) � Eϕ(σ ′) (Phy).

– Soundness:

∀σ ∈ tw(�) : Eϕ(σ ) |= ϕ ∨ Eϕ(σ ) = ε (Snd).



Y. Falcone et al. / Science of Computer Programming 123 (2016) 2–41 13
– Transparency:

∀σ ∈ tw(�) : Eϕ(σ ) 	d σ (Tr).

The physical constraint (Phy) means that Eϕ is monotonic: the output produced for an extension σ ′ of an input word 
σ extends the output produced for σ . This stems from the fact that, over time, what is actually output by the enforcement 
function is a continuously growing timed word, i.e., what is output for a given input timed word can only be modified by 
appending new events with greater dates. Soundness (Snd) means that the output either satisfies property ϕ , or is empty. 
This allows to output nothing if there is no way to satisfy ϕ . Note that, together with the physical constraint, soundness 
implies that no event can be appended to the output before being sure that the property will be eventually satisfied with 
subsequent output events. Transparency (Tr) means that the output is a delayed subsequence of the input σ , thus the 
enforcement function is allowed to either suppress input events, or increase their dates while preserving their order.

It can be easily checked on the examples in Section 2 that the output sequences satisfy the constraints of enforcement 
mechanisms.

Remark 3. The soundness, transparency, and physical constraints describe the expected input/output behaviour of an en-
forcement function for the whole input sequence. Note that it however does not strongly constrain the output. In particular, 
an enforcement function that never produces any output complies to these constraints. However, to be practical, an actual 
enforcement function should also provide some guarantees on the output sequence it produces in terms of length and delay 
w.r.t. the input sequence. Such guarantees are specified by an optimality property in Section 6.

6. Enforcement functions: input/output description of enforcement mechanisms

We now define an enforcement function dedicated to a desired property ϕ . Its purpose is to define, at an abstract level, 
for any input word σ , the output word Eϕ(σ ) expected from an enforcement mechanism that works as a delayer with 
suppression, where suppression only happens upon the reception of an event that prevents any satisfaction of the property 
in the future.

First, we discuss some preliminaries (Section 6.1) regarding the consequences of the choice of suppression strategy on ef-
ficiency and on the possible output sequences of the enforcement function. Then, we define the enforcement function itself, 
and prove in Section 6.2 that this functional definition satisfies the physical, soundness, and transparency constraints. We 
also prove that the enforcement function satisfies some optimality criterion with the chosen suppression strategy. Finally, 
in Section 6.3, we explain how the enforcement function behaves over time (how a given input sequence is consumed over 
time, and how the output is released in an incremental fashion).

6.1. Preliminaries to the definition of enforcement functions

An enforcement mechanism needs to memorise events since, for some properties (typically co-safety properties), upon 
the reception of some input timed word, the property might not be yet satisfiable by delaying, but a continuation of the 
input may allow satisfaction. For more general properties (which are neither safety nor co-safety properties), there may 
exist some prefix for which the property is satisfiable by delaying the input, thus dates can be chosen for these events. For 
efficiency reasons, and for our enforcement mechanisms to be amenable to online implementations, we also want to build 
the output in a fashion that is as incremental as possible. Enforcement mechanisms should thus take decisions on dates of 
output events as soon as possible. Still for efficiency considerations, we impose that suppression should occur only when 
necessary, i.e., when, upon the reception of a new event, there is no possibility to satisfy the property, whatever is the 
continuation of the input. Moreover, we decide to suppress the last received event only because it causes the unsatisfiability 
(even) if delayed. Note, when an enforcement mechanism decides not to suppress an action, it should not modify its decision 
in the future. Our choice of suppression strategy mainly stems from efficiency reasons. We discuss our choice and possible 
alternatives in Remark 4 in Section 6.2 (p. 15).

6.2. Definition of enforcement functions

As intuitively explained in the motivating examples of Section 2, during the correction of an input timed word σ , some 
subsequence of events σc is temporarily stored, until some new event (t, a) eventually allows to satisfy the property for 
the first time, or satisfy it again, by delaying the sequence σ ′

c = σc · (t, a). For such a sequence σ ′
c , the definition of an 

enforcement function shall use the set CanD(σ ′
c) of candidate delayed sequences of σ ′

c , independently of the property ϕ .

CanD(σ ′
c) = {

w ∈ tw(�) | w �d σ ′
c ∧ start(w) ≥ end(σ ′

c)
}
.

The set CanD(σ ′
c) is the set of timed words w that delay σ ′

c , and start at or after the ending date of σ ′
c (which is the date 

t of the last event (t, a) of σ ′
c ). As we shall see, w �d σ ′

c stems from the fact that we consider enforcement mechanisms 
as time retardants, while start(w) ≥ end(σ ′

c) means that the eligible timed words should not start before the date of its 



14 Y. Falcone et al. / Science of Computer Programming 123 (2016) 2–41
last event (which is the current date t), as illustrated informally with specification S3 in Section 2 and further discussed in 
Section 6.3.

With this preliminary notation, the enforcement function for a property ϕ can be defined as follows:

Definition 8 (Enforcement function). The enforcement function for a property ϕ is the function Eϕ : tw(�) → tw(�) defined 
as:

Eϕ(σ ) = �1
(
storeϕ (σ )

)
,

where storeϕ : tw(�) → tw(�) × tw(�) is defined as

storeϕ(ε) = (ε, ε)

storeϕ(σ · (t,a)) =

⎧⎪⎪⎨
⎪⎪⎩

(σs · min�lex,end
(
κϕ(σs,σ

′
c)

)
, ε) if κϕ(σs,σ

′
c) �= ∅,

(σs,σc) if κpref(ϕ)(σs,σ
′
c) = ∅,

(σs,σ
′
c) otherwise,

with σ ∈ tw(�), t ∈ R≥0,a ∈ �,

(σs,σc) = storeϕ(σ ), and σ ′
c = σc · (t,a),

where, for L ⊆ tw(�),

κL(σs,σ
′
c)

def= CanD(σ ′
c) ∩ σ−1

s ·L.

For a given input σ , function storeϕ computes a pair (σs, σc) of timed words: σs , which is extracted by the projection 
function �1 to produce the output Eϕ(σ ); σc is used as a temporary memory. The pair (σs, σc) should be understood as 
follows:

• σs is a delayed subsequence of the input σ , in fact of its prefix of maximal length for which the absolute dates can be 
computed to satisfy property ϕ;

• σc is a subsequence of the remaining suffix of σ for which the releasing dates of events, still have to be computed. It is 
a subsequence (and not the complete suffix) since some events may have been suppressed when no delaying allowed 
to satisfy ϕ , whatever is the continuation of σ , if any.

Function Eϕ incrementally computes a timed word according to the input timed word, and is defined inductively as follows. 
When the empty word ε is input, it produces (ε, ε). Otherwise, suppose that for the input σ the result of storeϕ(σ ) is 
(σs, σc) and consider a new received event (t, a). Now, the new timed word to correct is σ ′

c = σc · (t, a). There are three 
possible cases, according to the vacuity of the two sets κϕ(σs, σ ′

c) and κpref(ϕ)(σs, σ ′
c). These sets are obtained respectively 

as the intersection of the set CanD(σ ′
c) with σ−1

s · ϕ and σ−1
s · pref(ϕ). Let us recall that:

• CanD(σ ′
c) is the set of timed words that delay σ ′

c , and start at or after the ending date of σ ′
c (i.e., the date of its 

last event (t, a)), since choosing an earlier date would cause the date to be already elapsed before the event could be 
released as output;

• σ−1
s · ϕ = {w ∈ tw(�) | σs · w |= ϕ} is the set of timed words that satisfy ϕ after reading σs; similarly, since pref(ϕ) =

{v ∈ tw(�) | ∃w ′ ∈ tw(�) : v · w ′ |= ϕ} we get that σ−1
s · pref(ϕ) = {

w ∈ tw(�) | ∃w ′ ∈ tw(�) : σs · w · w ′ |= ϕ
}

, and thus 
σ−1

s · pref(ϕ) is the set of timed words for which a continuation satisfies ϕ after reading σs .

Thus κϕ(σs, σ ′
c) is the set of timed words w that belong to the candidate delayed sequences of σ ′

c and such that σs · w
satisfies ϕ; and κpref(ϕ)(σs, σ ′

c) is the set of timed words w that belong to the candidate delayed sequences of σ ′
c , and such 

that some additional continuation w ′ may satisfy ϕ , i.e., σs · w · w ′ |= ϕ . Note that, since κϕ(σs, σ ′
c) ⊆ κpref(ϕ)(σs, σ ′

c), we 
distinguish three different cases:

– If κϕ(σs, σ ′
c) �= ∅ (and thus κpref(ϕ)(σs, σ ′

c) �= ∅), it is possible to choose appropriate dates for the timed word σ ′
c =

σc · (t, a) to satisfy ϕ . The minimal timed word in κϕ(σs, σ ′
c) w.r.t. the lexicographic order is chosen among those with 

minimal ending date, and appended to σs; the second element of the pair is set to ε since all events memorised in 
σc · (t, a) are corrected and appended to σs .

– If κpref(ϕ)(σs, σ ′
c) = ∅ (and thus κϕ(σs, σ ′

c) = ∅), it means that, whatever is the continuation of the current input σ ·(t, a), 
there is no chance to find a correct delaying for (t, a). Thus, event (t, a) should be suppressed, leaving σc and σs
unmodified.

– Otherwise, i.e., when κϕ(σs, σ ′
c) = ∅ but κpref(ϕ)(σs, σ ′

c) �= ∅, it means that it is not yet possible to choose appropriate 
dates for σ ′

c = σc · (t, a) to satisfy ϕ , but there is still a chance to do it in the future, depending on the continuation of 
the input, if any. Thus σc is modified into σ ′

c = σc · (t, a) in memory, but σs is left unmodified.
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Remark 4 (Alternative strategies to suppress events). When there is no possibility to continue correcting the input sequence 
(i.e., κpref(ϕ)(σs, σc · (t, a)) = ∅), we choose to erase only the last received event (t, a), since it is the one that causes this 
impossibility. However, other policies to suppress events could be chosen. In fact, one could choose to suppress any events 
in σc · (t, a), since dates of these events have not yet been chosen. This would then require to choose among all such 
subsequences, using an appropriate order. This may be rather complex to define, and, more importantly, computationally 
expensive because one would have to face the combinatorial explosion induced when considering the 2|σc ·(t,a)| possible 
subsets of actions to suppress. Moreover, let us notice that enforcement mechanisms are purposed to work in an online 
fashion, hence making decisions on each reception of a new event. For this purpose, not reconsidering the suppression 
choices makes them definitive and lowers the computation related to suppression.

Proposition 1. Given some property ϕ , its enforcement function Eϕ as per Definition 8 satisfies the physical (Phy), soundness (Snd), 
and transparency (Tr) constraints as per Definition 7.

Proof of Proposition 1 – sketch only. The proof of the physical constraint is a direct consequence of the definition of storeϕ . 
The proofs of soundness and transparency follow the same pattern: they rely on an induction on the length of the input 
word σ . The induction steps use a case analysis, depending on whether the last input subsequence (i.e., the events in 
σc · (t, a)) can be corrected or not. The complete proofs are given in Appendix A.1. �

In addition to the physical, soundness, and transparency constraints, the functional definition also ensures that each 
subsequence is output as soon as possible, as expressed by the following proposition.

Proposition 2 (Optimality of enforcement functions). Given some property ϕ , its enforcement function Eϕ as per Definition 8 satisfies 
the following optimality constraint:

∀σ ∈ tw(�) : Eϕ(σ ) = ε ∨ ∃m, w ∈ tw(�) : Eϕ(σ ) = m · w(|= ϕ), with

m = maxϕ
≺,ε(Eϕ(σ )), and

w = min�lex,end{w ′ ∈ m−1 · ϕ | ��(w ′) = ��(m−1 · Eϕ(σ ))

∧ m · w ′ 	d σ ∧ start(w ′) ≥ end(σ )}
where maxϕ

≺,ε(σ ) is the maximal strict prefix of σ belonging to ϕ , formally:

maxϕ
≺,ε(σ )

def= max�
({

σ ′ ∈ ϕ | σ ′ ≺ σ
} ∪ {ε}) .

For any input σ , if the output Eϕ(σ ) is not empty, then (it satisfies ϕ by soundness and) the output can be separated into 
a prefix m which is the maximal strict prefix of Eϕ(σ ) satisfying property ϕ , and a suffix w . The optimality condition focuses 
on this last part, which is the suffix that allows to satisfy (again) the property. However, since the property considers any 
input σ , the same holds for every prefix of the input that allows to satisfy ϕ by enforcement, thus for any such (temporary) 
last subsequence.

The optimality constraint expresses that, among those sequences w ′ that could have been chosen (see below), w is the 
minimal one in terms of ending date, and lexical order (this second minimality ensures uniqueness). The “sequences that 
could have been chosen” are those such that m · w ′ satisfies the property, have the same events (thus can be produced by 
suppressing the same events), are delayed subsequences of the input σ , and have a starting date greater than or equal to 
end(σ ), since end(σ ) is the date at which w ′ is appended to the output, and thus a smaller date would be in the past of 
the output event.

Proof of Proposition 2 – sketch only. The proofs rely on an induction on the length of the input word σ . The induction step 
uses a case analysis, depending on whether the last input subsequence (i.e., the events in σc · (t, a)) can be corrected or not. 
The proof is given in Appendix A.2 (p. 32). �
Remark 5 (On the optimality condition). Note that the condition ��(w ′) = ��(m−1 · Eϕ(σ )) in Proposition 2 stems from the 
strategy chosen to suppress events (see Remark 4). If an enforcement function is defined, such that it is allowed to suppress 
any event in σc · (t, a), then the condition ��(w ′) = ��(m−1 · Eϕ(σ )) in optimality should be removed. Moreover, note that 
optimality has to be defined in a recursive manner. Indeed, since enforcement mechanisms should produce output sequences 
in an incremental fashion, the optimal output that should be produced for an input sequence depends on the optimal 
outputs that have been produced for the prefixes of the input sequence. Because of the performance reasons mentioned 
in Remark 4, defining a more general notion of optimality (possibly parameterised by the suppression strategy) is left for 
future work.
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Fig. 8. Behaviour of enforcement functions over time.

6.3. Behaviour of enforcement functions over time

At an abstract level, an enforcement function takes as input a timed word and computes as output the timed word that 
is eventually produced by the enforcement mechanism after some unbounded delay. However, at a more concrete level, 
enforcement obeys some temporal constraints relative to the current date t . Firstly, since the enforcement mechanism reads 
the input timed word σ as a stream, what it can effectively observe from σ at date t is its prefix obs(σ , t). Consequently, at 
date t , what it can compute from this observation is Eϕ(obs(σ , t)). Note that it is legal to do so since, by definition obs(σ , t)
is a prefix of σ , and thus, by the physical constraint (Phy), Eϕ(obs(σ , t)) is a prefix of the complete output Eϕ(σ ). Now, 
Eϕ(obs(σ , t)) is a timed word where dates attached to events model the date when they should eventually be released as 
output. But at date t , only its prefix obs(Eϕ(obs(σ , t)), t) is effectively released as output. Now, notice that, since Eϕ behaves 
as a time retardant (i.e., dates attached to output events exceed dates of corresponding input events), and Eϕ(obs(σ , t)) is 
a prefix of Eϕ(σ ), we get obs(Eϕ(obs(σ , t)), t) = obs(Eϕ(σ ), t). From this, we conclude that the released output at date t
is obs(Eϕ(σ ), t). Finally, what is ready to be released at date t , but not yet released is the residual of Eϕ(obs(σ , t)) after 
observing obs(Eϕ(σ ), t) thus obs(Eϕ(σ ), t)−1 · Eϕ(obs(σ , t)). The enforcement monitor described in the next section, which 
implements the enforcement function, takes care of this temporal behaviour.

Example 4 (Behaviour of enforcement functions over time). (See Fig. 8.) Let us consider the input timed word σ = (t1, a1) ·
(t2, a2) · (t3, a3) · (t4, a4) · (t5, a5) · (t6, a6) · (t7, a7), and let the output of the enforcement function be Eϕ(σ ) = (t′

1, a1) ·
(t′

2, a2) · (t′
4, a4) · (t′

5, a5) · (t′
7, a7). At time instant t:

– the observation of σ is obs(σ , t) = (t1, a1) · (t2, a2) · (t3, a3) · (t4, a4) · (t5, a5),
– the subsequence of remaining suffix of obs(σ , t) for which the releasing dates still have to be computed is σ t

mc = (t5, a5),
– the output that the enforcement function can compute from obs(σ , t) is Eϕ(obs(σ , t)) = (t′

1, a1) · (t′
2, a2) · (t′

4, a4),
– the released output is obs(Eϕ(obs(σ , t)), t) = obs(Eϕ(σ ), t) = (t′

1, a1) · (t′
2, a2);

– the timed word ready to be released, denoted by σ t
ms, is obs(Eϕ(σ ), t)−1 · Eϕ(obs(σ , t)) = (t′

4, a4).

Example 5 (Enforcement function). We illustrate how Definition 8 is applied to enforce specification S3 (see Section 2), 
formalised by property ϕ3, recognised by the automaton depicted in Fig. 6c with �3 (= {op1,op2,op}), and the input timed 
word σ3 = (2, op1) · (3, op1) · (3.5, op) · (6, op2). Fig. 9 shows the evolution of the observed input timed word obs (σ3, t), the 
output of the storeϕ function when the input timed word is obs(σ3, t), and Eϕ3 . Variable t keeps track of physical time, 
i.e., it contains the current date. When t < 6, the observed output is empty (since Eϕ3 (obs (σ3, t)) = ε). When t ≥ 6, the 
observed output, is obs ((6,op1) · (8,op) · (10,op2) , t) (since Eϕ3 (obs (σ3, t)) = (6, op1) · (8, op) · (10, op2)).

Example 6 (Enforcement function: a non-enforceable property). Consider specification S4 formalised by property ϕ4, recognised 
by the automaton depicted in Fig. 6d with �i

4 = {
acqi,opi, reli

}
, and the input timed word σ4 = (3, acqi) · (7, opi) · (12, reli). 

Fig. 10 shows the evolution of the observation of the input timed word obs(σ4, t), the output of the storeϕ function when 
the input timed word is obs(σ4, t), and Eϕ4 . The output of the enforcement function is ε at any date because delaying 
action acqi for 9 t.u. (i.e., until observing action reli ) violates the timing constraint of 10 t.u. without transaction.
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Fig. 9. Evolution over time of the values of the enforcement function for property ϕ3 specifying the transactional execution of actions op1 and op2.

Fig. 10. Evolution over time of the values of the enforcement function for property ϕ4 (a non-enforceable property).

Remark 6 (Simplified enforcement functions for safety properties). Because of the characteristics of safety properties, the enforce-
ment function for such properties can be simplified. A safety property ϕ is prefix closed thus pref(ϕ) = ϕ , which implies 
that the two functions κpref(ϕ) and κϕ are identical. Thus, the two first cases in the definition of storeϕ(σ · (t, a)) can be 
simplified and distinguished according to whether κϕ(σs, σ ′

c) = ∅ or not; and the third case never happens. Moreover, since 
σc is initially empty, and the two first cases in the definition of storeϕ(σ · (t, a)) do not modify σc , by a simple induction on 
the input sequence, we observe that σc always remains empty. Thus, the second output parameter of function storeϕ (i.e., 
the internal memory) can be suppressed. Additionally, in the first case, the first argument of the output can be simplified 
as it is always called with the last read event (t, a) (see below).

The enforcement function for safety properties storesa
ϕ : tw(�) → tw(�) can be defined as follows:

storesa
ϕ (ε) = ε

storesa
ϕ (σ · (t,a)) =

{
storesa

ϕ (σ ) · (min (K (σ , (t,a))) ,a) if K (σ , (t,a)) �= ∅,

storesa
ϕ (σ ) otherwise,

where K (σ , (t,a))
def= {t′ ∈ R≥0 | t′ ≥ t ∧ storesa

ϕ (σ ) · (t′, a) 	d σ · (t, a) ∧ storesa
ϕ (σ ) · (t′, a) ∈ ϕ} is the set of dates t′ ≥ t that 

can be associated to a such that the extension storesa
ϕ (σ ) · (t′, a) of storesa

ϕ (σ ) is a delayed subsequence of σ · (t, a) and still 
satisfies property ϕ .

7. Enforcement monitors: operational description of enforcement mechanisms

The enforcement function defined in Section 6 describes inductively how an input stream of events is transformed ac-
cording to a property. It provides a functional view of enforcement mechanisms and could be implemented using functional 
programming constructs such as recursion and lazy evaluation.
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However, a concern is that the computation of dates upon the reception of a new event also depends on the sequence 
of events σs that have been already corrected, through functions κϕ and κpref(ϕ) . Consequently, implementing directly an 
enforcement function would require the enforcement mechanism to store σs in its memory, that would grow over time and 
never be emptied.

Instead, we implement an enforcement function Eϕ for a property ϕ specified by a TA Aϕ with an enforcement monitor 
(EM). An EM has an operational semantics: it is defined as a transition system E , and has explicit state information. It keeps 
track of and uses information such as time elapsed, and the state reached after reading (or simulating) σs in the underlying 
TA to release the actions stored in σs at appropriate dates. Hence, an EM does not need to store σs .

7.1. Preliminaries to the definition of enforcement monitors

In contrast with an enforcement function which, at an abstract level, takes a timed word as input and produces a timed 
word as output, an enforcement monitor E also needs to take into account physical time (i.e., the actual date t), the current 
observation obs(σ , t) of the input stream σ at date t , the release of events to the environment which is obs(Eϕ(σ ), t), 
and the residual of Eϕ(obs(σ , t)) after releasing obs(Eϕ(σ ), t). Note, since storing these sequences would be impractical at 
runtime, an enforcement monitor encodes equivalent information as described below.

An EM E is equipped with: a clock which keeps track of the current date t; two memories and a set of enforcement 
operations used to store and release some timed events to and from the memories, respectively. The memories are basically 
queues, each of them containing a timed word:

• σmc manages the input queue, more precisely the subsequence of the input obs(σ , t) consisting of non-suppressed 
events for which dates could not yet be chosen to satisfy the property. This exactly corresponds to the timed word σc
in function storeϕ (see Definition 8);

• σms is the output queue which manages the part of the output Eϕ(σ ) which is computed at date t but not yet released; 
since at date t only prefix obs(σ , t) has been observed, and obs(Eϕ(σ ), t) has already been released, σms contains the 
residual obs(Eϕ(σ ), t)−1 · Eϕ(obs(σ , t)), i.e., the timed word that is ready to be released but not yet released.

An EM also keeps track of the current state q of the underlying LTS of the TA Aϕ that encodes ϕ and the date tF at which 
q is reached. The current state q is the one reached after reading the timed word Eϕ(obs(σ , t)) (that also corresponds to σs
in the definition of Eϕ ), which is the output that can be computed from the current observation obs(σ , t). By definition q
is either q0 or a state in Q F . The date tF is the date end(Eϕ(obs(σ , t))) (and evaluates to 0 if Eϕ(obs(σ , t)) = ε).

7.2. Function update

Before defining enforcement monitors, we introduce function update which takes as input the current state q ∈ Q F ∪{q0}
of �Aϕ �5 reached after reading Eϕ(obs(σ , t)), the arrival date tF in this state q, a timed word σmc ∈ tw(�) that has to be 
corrected, and the last received event (t, a). Function update possibly updates the current state, and outputs a marker used 
by E to make decisions, according to whether σmc can be corrected or not, and in the negative case, whether an extension 
could be.

Definition 9 (Function update). update is a function from Q ×R≥0 × tw(�) × (R≥0 × �) to Q × tw(�) × {ok, c_bad, bad}
defined as follows:

update(q, tF ,σmc, (t,a))
def=

⎧⎪⎨
⎪⎩

(
q′, wmin,ok

)
if kQ F (q, tF ,σmc · (t,a)) �= ∅ ∧ q

wmin→ tF q′,
(q,σmc,bad) if kQ F ∪BC (q, tF ,σmc · (t,a)) = ∅,

(q,σmc · (t,a),c_bad) otherwise,

where, for Q ⊆ Q ,

kQ(q, tF ,σ ) =
{

w ∈ tw(�) | q
w→tF Q

}
∩ CanD(σ ),

and wmin = min�lex,end kQ F (q, tF , σmc · (t, a)).

Recall that CanD(σ ) (defined in section 6.2) computes the set of timed words that delay σ and start at or after end(σ ). 
Function kQ explicitly uses the semantics �Aϕ � = (Q , q0, 
, →, Q F ) of the TA Aϕ defining property ϕ , and, using function 
CanD, mimics the computation of the sets κϕ(σs, σ ′

c), and κpref(ϕ)(σs, σ ′
c) defined in section 6.2. Function kQ is parame-

terised with a set of states Q ⊆ Q and called with three parameters: the current state q, a date tF , and a sequence σ . It 
returns the set of timed words leading to a state in Q from state q starting at date tF , among sequences in CanD(σ ).

The three cases in the definition of update encode the three cases in the definition of function storeϕ , in the same order:

5 The partitioning of the states Q of �A� into four subsets G , GC , BC and B is defined in Section 4.2.



Y. Falcone et al. / Science of Computer Programming 123 (2016) 2–41 19
– In the first case, Q = Q F and kQ F (q, tF , σmc · (t, a)) is not empty, i.e., appropriate delaying dates can be chosen for the 
events in σmc · (t, a) such that an accepting state q′ ∈ Q F is reached from q, starting at date tF . In this case, function 
update returns q′ , wmin, and marker ok: wmin is the minimal word w.r.t. the lexical order among those timed words of 
minimal ending date in kQ F (q, tF , σmc · (t, a)), q′ ∈ Q F is the state reached from q with wmin, and marker ok indicates 
that Q F is reached.

– In the second case, Q = Q F ∪ BC and kQ F ∪BC (q, tF , σmc · (t, a)) is empty; it is thus impossible to correct σmc · (t, a) in the 
future, since no candidate sequence delaying σmc · (t, a) leads to a state in Q F ∪ BC , i.e., accepting states or states from 
which a path leads to an accepting state (they all lead to bad states B). This reflects the fact that κpref(ϕ)(σs, σc · (t, a))

is empty, since the set of accepting states of pref(ϕ) is Q F ∪ BC . In this case, function update returns state q and timed 
word σmc unmodified, indicating that event (t, a) is suppressed, and marker bad indicates that no accepting state could 
be reached in the future if (t, a) was retained in memory.

– In the third case, function update returns state q unmodified, but returns the timed word σmc · (t, a), and a marker 
c_bad. The marker indicates that σmc · (t, a) cannot be delayed to reach an accepting state, but there it is still possible 
to reach a new accepting state after observing more events in the future.

On the computation of function update Function update can be computed using operations on TAs and known algorithms 
solving classical problems, with the help of the standard symbolic representation of behaviours of TAs by region or zone 
graphs, and refinement of these, using Difference Bound Matrices (DBM) to encode timing constraints. However, one needs 
to adapt TAs following practical considerations as explained below. We first introduce the sub-problems involved in the 
computation of update and references to their algorithmic solutions. Next, we explain some considerations to extend the 
kind of TAs handled by these algorithms. Finally, we explain how to encode the computation of update into these algorithms 
and standard operations on TAs.

Reachability problem: For a TA A = (L, l0, X, �, 	, F ), check whether F is reachable. Recall that reachability is PSPACE-
complete in the size of the TA A [11] and can be solved using the symbolic region or zone representations and 
forward or backward analysis, e.g., using UPPAAL [14].

Optimal reachability problem: For a TA A = (L, l0, X, �, 	, F ), check whether F is reachable and if yes, find a run with 
minimal duration. It can be proven that this problem is also PSPACE-complete in the size of A. PSPACE-hardness is 
a direct consequence of the fact that reachability in TAs is already PSPACE-hard. PSPACE-easiness is a consequence 
of the fact that a more general problem, the optimal cost reachability problem for weighted timed automata (WTAs), 
is proven to be PSPACE-complete in [19], and can be solved by the exploration of the weighted directed graph. The 
weighted directed graph is a refinement of the region graph in which the durations of time transitions are arbitrar-
ily close to integers, and edges are augmented with cost functions which are polynomials in the constants of A. 
Cost-optimal paths can be found among those where the durations spent in locations are arbitrarily close to integers. 
Moreover, in the case of TAs with only non-strict guards, the optimal timed words indeed have integral dates.

We now state four considerations that allow to apply these algorithms in our context:

Consideration 1 In a real runtime environment, dates of input events are observed by a digital clock with limited precision. 
Observed dates can thus be considered as rationals, more precisely integral multiples of a sampling rate 1/D of a 
clock, rather than reals as in the idealised model of timed words. As a consequence of this, of the computation of 
update and its use in the enforcement monitor, the computed output dates are also rationals (obtained by reverse 
scaling of integer dates obtained by optimal reachability, see below).

Consideration 2 In our definition of TAs, all constants in guards are integers. These TAs are sometimes called integral TAs. 
As will be clear later, and in particular because of Consideration 1, we shall also consider rational TAs, i.e., TAs where 
constants can be rational. A rational TA can be transformed into an integral TA by considering 1/d as the new unit 
value, where d is the least common multiple of all denominators of rational constants. Note that the value 1/d, which 
will be useful in the sequel, will always be a multiple of the observation sampling rate 1/D , thus one can simply 
take 1/D . Since the size of the regions/zones graph depends on the maximal constant, there is a tradeoff between the 
precision of the observation and the cost of reachability analysis.

Consideration 3 Still due to Consideration 1, in the use of update we will have to solve (optimal) reachability not only from 
the initial state, but from some state q where the location l may differ from l0 and clocks have a rational valuation ν . 
First, as is the case with Consideration 2, one can scale this TA by multiplying all constants by the least common 
multiple of denominators of this valuation (and constants if rational) in order to get an integral TA starting in an 
integral valuation ν ′ . Second, the construction of the region/zone automaton will be as usual, except that it should 
start in (l, ν ′).

Consideration 4 As seen above with optimal reachability, for TAs with strict (lower) guards, infimum may not be realisable
even though reachability is achieved. However, a timed word arbitrarily close to the infimum exists as soon as reacha-
bility is achieved. Alternatively, one may approximate the TA with a TA exhibiting only non-strict guards. Since output 
dates should be multiple of the sampling rate 1/D , the approximation consists in transforming all strict guards of the 
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form x > c, where c is an integer, into guards of the form x ≥ c + 1/D , and then use Consideration 2 to transform this 
rational TA into an integral TA, and get guards of the form x ≥ D ∗ c + 1.

Remark 7. Most of the above considerations concern rational constants (or initial rational valuations) in TAs and have their 
roots in the precision of the observation (Consideration 1). An alternative way to understand those considerations, and avoid 
problems of rational constants in all the algorithms, is simply to consider the observation sampling 1/D as the new time 
unit, and thus to observe events at integral dates and rescale TA Aϕ according to this new time unit. As a consequence, all 
TAs that have to be built would be integral TAs.

We now come back to the computation of function update. First, CanD(σmc · (t, a)) can be represented by a rational TA 
C with a new clock y /∈ X (that does not belong to the set of clocks of the TA Aϕ of the property) initialised to 0, and 
|σmc · (t, a)| transitions in sequence, one transition per action in σmc · (t, a), the first transition with constraint y ≥ t , the 
other ones with no timing constraint, no reset on any transition, and one accepting location in set FC at the end, with no 
outgoing transition. Clearly, this automaton recognises timed words delaying σmc · (t, a) and starting after t . Since t is the 
date at which a is observed, by Consideration 1 we suppose that it is a rational, multiple of the observation sampling 1/D , 
thus C is a rational TA. For technical reasons, in the following we will rather consider the rational TA C ′ obtained from C
by replacing y ≥ t by y ≥ t − tF in the first transition, where tF is the arrival date in state q (note that it can be easily 
proven by induction on the use of update that tF is rational, since computed output dates are rational). C ′ recognises the 
same timed words as C , with all dates decreased by the duration tF .

For the first case in the definition of update, one needs first to check whether kQ F (q, tF , σmc · (t, a)) �= ∅ and then to pick 
a timed word with minimal duration in this set. This can thus be done as follows: let Aϕ(q) be the same TA as Aϕ , but 
starting in the initial state q, where q is a pair (l, ν) with l ∈ L and ν a rational valuation of the clocks in X . Now build 
the product TA Aϕ(q) × C ′ and check whether F × FC is reachable. For this purpose, Consideration 4 is used to transform 
strict guards into non-strict ones, and then Considerations 2 and 3 are used to transform this rational TA initialised with 
a rational valuation into an integral TA initialised with an integral valuation. If F × FC is reachable, computing the timed 
word with minimum duration can be done using the algorithm described in [19], resulting in an integral timed word. Next, 
one has to rescale this integral timed word into a rational timed word by division by the scalings used to transform rational 
TAs to integral TAs. Finally, the resulting timed word is increased by the duration tF to get the final result.

For the second case, one needs to check whether kQ F ∪BC (q, tF , σmc · (t, a)) = ∅. This can be done as follows: let C ′′ be 
the same automaton as C ′ , except that the accepting locations in FC loop on any action; C ′′ then recognises extensions of 
timed words in CanD(σmc · (t, a)), but again decreased by the duration tF ; build the product Aϕ(q) × C ′′ , and check whether 
F × FC is reachable in this TA, using Considerations 2 and 3 again to transform this rational TA initialised with a rational 
valuation into an integral TA initialised with an integral valuation. If the answer is no, kQ F ∪BC (q, tF , σmc · (t, a)) = ∅.

An operational definition of function update as an algorithm is described in Section 8.

Complexity Recall that for an integral timed automaton A = (L, l0, X, �, 	, F ), reachability can be solved by first construct-
ing the region graph or zone graph which size is in O((|	| + |L|).(2M + 2)|X |.|X |!.2|X |), where M is the maximal constant 
appearing in guards, |L| is the number of locations, |	| the number of edges, and |X | the number of clocks, and solving 
reachability in this finite graph. Since reachability in finite graphs is NLOGSPACE-complete (in the size of the finite graph), 
globally, this algorithm is in PSPACE, and it is proven that the problem is PSPACE-complete [11].

As previously mentioned, optimal reachability is PSPACE-complete in the size of A. It is a consequence of the PSPACE-
completeness of the more general problem of optimal reachability for weighted time automata. Weighted timed automata 
are extensions of timed automata where a cost function C assigns integer costs to both locations and transitions, with the 
semantics that firing a transition e induces a cost C(e), and spending τ time units in a location l induces a cost C(l).τ . The 
optimal reachability problem for TAs can thus be reduced to the cost optimal reachability problem for WTAs in which a 
null cost is assigned to transitions and a cost of 1 is assigned to every location. The optimal reachability problem is solved 
by first constructing the weighted directed graph, which refines the region graph by focusing on what happens close to 
integral corners of regions, and labelling transitions with a cost function. The size of the weighted directed graph is |X | + 1
times bigger than the region graph. Optimality is then solved by traversing on-the-fly this graph and comparing the weights 
of elementary paths.

For simplicity, the complexity of both algorithms are in general abstracted to O(2|A|) where |A| takes into account the 
number of transitions, locations, the maximal constant, and the number of clocks in A.

Note that to solve those problems for a rational TA, one first needs to build an integral TA according to the observa-
tion sampling 1/D , by multiplying constants by D . The size of the region graph thus becomes O((|	| + |L|).(2.D.M +
2)|X |.|X |!.2|X |), and both problems are still in O(2|A|). For the product of two TAs A = (L, l0, X, �, 	, F ), and B =
(L′, l′0, X ′, �, 	′, F ′), with respective maximal constants M and M ′ , the size of the region graph thus becomes O((|	|.|	′| +
|L|.|L|′).(2. max(M, M ′) + 2)|X |+|X ′ |.(|X | + |X ′|)!.2|X |+|X ′ |), and the complexity of (optimal) reachability becomes O(2|A|+|B|).

Now, let us come to the complexity of update, or more precisely to the orders of sizes of the region graphs and weighted 
directed graphs that need to be traversed, since these are the key elements in the complexity of the algorithms. For a given 
input memory σmc · (t, a), the computation of update requires to solve the optimal reachability problem on the automaton 
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Aϕ(q) × C ′ and the reachability problem on the automaton Aϕ(q) × C ′′ where C ′ and C ′′ are built from σmc · (t, a) as 
explained above, and Aϕ(q) is obtained from a TA Aϕ = (L, l0, X, �, 	, F ) (with maximal constant M) by shifting the initial 
state to q. Firstly, note that the automaton Aϕ(q) is of same size as Aϕ , but is a rational TA, thus the maximal constant of 
the corresponding integral automaton is M.D when scaling to integral automata with observation sampling 1/D . Secondly, 
the automata C ′ and C ′′ both have O(|σmc|) locations and respectively O(|σmc|) and O(|σmc| + |�|) transitions. They both 
have one clock and the maximal constant of their corresponding integral TAs is the integer D.(t − tF ).

For the product TAs Aϕ(q) × C ′ and Aϕ(q) × C ′′ , we get O(|σmc|.|L|) locations and respectively O(|σmc|.|	|) and 
O((|σmc| + |�|).|	|) transitions. The maximal constant is D. max(M, t − tF ) and both automata have |X | + 1 clocks.

In the first case of function update, solving the optimal reachability problem in the TA Aϕ(q) × C ′ induces the (partial) 
construction and traversal of a weighted directed graph which is of size O((|X | + 2).|σmc|.(|	| + |L|).(2.D. max(M, t − tF ) +
2)|X |+1.(|X | + 1)!.2|X |+1).

In the second case, the reachability problem in the TA Aϕ(q) × C ′′ can be solved by building a region graph of size 
O(((|σmc| + |�|).|	|) + (|σmc|.|L|)).(2.D. max(M, t − tF ) + 2)|X |+1.(|X | + 1)!.2|X |+1).

In spite of these complexities, these problems can be efficiently solved, e.g., in UPPAAL [14], using zones and their 
encoding with DBMs. One key to efficiency is the choice of the right observation sampling 1/D which influences the size of 
the maximal constant in integral TAs. The smaller is 1/D , the tighter is the observation, but the larger is the region graph. 
It should also be noted that even though the maximal size of the product automata is in the product of sizes of component 
automata, in practice only paths in Aϕ along the untimed projection of σmc · (t, a) have to be considered, which strongly 
restricts the region graph or weighted directed graph that need to be built when searching for (optimal) accepted timed 
words. Finally, as will be clear later, update is called with sequences σmc · (t, a) of increasing length (in the case where no 
suppression occurs), starting from 1, until it can be corrected to satisfy ϕ , in which case its length is reinitialised to 1. The 
worst case complexity is reached when no prefix can be corrected (but a possible extension always could) before the arrival 
of the sequence. But in general, we may expect that ϕ can be regularly satisfied by correcting the input.

7.3. Definition of enforcement monitors

We can now define the enforcement monitor using function update defined in Section 7.2.

Definition 10 (Enforcement monitor). Let us consider a regular property ϕ recognised by the TA Aϕ with semantics �Aϕ � =
(Q , q0, 
, →, Q F ). The enforcement monitor for ϕ is the transition system Eϕ = (CEϕ , cEϕ

0 , 
Eϕ , ↪−→Eϕ ) s.t.:

– CEϕ = tw(�) × tw(�) ×R≥0 × Q ×R≥0 is the set of configurations of the form (σms, σmc, t, q, tF ), where σms, σmc are 
timed words to memorise events, t is a positive real number to keep track of time, q is a state in the semantics of the 
TA and tF keeps track of the arrival date in q,

– c
Eϕ

0 = (ε, ε, 0, q0, 0) ∈ CEϕ is the initial configuration,
– 
Eϕ = ((

R≥0 × �
) ∪ {ε}) × Op × ((

R≥0 × �
) ∪ {ε}) is the alphabet, i.e., the set of triples comprised of an op-

tional input event, an operation, and an optional output event, where the set of possible operations is Op =
{store-ϕ(·), storesup-ϕ(·), store-ϕ(·), release(·), idle(·)};

– ↪−→Eϕ ⊆ CEϕ × 
Eϕ × CEϕ is the transition relation defined as the smallest relation obtained by the following rules 
applied with the priority order below:
– 1. store-ϕ:

(σms, σmc, t, q, tF ) 
(t,a)/store−ϕ(t,a)/ε

↪−→Eϕ (σms · w, ε, t, q′, end(w)), if update(q, tF , σmc, (t, a))) = (q′, w, ok),

– 2. storesup-ϕ:

(σms, σmc, t, q, tF ) 
(t,a)/storesup−ϕ(t,a)/ε

↪−→Eϕ (σms, σmc, t, q, tF ), if update(q, tF , σmc, (t, a)) = (q, σmc, bad),

– 3. store-ϕ:

(σms, σmc, t, q, tF ) 
(t,a)/store−ϕ(t,a)/ε

↪−→Eϕ (σms, σmc · (t, a), t, q, tF ), if update(q, tF , σmc, (t, a)) = (q, σmc · (t, a), c_bad),

– 4. release:

((t, a) · σ ′
ms, σmc, t, q, tF ) 

ε/release(t,a)/(t,a)
↪−→Eϕ (σ ′

ms, σmc, t, q, tF ),

– 5. idle:

(σms, σmc, t, q, tF ) 
ε/idle(δ)/ε
↪−→Eϕ (σms, σmc, t + δ, q, tF ) if δ ∈ R>0 is a delay such that, for all δ′ < δ, no other rule can be 

applied to (σms, σmc, t + δ′, q, tF ),6

where c
e/op(p)/e′
↪−→Eϕ c′ denotes the fact that the enforcement monitor moves from configuration c to configuration c′ by 

reading e, executing operation op parameterised by p, and outputting e′ .

6 The allowed delays are obviously not known in the starting configuration of rule idle. In practice, at the implementation level, allowed delays are 
determined using busy-waiting.
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A configuration (σms, σmc, t, q, tF ) of the EM consists of the following elements: σms is the sequence which is corrected 
and can be released as output; σmc is the input sequence read by the EM, but yet to be corrected, except for events that 
are suppressed; t indicates the current date; q is the current state of �Aϕ � reached after processing the sequence already 
released, followed by the timed word in memory σms, i.e., Eϕ(obs(σ , t)); tF is the arrival date in q.

Semantic rules can be understood as follows:

• Upon the reception of an event (t, a) (i.e., when t is the date in the configuration and (t, a) is read), one of the following 
rules is executed. Notice that their conditions are exclusive of each others.
– 1. Rule store-ϕ is executed if function update returns state q′ ∈ Q F , timed word w and marker ok, indicating that 

ϕ can be satisfied by the sequence already released as output, followed by σms, and followed by w which minimally 
delays σmc · (t, a) to satisfy ϕ . When executing the rule, sequence w is appended to the content of output memory 
σms, the input memory σmc is emptied, q′ is the new state and end(w) is the new arrival date.

– 2. Rule storesup-ϕ is executed if the update function returns marker bad, indicating that σmc · (t, a) followed by any 
sequence cannot be corrected. Event (t, a) is then suppressed, and the configuration remains unchanged.

– 3. Rule store-ϕ is executed if the update function returns marker c_bad, indicating that σmc · (t, a) cannot be cor-
rected yet. The event (t, a) is then appended to the internal memory σmc, but σms, q and tF remain unchanged.

• When no event can be received, one of the following rules is applied, with decreasing priority:
– 4. Rule release is executed if the current date t is equal to the date corresponding to the first event of the timed word 

σms = (t, a) ·σ ′
ms in the memory. The event is released as output and removed from σms in the resulting configuration.

– 5. Rule idle adds the time elapsed δ to the current value of t when neither store nor release operations are possible 
at any time instant between t and t + δ.

Note, all rules except rule idle execute in zero time. Moreover, it is important to notice that the definition of update entails 
that the state q inside a configuration is either initial (initially q = q0) or accepting (it is only modified by a store-ϕ rule 
which makes it jump to a state q ∈ Q F as a result of update), one case not excluding the other (e.g., for safety properties).

Example 7 (Execution of an enforcement monitor). We illustrate how the rules of Definition 10 are applied to enforce prop-
erty ϕ3 (see Section 2), recognised by the automaton depicted in Fig. 6c with �3 = {op1,op2,op}, and the input timed word 
σ3 = (2, op1) · (3, op1) · (3.5, op) · (6, op2). Fig. 11 shows how semantic rules are applied according to the current date t , and 
the evolution of the configurations of the enforcement monitor, together with input and output. More precisely, each line 
is of the form O/c/I , where O is the sequence of released events, c is a configuration, and I is the residual of the input 
σ after its observation at date t . The resulting (final) output is (6, op1) · (8, op) · (10, op2), which satisfies property ϕ3. Note 
that after t = 10, only rule idle can be applied.

7.4. Relating enforcement functions and enforcement monitors

We show how the definitions of enforcement function and enforcement monitor are related: given a property ϕ , any in-
put sequence σ , at any date t , the output of the associated enforcement function and the output behaviour of the associated 
enforcement monitor are equal.

Preliminaries We first describe how an enforcement monitor reacts to an input sequence. In the remainder of this section, 
we consider an enforcement monitor E = (CE , cE0 , 
E , ↪−→E ), not related to a property. Enforcement monitors, described 
in Section 7, are deterministic. By determinism, we mean that, given an input sequence, the observable output sequence is 
unique. Moreover, given σ ∈ tw(�) and t ∈ R≥0, how an enforcement monitor reads σ until date t is unique: it goes through 
a unique sequence of configurations. Since rule idle does not read nor produce any event, ε belongs to the input alphabet. 
Thus, given an input sequence σ and a date t , there is possibly an infinite set of corresponding sequences over the input-
operation-output alphabet (as in Definition 10). All these sequences are equivalent: they involve the same configurations for 
the enforcement monitor and the same output sequence. Consequently, the rules of transition relations are ordered in such 
a way that reading ε will always be the transition with least priority. Consequently, given an input sequence, reading ε (and 
doing other operations such as outputting some event) is always possible when the monitor cannot read an input.

More formally, let us define E ioo(σ , t) ∈ (
E )∗ to be the unique sequence of transitions (triples comprised of an op-
tional input event, an operation, and an optional output event) that is “triggered” from the initial configuration, when the 
enforcement monitor reads σ until date t:

Definition 11 (Input-operation-output sequence). Given an input sequence σ ∈ tw(�) and some date t ∈ R≥0, we define the 
input-operation-output sequence, denoted as E ioo(σ , t), as the unique7 sequence of (
E )∗ such that:

7 The uniqueness of E ioo(σ , t) is discussed in Remark 9 in Appendix A.3.
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Fig. 11. Execution of an enforcement monitor for ϕ3. The enforcement monitor ensures that if the automaton for ϕ3 reads the (entire) output sequence, it 
remains in its accepting states.

∃c ∈ CE : cE0
E ioo(σ ,t)
↪−→∗

E c

∧ �1(E ioo(σ , t)) = obs(σ , t)

∧ timeop(�2(E ioo(σ , t))) = t

∧ ¬
(

∃c′ ∈ CE , e ∈ (R≥0 × �) : c
(ε,release(e),e)

↪−→E c′
)

,

where the timeop function indicates the duration of a sequence of enforcement operations and says that only the idle
enforcement operation consumes time. Formally:

timeop(ε) = 0;
timeop(op · ops) =

{
d + timeop(ops) if ∃d ∈R>0 : op = idle(d),

timeop(ops) otherwise.

The observation of the input timed word σ at any date t , corresponding to obs(σ , t), is the concatenation of all the input 
events read/consumed by the enforcement monitor over various steps. Observe that, because of the assumptions on 
E , only 



24 Y. Falcone et al. / Science of Computer Programming 123 (2016) 2–41
Fig. 12. Realising an EM.

rule idle applies to configuration c: rule release does not apply by definition of E ioo(σ , t) and none of the store rules applies 
because �1(E ioo(σ , t)) = obs(σ , t).

Relating enforcement functions and enforcement monitors We now relate the enforcement function Eϕ and the enforcement 
monitor Eϕ , for a property ϕ , using the input-operation-output behaviour E ioo

ϕ of Eϕ as per Definition 11. Seen from the 
outside, an enforcement monitor Eϕ behaves as a device reading and producing timed words. Overloading notations, this 
input/output behaviour can be characterised as a function Eϕ : tw(�) ×R≥0 → tw(�) defined as:

∀σ ∈ tw(�),∀t ∈R≥0 : Eϕ(σ , t) = �3

(
E ioo
ϕ (σ , t)

)
.

The corresponding output timed word Eϕ(σ , t), at any date t , is the concatenation of all the output events produced by the 
enforcement monitor over various steps of the enforcement monitor (where all ε ’s are erased through concatenation). In 
the following, we do not distinguish between an enforcement monitor and the function that characterises its behaviour.

Finally, we define an implementation relation between enforcement monitors and enforcement functions as follows.

Definition 12 (Implementation relation). Given an enforcement function Eϕ (as per Definition 8) and an enforcement monitor 
(as per Definition 10) whose behaviour is characterised by a function Eϕ , we say that Eϕ implements Eϕ iff:

∀σ ∈ tw(�),∀t ∈R≥0 : obs(Eϕ(σ ), t) = Eϕ(σ , t).

Proposition 3 (Relation between enforcement function and enforcement monitor). Given a property ϕ , its enforcement function Eϕ

(as per Definition 8, p. 14), and its enforcement monitor Eϕ (as per Definition 10, p. 21), Eϕ implements Eϕ in the sense of Definition 12.

Proof of Proposition 3 – sketch only. The proof is given in Appendix A.4, p. 37. The proof relies on an induction on the 
length of the input word σ . The induction step uses a case analysis, depending on whether the input is completely observed 
or not at date t , whether the input can be delayed into a correct output or not, and whether the memory content (σms) 
is completely released or not at date t . The proof also uses several intermediate lemmas that characterise some special 
configurations (e.g., value of the clock variable, content of the memory σms) of an enforcement monitor. �
8. Enforcement algorithms: implementation of enforcement mechanisms

An enforcement monitor remains an abstract view of a real enforcement mechanism, and needs to be further concretised 
into an implementation. The implementation of an enforcement monitor consists of two processes running concurrently 
(called hereafter StoreProcess and ReleaseProcess) and started simultaneously, and a shared memory, as shown in Fig. 12.
StoreProcess implements the store rules of the enforcement monitor. The memory contains the timed word σms: the cor-
rected sequence that can be released as output. The memory is realised as a queue, shared between the StoreProcess and
ReleaseProcess, where the StoreProcess adds events, which are processed and corrected, to this queue. ReleaseProcess
reads the events stored in the memory σms and releases the action corresponding to each event as output, when time 
reaches the date associated to the event. StoreProcess also makes use of another internal buffer σmc (not shared with any 
other process), to store the events which are read, but cannot be corrected yet, to satisfy the property. In the algorithms, 
primitive await is used to wait for a trigger event from another process or to wait until some condition becomes true. 
Primitive wait is used by a process to wait for some amount of time determined by the process itself.

In the following, we first present algorithm update used by algorithm StoreProcess, then present algorithm StoreProcess, 
and finally algorithm ReleaseProcess.

Algorithm update (see Algorithm 1) Algorithm update implements function update from Definition 9. It takes as input q, the 
current state, tF , the arrival date in state q, the events stored in the internal memory σmc of StoreProcess, and the new 
event (t, a), and returns a new state q′ , a timed word σ ′

mc, and a marker in the set {ok,c_bad,bad}, indicating whether 
σmc · (t, a) can be delayed to satisfy ϕ .

The algorithm makes use of the following functions. Function computeReach computes all the reachable paths8 from 
the current state q upon events in σmc · (t, a) that start after date t , where time starts at date tF , the arrival date 

8 A path is a run in the symbolic (zone) graph.
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Algorithm 1 update(q, tF , σmc, (t, a)).
allPaths ← computeReach(σmc · (t, a), q, tF )

accPaths ← getAccPaths(allPaths)
if accpaths �= ∅ then

σ ′
mc ← getOptimalWord(accPaths, σmc · (t, a))

return(post(q, σ ′
mc), σ ′

mc, ok)

else
isReachable ← checkReachAcc(allPaths)
if isReachable = ff then

return(q, σmc, bad)

else
return(q, σmc, c_bad)

end if
end if

Algorithm 2 StoreProcess.
t ← 0
(q, tF ) ← (q0, 0)

(σms, σmc) ← (ε, ε)

while tt do
(t, a) ← await(event) /* i.e., action a is received at date t */
(q′, σ ′

mc, isPath) ← update(q, tF , σmc, (t, a))

if isPath = ok then
σms ← σms · σ ′

mc
σmc ← ε
q ← q′
tF ← end(σ ′

mc)

else
σmc ← σ ′

mc
end if

end while

in q. Formally, it computes 
{

w ∈ tw(�) | q
w→tF

}
∩ CanD(σmc · (t, a)). Function getAccPaths takes as input all the paths 

returned by computeReach and returns only those that lead to a state in Q F . Formally it computes kQ F (q, tF , σmc · (t, a)) ={
w ∈ tw(�) | q

w→tF Q F

}
∩ CanD(σmc · (t, a)). Both functions use forward analysis, zone abstraction, and operations on zones 

such as the resetting of clocks and intersection of guards [16].
Function getOptimalWord takes all the accepting paths and a sequence σmc · (t, a) and computes optimal delays for 

events in σmc · (t, a). This function first computes an optimal date for each event, for all accepting paths. Finally, it picks a 
path among the set of accepting paths whose ending date is minimal, and returns it as the result. Function getOptimalWord
implements the computation described in Section 7.2 (§ On the computation of function update) using a simplified version of 
the algorithm in [19]. Function post takes a state of the automaton defining the property, a timed word, and computes the 
state reached by the automaton. Function checkReachAcc takes a set of paths as input. From the last state in each path, it 
checks if an accepting state in the input TA is reachable or not (i.e., whether a state in Q F is reachable). It returns tt, if an 
accepting state is reachable, and ff otherwise. Formally it checks whether kQ F ∪BC (q, tF , σ) is empty.

The algorithm proceeds as follows. If the set of accepting paths is not empty (i.e., a state in Q F is reachable upon 
delaying σmc · (t, a)), then function update returns ok, the optimal word computed using getOptimalWord, and the state 
reached in the TA (computed using the function post). Otherwise, it checks if it is possible to reach an accepting state in 
the future (computed using function checkReachAcc). If it is impossible to reach an accepting state (i.e., from all the states 
reached upon delaying σmc · (t, a), Q F is not reachable), then function update returns bad, σmc, and the current state q. 
Otherwise, it returns the current state q, σmc · (t, a), and c_bad.

Algorithm StoreProcess (see Algorithm 2) Algorithm StoreProcess is an infinite loop that scrutinises the system for input 
events. In the algorithm, q represents the state of the property automaton.

The algorithm proceeds as follows. StoreProcess initially sets its clock t to 0. This clock keeps track of the time elapsed 
and increases with physical time. Variable tF is initialised to 0. This variable contains the date of the last event of σms, 
if σms is not empty, and the date of the last released event otherwise. The algorithm also initialises q to q0, and the two 
memories σms and σmc to ε . It then enters an infinite loop where it waits for an input event (await(event)). When receiving 
an action a at date t , it stores event (t, a). It then invokes function update with the current state q, the arrival date tF , 
the events stored in σmc and the new event (t, a). Then, function update returns a new state q′ , a timed word σ ′

mc and 
the marker isPath. If marker isPath = ok, it means that σmc · (t, a) can be corrected into the timed word σ ′

mc computed by 
update and this word leads from state q to state q′ in the underlying semantics of the timed automaton, at date end(σ ′

mc). 
Then, timed word σ ′

mc is appended to shared memory σms (since σ ′
mc leads to an accepting state q′ from state q), the 

internal memory σmc is cleared, state q is updated to q′ and tF to end(σ ′
mc). In all other cases, σmc is set to σ ′

mc, the result 
of update, which is either σmc if isPath = bad (it is impossible to correct the input sequence σmc whatever are the future 



26 Y. Falcone et al. / Science of Computer Programming 123 (2016) 2–41
Algorithm 3 ReleaseProcess.
d ← 0
while tt do

await(σms �= ε)

(t, a) ← dequeue(σms)

wait(t − d)

release(a)

end while

events) or σmc · (t, a) if isPath = c_bad. Event (t, a) is thus deleted. In both cases, state q, tF and memory σms are not 
modified.

Algorithm ReleaseProcess (see Algorithm 3) Algorithm ReleaseProcess is an infinite loop that scrutinises memory σms and 
releases actions as output.

The algorithm proceeds as follows. Initially, clock d, which keeps track of the time elapsed, is set to 0 and then increases 
with physical time. ReleaseProcess waits until the memory is not empty (σms �= ε). Using operation dequeue, the first 
element stored in the memory is removed, and is stored as (t, a). Since d time units elapsed, process ReleaseProcess waits 
for (t − d) time units before performing operation release(a), releasing action a as output at date t (which amounts to 
appending (t, a) to the output of the enforcement monitor).

Remark 8 (Launching StoreProcess and ReleaseProcess). In order to respect the semantics of the enforcement monitor, the 
two processes StoreProcess and ReleaseProcess should be launched simultaneously. This ensures that their current dates 
(encoded by t for StoreProcess and d for ReleaseProcess) are always equal.

9. Implementation and evaluation

We implemented the algorithms in Section 8 and developed an experimentation framework called TiPEX: (Timed Prop-
erties Enforcement during eXecution)9 in order to:

1. validate through experiments the architecture and feasibility of enforcement monitoring, and
2. measure and analyse the performance of the update function of the StoreProcess.

From [5], we completely re-implemented the synthesis of enforcement monitors. TiPEX supports now all regular properties. 
The prototype presented in [5] handles only safety and co-safety properties, with independent algorithms and prototype 
implementations for each class. Now, following the algorithms proposed in this paper, TiPEX supports all regular properties 
defined by deterministic one-clock timed automata. In [20], we describe the implementation of a simplified version of 
function update that does not allow to suppress events. We recently implemented another version of function update based 
on the enforcement mechanisms and algorithms described in Section 8. In this section, we compare the performance of the 
implementations of these functions. Note, when we consider suppression, when an accepting state is not reachable with 
the events received so far, we need to perform another additional computationally-expensive analysis (checkReachAcc in 
Algorithm 1), to decide whether or not the last event should be suppressed.

The rest of this section is organised as follows. Section 9.1 describes our experimental framework. Section 9.2 present 
the properties used in the evaluation. Section 9.3 discusses the evaluation results.

9.1. Experimental framework

The experimental framework is depicted in Fig. 13. As mentioned in [5], regarding algorithm StoreProcess, the most 
computationally intensive step is the call to function update. We thus focus on this function in the evaluation.

Module Main uses module Trace Generator that provides a set of input traces to test the module Store. Module Trace 
Generator takes as input the alphabet of actions, the range of possible delays between actions, the desired number of traces, 
and the increment in length per trace. For example, if the number of traces is 5 and the increment in length per trace is 
100, then 5 traces will be generated, where the first trace is of length 100 and the second trace of length 200 and so on. For 
each event, Trace Generator picks an action (from the set of possible actions), and a random delay (from the set of possible 
delays) which is the time elapsed after the previous event or the system initialisation for the first event. For this purpose, 
Trace Generator uses methods from the Python random module.

Module Store takes as input a property and one trace, and returns the total execution time of the update function to 
process the given input trace. The TA modelling the property is a UPPAAL [21] model written in XML. Module Store uses 
the pyuppaal library to parse the UPPAAL model (input property), and the UPPAAL DBM library to implement the update

9 Available at http :/ /srinivaspinisetty.github .io /Timed-Enforcement-Tools/.

http://srinivaspinisetty.github.io/Timed-Enforcement-Tools/
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Fig. 13. Experimental framework.

Table 1
Performance analysis of enforcement monitors for ϕs .

|tr| t_ update t_ update-sup mem mem-sup

10,000 6.44 6.64 17.8 17.9
20,000 12.73 13.44 19.6 19.6
30,000 19.51 20.16 21.3 21.3
40,000 26.41 26.50 22.6 22.7
50,000 31.88 33.10 24.3 24.3
60,000 38.44 39.84 26.2 26.2
70,000 45.16 45.92 27.7 27.8
80,000 51.21 53.34 29.1 29.1

function.10 The sequence of events received by the enforcement monitor is modelled by a second UPPAAL model. Module 
Main Test Method sends this sequence to module Store (using the property), and keeps track of the result returned by the 
Store module for each trace.

Experiments were conducted on an Intel Core i5-4210U at 1.70GHz CPU, with 4 GB RAM, and running on Ubuntu 14.04 
LTS.

9.2. Description of the properties

We describe the properties used in our experiments and discuss the results of the performance analysis.
The properties follow different patterns [22], and belong to different classes. They are inspired from the properties 

introduced in Example 1. They are recognised by one-clock timed automata since this is a limitation of our current imple-
mentation (extension to more than one clock is ongoing). We however expect the trends exposed in the following to be 
similar when the complexity of automata grows, since it induces heavier computation for each call to function update.

• Property ϕs is a safety property expressing that “There should be a delay of at least 5 time units (t.u.) between any two request 
actions”.

• Property ϕcs is a co-safety property expressing that “A request should be immediately followed by a grant, and there should 
be a delay of at least 6 t.u. between them”.

• Property ϕre is a regular property, but neither a safety nor a co-safety property, and expresses that “Resource grant and 
release should alternate. After a grant, a request should occur between 15 to 20 t.u.”.

The automata defining the above properties can be found in [23].

9.3. Performance evaluation of function update

Results of the performance analysis for the properties are reported in Tables 1, 2, and 3. The reported numbers are mean 
values over 10 runs. Note, 10 runs were sufficient to obtain 95% confidence for all metrics, and the measurement error was 
less than 1%. The entry |tr| indicates the length of the input trace (i.e., the number of events input to the enforcement 
monitor). The entry t_ update (resp. t_ update-sup) indicates the total execution time of the function update without (resp. 
with) suppression in seconds. The entry mem (resp. mem-sup) indicates the maximum memory used by the Main Test 
Method when using function update without (resp. with) suppression; both measured in megabytes.

10 The pyuppaal and DBM libraries are provided by Aalborg University and can be downloaded at http :/ /people .cs .aau .dk /~adavid /python/.

http://people.cs.aau.dk/~adavid/python/
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Table 2
Performance analysis of enforcement monitors for ϕre.

|tr| t_ update t_ update-sup mem mem-sup

10,000 10.21 20.33 17.6 17.6
20,000 20.56 39.32 19.0 19.0
30,000 30.95 61.20 20.2 20.2
40,000 42.37 82.23 21.6 21.6
50,000 53.67 101.46 22.8 22.8
60,000 62.06 121.55 24.2 24.2
70,000 81.63 137.49 25.4 25.4
80,000 91.89 167.16 26.8 26.8

Table 3
Performance analysis of enforcement monitors for ϕcs.

|tr| t_ update t_ update-sup mem mem-sup

100 2.022 2.256 16.4 16.4
200 8.124 8.547 16.4 16.4
300 18.207 18.868 16.4 16.4

Strategy for generating traces To have a meaningful performance assessment of function update, module Trace Generator 
uses a strategy to ensure that calls to function update yields computation using σmc. For (the safety) property ϕs, module 
Trace Generator generates events so that each event of the trace leads to a call to function update to correct the date of 
the input event. This strategy allows to assess the performance of function update when it is extensively used with buffer 
σmc empty. For (the co-safety) property ϕcs, module Trace Generator ensures that input sequences can be corrected only 
on the last event (hence implying that, for a sequence of length n, function update is called n times where the buffer 
containing σmc is of size i − 1 on the ith call). This strategy allows to assess the performance of function update when 
σmc is used significantly. For (the regular property) ϕre, module Trace Generator ensures that the property can be corrected 
every two events, which is the length of the minimal path between accepting locations of the underlying automaton of ϕre . 
This strategy allows to asses the performance of function update when alternating between finding a correction of the input 
sequence using buffer σmc and buffering corrected events in buffer σms.

Safety property ϕs (see Table 1) We can observe that t_ update, and t_ update-sup increase linearly with the length of the 
input trace. Moreover, the time taken per call to update (i.e., t_ update/|tr|) does not depend on the length of the trace. 
This behaviour is as expected for a safety property. Indeed, function update is always called with only one event which 
is read as input (the internal buffer σmc remains empty). Consequently, the state of the TA is updated after each event, 
and after receiving a new event, the possible transitions leading to a good state from the current state are explored. For 
the same input trace, there is no significant variation in the values of t_ update, and t_ update-sup. This behaviour is as 
expected because for the considered safety property (ϕs) and input traces, after receiving a new event, it is always possible 
to compute a delay to satisfy the property. Thus, in the function update with suppression, checkReachAcc is never invoked.

Regarding memory usage, we can notice that by increasing the length of the input trace by 10,000, the peak memory 
usage increases by less than 2 MB. For the same input trace, there is no variation in memory usage (mem and mem-sup are 
equal).

Regular property ϕre (see Table 2) Recall that the considered input traces are generated in such a way that they can be 
corrected every two events. Consequently, function update is invoked with either one or two events. For the considered 
input traces, the time taken per call to function update does not depend on the length of the trace. Moreover, for input traces 
of same length, the value of t_ update (resp. t_ update-sup) is higher for ϕre than the value of t_ update (resp. t_ update-sup) 
for ϕs. This stems from the fact that, for a safety property, function update is invoked only with one event. Furthermore, for 
the same input trace, t_ update-sup is greater than t_ update. This stems from the fact that, for the considered input traces 
(where it is possible to correct every two events) the function update with suppression invokes function checkReachAcc
|tr|/2 times.

Regarding memory usage, by increasing the length of the input trace by 10,000, the peak memory usage increases by 
less than 2 MB. For input traces of same length, there is no significant variation in the values of mem and mem-sup between 
ϕre and ϕs.

Co-safety property ϕcs (see Table 3) Recall that the considered input traces are generated in such a way that they can be 
corrected only upon the last event. From the results presented in Table 3, notice that t_ update, and t_ update-sup are now 
quadratic. Moreover, the average time per call to function update increases with |tr|. For the considered input traces, this 
behaviour is as expected for a co-safety property because the length of the internal buffer σmc increases after each event, 
and thus function update is invoked with a growing sequence.
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For the same input trace, t_ update-sup is greater than t_ update. For example, for input traces of length 100, 
t_ update-sup is around 0.2 seconds greater than t_ update. Indeed, for the considered input traces (where it is possible to 
correct the input sequence only upon the last event) the function update with suppression invokes function checkReachAcc
|tr| − 1 times. We can also observe that t_ update-sup −t_ update increases linearly with |tr|.

Regarding memory usage, since we consider small increments of the input traces, we cannot notice significant variation. 
For input trace of length 100, peak memory usage noticed for ϕs is 16.5 MB. Thus we can notice that, for input traces of 
same length, for ϕre, ϕs, and ϕcs, there is no significant variation in the value of mem.

10. Related work

Several approaches for the runtime verification and enforcement of properties are related to the one proposed in this 
paper.

10.1. Runtime verification

As a verification/validation technique, runtime enforcement is related to runtime verification. At an abstract level, a 
runtime verification approach consists in synthesising a verification monitor (cf. [24]), i.e., a decision procedure used at 
runtime. The monitor observes the system under scrutiny and emits verdicts regarding the satisfaction or violation of the 
property of interest. See [25–28] for short tutorials and surveys on runtime verification. Runtime verification principles have 
been used in many concrete application domains and for various purposes such as the safety checking of cyber-physical 
systems [29–32], the security of financial and IT systems [33–35], and many more.

10.2. Runtime verification of timed properties

We discuss more specifically some approaches for the runtime verification of timed properties for real-time systems. 
One can also refer to the survey of Goodloe and Pike [36] which presents some approaches to monitoring hard real-time 
systems and potential application-domains when monitoring safety properties.

Several approaches consider the problem of synthesising automata-based monitors from formulae in temporal logics that 
handle physical time (as opposed to logical time). Sokolsky et al. [37] introduced an expressive first-order logic tailored 
for runtime verification. The logic features event attributes (aka parametric events) and dynamic indexing of properties (to 
handle the dynamic creation of monitors at runtime). Models of the logic also refers to physical time. Bauer et al. [38]
synthesised monitors for timed-bounded properties expressed in a variant of Timed Linear Temporal Logic tailored for 
monitoring. Nickovic et al. [17,18] synthesised timed automata from Metric Temporal Logic (a temporal logic with a dense 
notion of time). Still for MTL, Thati [39] use rewriting of formulae for online monitoring. All these approaches are compatible 
with ours since they are purposed to synthesise decision procedures for logic-based timed specification formalisms. More 
specifically, the synthesised automata-based monitors can be used as input in our approach as replacements of timed 
automata.

Basin et al [40] provided a general comparison of monitoring algorithms for real-time systems. Time models are cate-
gorised as i) either point-based algorithms or interval-based, and ii) either dense or discrete depending on the underlying 
ordering of time points (i.e., finitely or infinitely many time points). Basin et al. presented and compared monitoring algo-
rithms for the past-only fragment of propositional metric temporal logic.

Several tools have been proposed for monitoring timed properties. RT-MaC [41] verifies timeliness and reliability cor-
rectness properties at runtime. The Analog Monitoring Tool [42] verifies formulae in Signal Temporal Logic over continuous 
signals. LARVA [43,44] verifies properties (over Java programs) expressed in several specification formalisms by translating 
input specifications into the so-called Dynamic Automata with Timers and Events which basically resemble timed automata 
with stop watches. Contrary to these approaches, the monitors presented in this paper differ in their objectives and how 
they are interfaced with the system: the monitors are not intended to modify the internal state of the system but rather to 
modify a sequence of timed events between two systems.

10.3. Runtime enforcement of untimed properties

Roughly speaking, the research efforts in runtime enforcement aims at defining and implementing enforcement primi-
tives that supplement the monitors used in runtime verification. Most of the work in runtime enforcement was dedicated to 
untimed properties (see [45] for a short overview). Schneider introduced security automata as the first runtime mechanism 
for enforcing safety properties [1]. Ligatti et al. [3] later introduced edit-automata as enforcement monitors. Edit-automata 
can insert a new action by replacing the current input, or suppress it. Similar to edit-automata are generic enforcement 
monitors [4] which are finite-state machines augmented with a memory and parameterised with enforcement primitives 
operating on the input and memory. Moreover, some variants of edit-automata differ in how they ensure the transparency 
constraints (see e.g., [46]). Synthesis techniques of enforcement mechanisms from a property have been proposed only for 
generic enforcement monitors [4] and restricted forms of edit-automata [3].
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Note, several runtime verification tools allow the user to define some treatment of errors through the (manual) definition 
of some form of enforcement primitives. For instance, JavaMOP and the RV system [47] define the notion of code handler
which are user-defined code-snippets that can be attached to monitor states. LARVA allows the user to specify corrective 
actions [48] that can be used for undoing the effects of previous actions carried out by the system.

10.4. Runtime enforcement of timed properties

The endeavours on runtime enforcement discussed in the previous subsection consider logical time, as opposed to phys-
ical time. Moreover, storing an event is assumed without consequence on the execution nor on the satisfiability of the 
property, i.e., the duration during which an event is retained in memory has no influence. In the following of this subsec-
tion, we discuss the approaches on runtime enforcement that consider physical time.

Basin et al. [49] refined the work of Schneider on security automata to take into account discrete-time constraints by 
modelling the passing of time as uncontrollable events. Similarly, we consider elapsing of time as uncontrollable but con-
sider dense time. The enforcement mechanisms in [49] differ from ours in several aspects: they consider only truncation 
automata (and they are thus limited to safety properties, not necessarily regular). Moreover, our enforcement mechanisms 
have additional enforcement primitives: buffering of actions (which basically amounts to letting time elapse) and suppres-
sion of actions which allows for longer inputs to be processed by enforcement mechanisms.

In previous work [5,9], we introduced the problem of runtime enforcement for timed properties. We similarly proposed 
several notions of enforcement mechanisms: enforcement function, enforcement monitor, and enforcement algorithms. 
In [5], only safety and co-safety properties are considered and different definitions of mechanisms are proposed for each 
class. In [9], all regular properties are considered. Given a timed automaton, enforcement functions, monitors and algorithms 
are synthesised according to one general definition. Also, for the enforcement of co-safety properties, the approach in [5] as-
sumes that time elapses differently for input and output sequences (the sequences are de-synchronised). More precisely, the 
delay of the first event of the output sequence is computed from the moment an enforcement mechanism detects that its 
input sequence can be corrected (that is, the mechanism has read a sequence that can be delayed into a correct sequence). 
Compared to [5], the approaches in [9] and this paper are more realistic as they do not suffer from this “shift” problem.

10.5. Monitorability and enforceability

In this paper, we identify some timed properties that are not enforceable by mechanisms that comply to the constraints 
mentioned in Section 5.2 (see Example 6). Characterising monitorable properties (i.e., properties that can be runtime veri-
fied) and enforceable properties are two important endeavours. We briefly discuss some of the main approaches on these 
topics in the following and discuss in Section 11.2 how we plan to characterise enforceable timed properties in the future.

Monitorable properties Kim et al. [50] first defined monitorable properties as the co-recursively enumerable safety proper-
ties. Pnueli et al. [51] generalised the definition to the properties for which it is always possible to determine a definitive 
satisfaction or violation at runtime. Bauer et al. [38] showed that safety and co-safety properties are monitorable in the 
sense of [51]. Later, Falcone et al. [10] showed that obligation properties form a strict subset of the set of monitorable 
properties in the sense of [51], but that less properties should be monitored in practice. Sistla et al. [52] defined necessary 
and sufficient conditions for the monitorability of hybrid systems where an Extended Hidden Markov system is monitorable 
if there exists an arbitrarily-precise monitor stating verdicts on the system outputs. More recently, Rosu [53] defined moni-
torable properties as safety properties arguing that these can be specified by general (finite-state machine) monitors.

Enforceable properties Enforceable properties are the properties for which a sound and transparent enforcement monitor 
can be synthesised. The set of enforceable properties depends on the primitives conferred to enforcement monitors. Secu-
rity automata [1] can enforce safety properties. Note, Schneider, Hamlen, and Morrisett [2] showed that security automata 
can only monitor co-recursively enumerable safety properties because of computational limits exhibited by Viswanathan 
and Kim [54]. Edit-automata [3] can enforce infinite renewal properties. (The set of infinite renewal properties is a super-
set of safety properties and contains some liveness properties.) Generalised enforcement monitors [4] can enforce response 
properties in the safety-progress classification. In addition to enforcement primitives and computability constraints, enforce-
ability limitations arise when properties are expressed over infinite sequences (see [45,4] for a comparison of enforceable 
untimed properties over infinite sequences). However, any property over finite sequences is enforceable with a monitor en-
dowed with the primitives of an edit-automaton (see Section 10.3 and [3]) [10]. More recently, Basin et al. [49] showed that 
security automata can enforce the safety properties that cannot be violated through a sequence of uncontrollable events.

11. Conclusions

11.1. Summary

This paper presents a general enforcement monitoring framework for systems with timing requirements. We show how 
to synthesise enforcement mechanisms for any regular timed property (modelled by a timed automaton). The enforcement 
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mechanisms proposed in this paper are more powerful than the ones in our previous research endeavours [5,9]. In particu-
lar, in this paper, we propose enforcement mechanisms that delay the absolute dates of events of the observed input (while 
being allowed to shorten the delay between some events). Moreover, suppressing events is also introduced. An event is sup-
pressed if it is not possible to satisfy the property by delaying, whatever are the future continuations of the input sequence 
(i.e., the underlying TA can only reach non-accepting states from which no accepting state can be reached). Formalising 
suppression required us to revisit the formalisation of all enforcement mechanisms. Enforcement mechanisms are described 
at several levels of abstraction (enforcement function, monitor, and algorithms), thus facilitating the design and implemen-
tation of such mechanisms. We propose a prototype implementation and our experiments demonstrate the feasibility of 
enforcement monitoring for timed properties.

11.2. Future work

Several avenues for future work are open by this paper.
First, we believe it is important to study and delineate the set of enforceable timed properties. As shown informally by 

this paper, some timed properties should be characterised as non-enforceable. For this purpose, an enforceability condition 
should be defined and used to delineate enforceable properties. Such a criterion should also ideally be expressible on timed 
automata. Note however that, even for non-enforceable properties, enforcement monitors can be built, but may not be able 
to output some correct input sequences. The output sequences of our enforcement mechanisms are however always either 
correct or empty.

Specifications are currently modelled with timed automata. One can consider synthesising enforcement mechanisms from 
more expressive formalisms. For instance, we could consider formalisms such as context-free timed languages (which can be 
useful for recursive specifications) or introduce data into requirements (which can be useful in some application domains, 
as shown for safety properties in [8]).

Implementing efficient enforcement monitors is another important aspect and should be done in a particular applica-
tion domain. We propose TiPEX, a Python implementation of enforcement mechanisms with the objectives of i) making a 
quick prototype that shows feasibility of enforcement monitoring in a timed context, and ii) reusing some existing UPPAAL 
libraries. In the future, we will consider implementing our enforcement monitors in other languages such as C or Java, and 
we expect even better performance and a more stand-alone implementation.
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Appendix A. Proofs

Recall that Eϕ : tw(�) → tw(�) is defined as:

Eϕ(σ ) = �1
(
storeϕ(σ )

)
,

where storeϕ : tw(�) → tw(�) × tw(�) is defined as

storeϕ(ε) = (ε, ε)

storeϕ(σ · (t,a)) =

⎧⎪⎪⎨
⎪⎪⎩

(σs · min�lex,end κϕ(σs,σ
′
c), ε), if κϕ(σs,σ

′
c) �= ∅,

(σs,σc) if κpref(ϕ)(σs,σ
′
c) = ∅

(σs,σ
′
c) otherwise,

with σ ∈ tw(�), t ∈R≥0,a ∈ �,

(σs,σc) = storeϕ(σ ), and σ ′
c = σc · (t,a)

where:

κϕ(σs,σ
′
c)

def= CanD(σ ′
c) ∩ σ−1

s · ϕ,

as defined in Section 6.2, with:

CanD(σ ) = {w ∈ tw(�) | w �d σ ∧ start(w) ≥ end(σ )} ,

as defined in Section 6.1.
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A.1. Proof of Proposition 1 (p. 15)

We shall prove that, given a property ϕ ⊆ tw(�), the associated enforcement function Eϕ : tw(�) → tw(�), defined as 
per Definition 8 (p. 14), satisfies the physical constraint, is sound and transparent. These constraints are recalled below:

– Physical constraint:

∀σ ,σ ′ ∈ tw(�) : σ � σ ′ =⇒ Eϕ(σ ) � Eϕ(σ ′) (Phy).

– Soundness:

∀σ ∈ tw(�) : Eϕ(σ ) |= ϕ ∨ Eϕ(σ ) = ε (Snd).

– Transparency:

∀σ ∈ tw(�) : Eϕ(σ ) 	d σ (Tr).

The proof of (Phy) is straightforward by noticing that function storeϕ is monotonic on its first output (∀σ , σ ′ ∈ tw(�) : σ �
σ ′ =⇒ �1(storeϕ(σ )) � �1(storeϕ(σ ′))).

We now prove both (Snd) and (Tr) by an induction on the length of the input timed word σ . For this purpose, we 
actually prove a slightly stronger property of Eϕ : for any σ ∈ tw(�), (i) Eϕ satisfies (Snd)σ

def= Eϕ(σ ) |= ϕ ∨ Eϕ(σ ) = ε and 

(Tr)σ
def= Eϕ(σ ) 	d σ , and (ii) ��(σs) · ��(σc) 	 ��(σ ), where σs and σc are as in the definition of storeϕ(), recalled above.

Induction basis (σ = ε) The proof of the induction basis is immediate from the definitions of Eϕ , storeϕ(ε), 	, and 	d .

Induction step Let us suppose that for some σ ∈ tw(�), Eϕ(σ ) |= ϕ ∨ Eϕ(σ ) = ε (Snd)σ , and Eϕ(σ ) 	d σ (Tr)σ (induction 
hypothesis). Let us consider σ ′ = σ · (t, a), with t ∈ R≥0, t ≥ end(σ ), and a ∈ �. Suppose that storeϕ(σ ) = (σs, σc) and 
σ ′

c = σc · (t, a), where end(σc) ≤ t . We distinguish two cases:

• Case κϕ(σs, σ ′
c) �= ∅. In this case, we have Eϕ(σ · (t, a)) = �1

(
storeϕ (σ · (t,a))

)
= σs · min�lex,end κϕ(σs, σ ′

c). From the 
definition of function κϕ , we have κϕ(σs, σ ′

c) ⊆ σ−1
s · ϕ , and thus Eϕ(σ · (t, a)) ∈ ϕ . Thus Eϕ satisfies (Snd)σ ′ .

From the induction hypothesis, we know that ��(σs) · ��(σc) 	 ��(σ ). We deduce ��(σs) · ��(σc · (t, a)) 	 ��(σ ·
(t, a)) which shows that (ii) holds again for σ ′ .
Let w ∈ κϕ(σs, σ ′

c). From the definition of κϕ(), since w ∈ σ−1
s · ϕ , we have start(w) ≥ end(σs), which implies that 

σs · w ∈ tw(�). Since w ∈ CanD(σ ′
c), we have start(w) ≥ t and w �d σ ′

c , which entails that ��(w) = ��(σ ′
c). Moreover, 

from start(w) ≥ t , we know that all dates of the events in w are greater than or equal to those of the events in σ · (t, a). 
Since i) σc · (t, a) = σ ′

c , ii) w and σ ′
c have the same untimed projection (i.e., ��(w) = ��(σ ′

c)), and iii) the concatenated 
untimed projections of σs and σ ′

c form a subword of the untimed projection of σ · (t, a) (i.e., ��(σs) · ��(σ ′
c) 	 ��(σ ·

(t, a))), and hence we deduce ��(σs) · ��(w) 	 ��(σ · (t, a)). Thus, using σs 	d σ (from induction hypothesis), we 
obtain σs · w 	d σ · (t, a) = Eϕ(σ ′) 	d σ ′ , i.e., Eϕ satisfies (Tr)σ ′ .

• Case κϕ(σs, σ ′
c) = ∅. Note, this case encompasses the two last cases in function storeϕ . From the definition of Eϕ , in both 

cases we have Eϕ(σ · (t, a)) = �1
(
storeϕ(σ · (t, a))

)
= σs . Since Eϕ(σ ) = �1

(
storeϕ(σ )

)
= σs , and using the induction 

hypothesis Eϕ(σ ) |= ϕ , we deduce that Eϕ(σ ′) |= ϕ (Snd)σ ′ .
Moreover, Eϕ(σ · (t, a)) 	d σ and thus Eϕ(σ · (t, a)) 	d σ · (t, a). We deduce (Tr)σ ′ .
Finally, from the induction hypothesis ��(σs) · ��(σc) 	 ��(σ ), we can conclude that ��(σs) · ��(σc · (t, a)) 	 ��(σ ·
(t, a)), proving (ii) for σ ′. �

A.2. Proof of Proposition 2 (p. 15)

The proof of Proposition 2 requires the following lemma related to storeϕ which says that, when storeϕ(σ ) = (σs, σc)

and σc is not the empty timed word, there is no sequence delaying a prefix of σc , starting after the ending date of σ , and 
allowing to correct σ .

Lemma 1. Let us consider σ ∈ tw(�), if storeϕ(σ ) = (σs, σc) and σc �= ε , then

∀w ∈ tw(�) : (start(w) ≥ end(σ ) ∧ ∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ.

Proof. The proof is done by induction on σ ∈ tw(�).

Induction basis For σ = ε , we have σc = ε by definition of storeϕ , and the induction basis holds.

Induction step Let us suppose that for some σ ∈ tw(�), if storeϕ(σ ) = (σs, σc) and σc �= ε , then ∀w ∈ tw(�) : (start(w) ≥
end(σ ) ∧ ∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ (induction hypothesis). Let us consider σ · (t, a) ∈ tw(�), and let (σ ′

s , σ ′
c) =

storeϕ (σ · (t,a)). Following the definition of function storeϕ , we distinguish three cases:
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• If κϕ(σs, σc · (t, a)) �= ∅, then σ ′
c = ε , and the result holds.

• If κpref(ϕ)(σs, σc · (t, a)) = ∅, we have σ ′
c = σc �= ε . Using the induction hypothesis, if σ ′

c = σc �= ε , we have: ∀w ∈ tw(�) :
(start(w) ≥ end(σ ) ∧ ∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ , which implies ∀w ∈ tw(�) : (start(w) ≥ end(σ · (t, a)) ∧
∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ , which shows that the property holds again for σ · (t, a) since σ ′

c = σc .
• Otherwise (κϕ(σs, σc · (t, a)) = ∅ and κpref(ϕ)(σs, σc · (t, a)) �= ∅), we have σ ′

c = σc · (t, a). Using the induction hy-
pothesis, we have: ∀w ∈ tw(�) : (start(w) ≥ end(σ ) ∧ ∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ , which implies ∀w ∈
tw(�) : (start(w) ≥ end(σ · (t, a)) ∧ ∃v ∈ pref(σc) : w �d v) =⇒ σs · w /∈ ϕ . Since κϕ(σs, σ ′

c) = ∅, by definition we 
have ∀w ∈ tw(�) : (start(w) ≥ end(σ · (t, a)) ∧ w �d σc · (t, a)) =⇒ σs · w /∈ ϕ . Combining both predicates, we obtain 
∀w ∈ tw(�) : (start(w) ≥ end(σ · (t, a)) ∧ ∃v ∈ pref(σc · (t, a)) : w �d v) =⇒ σs · w /∈ ϕ . �

Let us now return to the proof of Proposition 2. We shall prove that, given a property ϕ , the associated enforcement 
function Eϕ : tw(�) → tw(�) as per Definition 8 (p. 14) satisfies the optimality constraint (Op) (from Proposition 2, p. 15). 
That is, we shall prove that ∀σ ∈ tw(�) : (Op)σ , where:

(Op)σ
def= Eϕ(σ ) = ε ∨ ∃m, w ∈ tw(�) : Eϕ(σ ) = m · w(|= ϕ), with

mσ = maxϕ
≺,ε(Eϕ(σ )), and

wσ = min�lex,end{w ′ ∈ m−1
σ · ϕ | ��(w ′) = ��(m−1

σ · Eϕ(σ ))

∧mσ · w ′ 	d σ ∧ start(w ′) ≥ end(σ )}
The proof is done by induction on σ ∈ tw(�).

Induction basis Since storeϕ(ε) = (ε, ε) we get Eϕ(ε) = ε .

Induction step Let us suppose that (Op)σ holds for some σ ∈ tw(�) (induction hypothesis). Let us consider σ ′ = σ · (t, a)

with t ∈ R≥0, t ≥ end(σ ), and a ∈ �. Let us prove that (Op)σ ′ holds. Suppose storeϕ(σ ) = (σs, σc) and σ ′
c = σc · (t, a). We 

distinguish two cases depending on whether κϕ(σs, σ ′
c) �= ∅ or not:

• Case κϕ(σs, σ ′
c) �= ∅. We have Eϕ(σ · (t, a)) = �1

(
storeϕ(σ · (t, a))

) = σs · min�lex,end κϕ(σs, σ ′
c).

By definition of κϕ(σs, σ ′
c) we know that σs · min�lex,end κϕ(σs, σ ′

c) ∈ ϕ . From the definition of function storeϕ and the 
induction hypothesis, we know that σs corresponds to mσ ′ in the definition of (Op)σ ′ : it is the maximal strict prefix 
of Eϕ(σ ′) = σs · min�lex,end κϕ(σs, σ ′

c) that satisfies ϕ . Indeed, storeϕ(σ ) = (σs, σc) and, either σc = ε , then Eϕ(σ ′) =
σs.(t′, a) for some t′ and σs is the maximal strict prefix of Eϕ(σ ′) satisfying ϕ; or σc �= ε and using Lemma 1, we know 
that none of the prefixes of σc can be delayed in such a way that, when appended to σs , the concatenation forms a 
correct sequence.
It follows that Eϕ(σ · (t, a)) = mσ ′ · wσ ′ with mσ ′ = σs and

wσ ′ = σ−1
s · Eϕ(σ · (t,a)),

= min�lex,end κϕ(σs,σ
′
c)

= min�lex,end

⎧⎪⎨
⎪⎩w ′ ∈ m−1

σ ′ · ϕ | w ′ �d σc · (t,a)︸ ︷︷ ︸
σ ′

c

∧start(w ′) ≥ end(σ ′
c)

⎫⎪⎬
⎪⎭ .

Since end(σ ′
c) = t , then

wσ ′ = min�lex,end

{
w ′ ∈ m−1

σ ′ · ϕ | w ′ �d σc · (t,a) ∧ start(w ′) ≥ t
}

.

We shall prove that{
w ′ ∈ m−1

σ ′ · ϕ | w ′ �d σc · (t,a) ∧ start(w ′) ≥ t
}

= {
w ′ ∈ m−1

σ ′ · ϕ | ��(w ′) = ��(m−1
σ ′ · Eϕ(σ · (t,a)) ∧ mσ ′ · w ′ 	d σ · (t,a)

∧ start(w ′) ≥ end(σ · (t,a))
}
,

that is (since end(σ · (t, a)) = t):{
w ′ ∈ m−1

σ ′ · ϕ | w ′ �d σc · (t,a) ∧ start(w ′) ≥ t
}

= {
w ′ ∈ m−1

σ ′ · ϕ | ��(w ′) = ��(m−1
σ ′ · Eϕ(σ · (t,a)) ∧ mσ ′ · w ′ 	d σ · (t,a)

∧ start(w ′) ≥ t
}
.
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This amounts to prove that:

∀w ′ ∈ m−1
σ ′ · ϕ : start(w ′) ≥ t

=⇒ (
w ′ �d σc · (t,a)

⇐⇒ (��(w ′) = ��(m−1
σ ′ · Eϕ(σ · (t,a))) ∧ mσ ′ · w ′ 	d σ · (t,a)

)
.

(⇒) Since ��(m−1
σ ′ · Eϕ(σ · (t, a)) = ��(σc · (t, a)), by definition of �d , we have ��(w ′) = ��(m−1

σ ′ · Eϕ(σ · (t, a))). 
From transparency, we know that σs 	d σ and ��(σs) · ��(σc · (t, a)) 	 ��(σ · (t, a)). Then, from start(w ′) ≥ t , we 
deduce mσ ′ · w ′ 	d σ · (t, a).

(⇐) From ��(w ′) = ��(m−1
σ ′ · Eϕ(σ · (t, a)), w ′ and m−1

σ ′ · Eϕ(σ · (t, a) = m−1
σ ′ ·σc · (t, a) have the same events. Moreover, 

since start(w ′) ≥ t , all events in w ′ have greater dates than t (and hence, greater than those of all events in 
σc · (t, a)). Thus w ′ �d σc · (t, a).

Thus, we conclude that Eϕ satisfies (Op)σ ′ .
• Case κϕ(σs, σ ′

c) = ∅. We have Eϕ(σ · (t, a)) = �1
(
storeϕ(σ · (t,a))

) = �1
(
storeϕ(σ )

) = σs = Eϕ(σ ). Thus, from the in-
duction hypothesis, we deduce that (Op)σ ′ holds. �

A.3. Preliminaries to the proof of Proposition 3 (p. 24): characterising the configurations of enforcement monitors

We define some notions and lemmas related to the configurations of any enforcement monitor E .

Remark 9. In the following proofs, without loss of generality, we assume that at any date, in addition to rule idle, at most 
one of the store and release rules of the enforcement monitor applies. This simplification does not come at the price of 
reducing the generality nor the validity of the proofs because i) rules store and release of the enforcement monitor do not 
rely on the same conditions, and ii) the store and release operations of enforcement monitors are assumed to be executed 
in zero time. The considered simplification however reduces the number of (equivalent) cases in the following proofs.

Remark 10. Between the occurrences of two (input or output) events, the configuration of the enforcement monitor evolves 
according to rule idle (since it is the rule with lowest priority). Moreover, from any configuration, applying idle twice 
consecutively each delaying for δ1 and δ2, or applying idle once from the same configuration, with delay δ1 + δ2 will result 
in the same configuration. To simplify notations we will use a rule to simplify the representation of E ioo ∈ (

(R≥0 × �) ∪
{ε}) × Op × (

(R≥0 × �) ∪ {ε}) stating that

σ · (ε, idle(δ1), ε) · (ε, idle(δ2), ε) · σ ′ is equivalent to σ · (ε, idle(δ1 + δ2), ε) · σ ′,
for any σ , σ ′ ∈ (

(R≥0 × �) ∪ {ε}) × Op × (
(R≥0 × �) ∪ {ε}) and δ1, δ2 ∈R≥0. Thus, for E ioo, we will only consider sequences 

of 
(
(R≥0 × �) ∪ {ε}) × Op × (

(R≥0 × �) ∪ {ε}) where delays appearing in operation idle are maximal (i.e., there is no 
sequence of two consecutive events with an idle operation).

A.3.1. Some notations
Based on the assumption stated in Remark 9, there are at most two configurations for each date. Let us define the two 

functions configin, configout : tw(�) × R≥0 → CE that give respectively the first and last configurations of an enforcement 
monitor at some time instant, reading an input sequence. More formally, given some σ ∈ tw(�), t ∈ R≥0:

– configin(σ , t) = ct
σ such that cE0

w(σ ,t)
↪→∗

E ct
σ where w(σ , t) def= min�{w � E ioo(σ , t) | timeop(w) = t};

– configout(σ , t) = ct
σ such that cE0

E ioo(σ ,t)
↪→∗

E ct
σ .

Observe that, when at some date, only rule idle applies, configin(σ , t) = configout(σ , t) holds, because there is only one 
configuration at this date. Moreover, when at some date, other rules apply (rules release or store), configin(σ , t) and 
configout(σ , t) differ. Note, in all cases, from configout(σ , t) only rule idle applies (which increases time).

Moreover, for any σ ∈ tw(�), for any two t, t′ ∈ R≥0 such that t ≤ t′ , we note E(σ , t, t′) for E(σ , t)−1 · E(σ , t′), i.e., 
the output sequence of an enforcement monitor between t and t′ . Note that, when t = t′ , we have E(σ , t, t′) = ε , for any 
σ ∈ tw(�).

The following remark states that configurations keep track of global time, and is a direct consequence of the rules of 
enforcement monitors in Definition 10 (p. 21).

Remark 11 (Value of the third component of configurations). Only rule idle modifies the value of the third component of 
configurations: it increments the third component as time elapses. That is:

∀σ ∈ tw(�),∀t ∈R≥0 : �3 (configin (σ , t)) = �3(configout(σ , t)) = t.
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A.3.2. Some intermediate lemmas
Before tackling the proof of Proposition 3, we give a list of lemmas that describe the behaviour of an enforcement 

monitor, describing the configurations or the output at some particular date for some input and memory content.
Similarly to the first physical constraint, the following lemma states that the enforcement monitor cannot change what 

it has output. More precisely, when the enforcement monitor is seen as function E , the output is monotonic w.r.t. �.

Lemma 2 (Monotonicity of enforcement monitors). Function E : tw(�) ×R≥0 → tw(�) is monotonic in its second parameter:

∀σ ∈ tw(�),∀t, t′ ∈R≥0 : t ≤ t′ =⇒ E(σ , t) � E(σ , t′).

The lemma states that for any input sequence σ , if we consider two dates t, t′ such that t ≤ t′ , then the output of the 
enforcement monitor at date t is a prefix of the output at date t′ .

Proof of Lemma 2. The proof directly follows from the definitions of the function E associated to an enforcement monitor 
(see Section 7.4, p. 22) which directly depends on E ioo, which is itself monotonic over time (because of the definition of 
enforcement monitors). �

As a consequence, one can naturally split the output of the enforcement monitor over time, as it is stated by the 
following corollary.

Lemma 3 (Separation of the output of the enforcement monitor over time).

∀σ ∈ tw(�),∀t1, t2, t3 ∈R≥0 : t1 ≤ t2 ≤ t3 =⇒ E(σ , t1, t3) = E(σ , t1, t2) · E(σ , t2, t3).

The lemma states that for any sequence σ input to E , if we consider three dates t1, t2, t3 ∈ R≥0 such that t1 ≤ t2 ≤ t3, 
the output of E between t1 and t3 is the concatenation of the output between t1 and t2 and the output between t2 and t3.

Proof of Lemma 3. Recall that for any t, t′ ∈ R≥0 such that t ≤ t′ , E(σ , t, t′) is the output sequence of an enforcement 
monitor between t and t′ . The lemma directly follows from the definition of E(σ , t, t′) = E(σ , t)−1 · E(σ , t′). �

The following lemma states that, at some date t , the output of the enforcement monitor only depends on what has been 
observed until date t . In other words, the enforcement monitor works in an online fashion.

Lemma 4 (Dependency of the output on the observation only).

∀σ ∈ tw(�),∀t ∈R≥0 : E(σ , t) = E(obs(σ , t), t).

Proof of Lemma 4. The proof of the lemma directly follows from the definitions of E ioo (Definition 11, p. 22) and obs (in 
Section 3). Indeed, using obs(σ , t) = obs(obs(σ , t), t), we deduce that E ioo(σ , t) = E ioo(obs(σ , t), t), for any σ ∈ tw(�) and 
t ∈ R≥0. Using E(σ , t) = �3(E ioo(σ , t)), we can deduce the expected result. �

The following lemma states that after reading some input sequence σ entirely, only the memory content σms and the 
value of the clock t influence the output of the enforcement monitor. More specifically, after completely reading some 
sequence, if an enforcement monitor reaches some configuration containing σms in its memory, its future output is fully 
determined by the memory content σms (containing the corrected sequence) and the value of clock variable t , during the 
total time needed to output it.

Lemma 5 (Values of configout when releasing events).

∀σ ,σms,σmc ∈ tw(�),∀t, tF ∈R≥0,∀q ∈ Q :
t ≥ end(σ ) ∧ configout(σ , t) = (σms,σmc, t,q, tF )

=⇒ ∀σ ′
ms � σms : configout(σ ,end(σ ′

ms)) = (σ ′ −1
ms · σms,σmc,end(σ ′

ms),q, tF ).

The lemma states that, whatever is the output configuration (σms, σmc, t, q, tF ) reached by reading some input sequence 
σ at some date t ≥ end(σ ), then for any prefix σ ′

ms of σms, the output configuration reached at time end(σ ′
ms) (output date 

of the last event in σ ′
ms) is such that σ ′

ms has been released from the memory (the memory is thus σ ′ −1
ms · σms) and the 

clock value in this configuration is end(σ ′
ms).

Proof of Lemma 5. The proof is a straightforward induction on the length of σ ′
ms. It uses the fact that the considered 

configurations occur at dates greater than end(σ ), hence implying that no input event can be read any more. Consequently, 
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following the definition of the enforcement monitor (Definition 10, p. 21), on the configurations of the enforcement monitor, 
only rules idle and release apply. Between end(σ ′

ms) and end(σ ′
ms · (t, a)) where σ ′

ms � σ ′
ms · (t, a) � σms, the configuration 

of the enforcement monitor evolves only using rule idle (no other rule applies) until configin(σ , end(σ ′
ms · (t, a))) = (σ ′ −1

ms ·
σms, σmc, end(σ ′

ms · (t, a)), q, tF ). Rule release is then applied to get the following derivation (σ ′ −1
ms · σms, σmc, end(σ ′

ms ·
(t, a)), q) 

ε/release(t,a)/ε
↪→ ((σ ′

ms · (t, a))−1 · σms, σmc, end(σ ′
ms · (t, a)), q, tF ). �

The following lemma relates the date of the last event of the corrected sequence and the value of the last variable stored 
in the configuration of an enforcement monitor.

Lemma 6 (Relation between some elements in a configuration).

∀σ ,σms ∈ tw(�),∀t, tF ∈R≥0 : configout(σ , t) = (σms, _, t, _, tF ) ∧ σms �= ε =⇒ end(σms) = tF .

Proof. The lemma is a straightforward consequence of the definition of enforcement monitors (Definition 10, p. 21). Indeed, 
only rule store-ϕ modifies these elements of a configuration, and it performs it as expected. �

The following lemma states that when an enforcement monitor has nothing to read in input anymore, what it releases 
as output is the observation of its memory content over time.

Lemma 7 (Output of the enforcement monitor according to memory content).

∀σ ,σms,σmc ∈ tw(�),∀t, tF ∈ R≥0,∀q ∈ Q :
t ≥ end(σ ) ∧ configout(σ , t) = (σms,σmc, t,q, tF )

=⇒ ∀t′ ∈R≥0 : t ≤ t′ ≤ end(σms) =⇒ E(σ , t, t′) = obs(σms, t′).

The lemma states that, if after some date t , after reading an input sequence σ , the enforcement monitor is in an output 
configuration that contains σms as a memory content, whatever is the date t′ between t and end(σms), the output of the 
enforcement monitor between t and t′ is the observation of σms with t′ time units.

Proof of Lemma 7. The proof is performed by induction on the length of σms and uses Lemma 5.

• Case |σms| = 0. In this case, σms = ε and end(ε) = 0. If t = t′ = 0, we have E(σ , t, t′) = ε = obs(σms, t′). Otherwise, t ≤ t′
does not hold, and thus the lemma vacuously holds.

• Induction case. Let us suppose that the lemma holds for all prefixes of σms of some maximum length n ∈ [0, |σms| − 1]
(induction hypothesis). Following Lemma 6, one can consider σms = σ ′ · (tF , a) where σ ′ is the prefix of σms of length 
n, and (tF , a) ∈ R≥0 × �. On the one hand, at date end(σ ′), according to Lemma 5, we have configout(σ , end(σ ′)) =
((tF , a), σmc, end(σ ′), q, tF ) for some σmc ∈ tw(�) and q ∈ Q . For any t′ ≤ end(σ ′), the lemma vacuously holds. On the 
other hand, let us consider some t′ ∈ [end(σ ′), tF ], we have:

E(σ , t, t′) = E(σ , t,end(σ ′)) · E(σ ,end(σ ′), t′).

(Note, when t = t′ = end(σ ′), the above equation reduces to ε = ε .) Using the induction hypothesis, we find 
E(σ , t, end(σ ′)) = obs(σ ′, end(σ ′)) = σ ′ . Using the semantics of the enforcement monitor (only rules release and idle
apply, no new event is received), we obtain E(σ , end(σ ′), t′) = obs((tF , a), t′). Thus, E(σ , t, t′) = σ ′ · obs((tF , a), t′) =
obs(σ ′ · (tF , a), t′). �

The following lemma states that, for any input σ , after observing the entire input (that is, at any date greater than or 
equal to end(σ )), the content of the internal memory (σc) of the enforcement function and the enforcement monitor are 
the same.

Lemma 8 (Content of the internal memory).

∀σ ∈ tw(�),∀t ∈R≥0 : t ≥ end(σ ) =⇒ �2(storeϕ(σ )) = �2(configout(σ , t)).

Proof of Lemma 8. The proof is performed by induction on the length of σ . Recall that storeϕ(σ ) is defined in Section 6.2, 
and configout(σ , t) is defined in Appendix A.3.1.

• Case |σ | = 0. In this case, from the definition of the enforcement monitor (Definition 10, p. 21), none of the store rules 
can be applied. Consequently, we have �2(configout(σ , t)) = ε . Regarding the enforcement function, as per Definition 8
(p. 14), we have �2(storeϕ(ε)) = ε .
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• Induction case. Let us suppose that for some σ ∈ tw(�), we have ∀t ∈ R≥0 : t ≥ end(σ ) =⇒ �2(storeϕ(σ )) =
�2(configout(σ , t)) (induction hypothesis). Let us consider σ ′ = σ · (tl, a), where (tl, a) ∈R≥0 × �.
From the induction hypothesis, for t ≥ end(σ ), we have �2(storeϕ(σ )) = �2(configout(σ , t)), and therefore, for 
any t ≥ tl , we also have �2(storeϕ(σ )) = �2(configout(σ , t)). Let σc = �2(storeϕ(σ )). Consequently, we also have 
configin(σ , tl) = (_, σc, tl, _, _) = configin(σ · (tl, a), tl).
From the definition of storeϕ , we have �2(storeϕ(σ · (tl, a))) = σ ′

c , where σ ′
c is either ε , σc · (tl, a), or σc depending on 

which case of the storeϕ function applies.
Regarding the enforcement monitor, from the update function (since each case in storeϕ has a corresponding case in 
update), we also have configout(σ · (tl, a), tl) = (_, σ ′

c, tl, _, _) (which is obtained by applying one of the store rules based 
on the value returned by function update). For t > tl , since none of the store rules can be applied, we can conclude that 
configout(σ · (tl, a), t) = (_, σ ′

c, t, _, _).
Thus, we have �2(storeϕ(σ · (tl, a))) = �2(configout(σ · (tl, a), t)). �

A.4. Proof of Proposition 3: relation between enforcement function and enforcement monitor

We shall prove that, given a property ϕ , the associated enforcement monitor Eϕ as per Definition 10 (p. 21) implements 
the associated enforcement function Eϕ : tw(�) → tw(�) as per Definition 8 (p. 14). That is:

∀σ ∈ tw(�),∀t ∈R≥0 : obs(Eϕ(σ ), t) = Eϕ(σ , t).

The proof is done by induction on the length of the input timed word σ .

Induction basis Let us suppose that |σ | = 0, thus σ = ε in tw(�). On the one hand, we have Eϕ(σ ) = ε , and thus ∀t ∈
R≥0 : obs(Eϕ(σ ), t) = ε . On the other hand, the word E ioo

ϕ (ε, t) over the input-operation-output alphabet is such that ∀t ∈
R≥0 : �1(E ioo

ϕ (ε, t)) = ε . Thus, according to the definition of the enforcement monitor, the rules store-ϕ , storesup-ϕ , and 
store-ϕ cannot be applied. Consequently, the memory of the enforcement monitor σms remains empty as in the initial 

configuration. It follows that rule release cannot be applied as well. We have then ∀t ∈R≥0 : c
Eϕ

0

ε/idle(t)/ε
↪→Eϕ (ε, ε, t, q0, 0), and 

thus Eϕ(ε, t) = ε . Thus, ∀t ∈R≥0 : obs(Eϕ(σ ), t) = Eϕ(ε, t).

Induction step Let us suppose that obs(Eϕ(σ ), t) = Eϕ(σ , t) for any timed word σ ∈ tw(�) of some length n ∈ N, at any 
date t ∈ R≥0 (induction hypothesis). Let us now consider some input timed word σ · (tn+1, a) for some σ ∈ tw(�) with 
|σ | = n, tn+1 ∈R≥0, and a ∈ �. We want to prove that obs(Eϕ(σ · (tn+1, a)), t) = Eϕ(σ · (tn+1, a), t), at any date t ∈ R≥0.

Let us consider some date t ∈ R≥0. Note that end(σ · (tn+1, a)) = tn+1. We distinguish two cases according to whether 
tn+1 > t or not, that is whether σ · (tn+1, a) is completely observed or not at date t .

• Case tn+1 > t . In this case, obs (σ · (tn+1,a), t) = obs(σ , t), i.e., at date t , the observations of σ and σ · (tn+1, a) are 
identical.
On the one hand, from the definition of Eϕ (since function storeϕ and the delayed subsequence are defined such that 
the date of each event in output is greater than or equal to the date of the corresponding event in the input), we have:

obs
(

Eϕ (σ · (tn+1,a)) , t
) = obs

(
�1

(
storeϕ(σ · (tn+1,a))

)
, t

)
= obs

(
�1

(
storeϕ(σ )

)
, t

)
= obs

(
Eϕ (σ ) , t

)
.

On the other hand, regarding the enforcement monitor, since obs (σ · (tn+1,a) , t) = obs(σ , t), using Lemma 4 (p. 35), we 
obtain Eϕ(σ · (tn+1, a), t) = Eϕ(σ , t). Using the induction hypothesis, we can conclude that obs

(
Eϕ (σ · (tn+1,a)) , t

) =
Eϕ (σ · (tn+1,a) , t).

• Case tn+1 ≤ t . In this case, we have obs(σ · (tn+1, a), t) = σ · (tn+1, a) (i.e., σ · (tn+1, a) is observed entirely at date 
t). From Remark 11 (p. 34), we know that the configuration of the enforcement monitor at date end(σ · (tn+1, a))

is configin (σ · (tn+1,a) , tn+1) = (σms, σmc, tn+1, qσ , tF ) for some σms, σmc ∈ tw(�), qσ ∈ Q , tF ∈ R≥0. Using Lemma 8
(p. 36), we also have �2(storeϕ(σ )) = σc = �2(configin (σ · (tn+1,a) , tn+1)) = σmc. Observe that configin

(
σ , tn+1

) =
configin

(
σ · (tn+1, a), tn+1

)
because of i) the definition of configin using the definition of E ioo

ϕ and ii) the event (tn+1, a)

has not been yet consumed through any of the store rules by the enforcement monitor at date tn+1.
We distinguish two cases according to whether σc · (tn+1, a) can be delayed into a word satisfying ϕ or not, i.e., whether 
κϕ(σs, σc · (tn+1, a)) = ∅, or not.
– Case κϕ(σs, σc · (tn+1, a)) = ∅. From the definition of function storeϕ , we have storeϕ(σ · (tn+1, a)) = (σs, σ ′

c), and 
�1

(
storeϕ(σ · (tn+1, a))

) = σs . We also have �1
(
storeϕ(σ )

) = σs . From the definition of Eϕ and obs, we have 
obs(Eϕ(σ · (tn+1, a)), t) = obs(Eϕ(σ ), t).
Regarding Eϕ , according to the definition of function update, we have update(qσ , tF , σmc, (tn+1, a)) = (qσ , σmc, bad)

or (qσ , σmc · (tn+1, a), c_bad). According to the definition of the transition relation, we have:
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(σms,σmc, tn+1,qσ , tF )
(tn+1,a)/store−ϕ(tn+1,a)/ε

↪→Eϕ (σms,σ
′
mc, tn+1,qσ , tF ),

where, σ ′
mc = σmc if update(qσ , tF , σmc, (tn+1, a)) = (qσ , σmc, bad), and σ ′

mc = σmc · (tn+1, a) otherwise. Thus 
configout(σ · (tn+1, a), tn+1) = (σms, σ ′

mc, tn+1, qσ , tF ).
Let us consider tε ∈ R≥0 such that between tn+1 − tε and tn+1, the enforcement monitor does not read any input nor 
produce any output, i.e., for all t ∈ [tn+1 − tε, tn+1], config(t) is such that only the rule idle applies.
Let us examine Eϕ(σ · (tn+1, a), t). We have:

Eϕ(σ · (tn+1,a), t) = Eϕ(σ · (tn+1,a), tn+1 − tε)

·Eϕ(σ · (tn+1,a), tn+1 − tε, tn+1)

·Eϕ(σ · (tn+1,a), tn+1, t).

Let us examine Eϕ(σ , t). We have:

Eϕ(σ , t) = Eϕ(σ , tn+1 − tε) · Eϕ(σ , tn+1 − tε, tn+1) · Eϕ(σ , tn+1, t).

Observe that Eϕ(σ · (tn+1, a), tn+1 − tε) = Eϕ(σ , tn+1 − tε) because obs(σ · (tn+1, a), tn+1 − tε) = σ according to 
the definition of obs. Moreover, Eϕ(σ · (tn+1, a), tn+1 − tε, tn+1) = ε since only rule idle applies during the consid-
ered time interval. Furthermore, according to Lemma 7, since configout(σ · (tn+1, a), tn+1) = (σms, σ ′

mc, tn+1, qσ , tF ), 
we get Eϕ(σ · (tn+1, a), tn+1, t) = obs(σms, t). Moreover, we know that configin(σ , tn+1) = (σms, σmc, tn+1, qσ , tF ). 
Since the enforcement monitor is deterministic, and from Remark 9 (p. 34), we also get that configout(σ , tn+1) =
(σms, σmc, tn+1, qσ , tF ). Using Lemma 7 (p. 36) again, we get Eϕ(σ , tn+1, t) = obs(σms, t).
Consequently we can deduce that Eϕ(σ · (tn+1, a), t) = Eϕ(σ , t) = obs(Eϕ(σ ), t) = obs(Eϕ(σ · (tn+1, a)), t).

– Case κϕ(σs, σc · (tn+1, a)) �= ∅. Regarding Eϕ , from the definition of function storeϕ , we have storeϕ(σ · (tn+1, a)) = (σs ·
min�lex,end κϕ(σs, σc · (tn+1, a)), ε), and �1

(
storeϕ(σ · (tn+1, a))

) = σs · min�lex,end κϕ(σs, σc · (tn+1, a)). Regarding the 
enforcement monitor, according to the definition of update, we have update(qσ , σmc, (tn+1, a), tF ) = (q′, w, ok) with 
w = min�lex,end κϕ(σs, σc · (tn+1, a)), since, σc = σmc and from the definition of κϕ and update, the dates computed 
for σc · (tn+1, a) by both these functions are equal. From the definition of the transition relation, we have:

(σms,σmc, tn+1,qσ , tF )
(tn+1,a)/store−ϕ(tn+1,a)/ε

↪→Eϕ (σms · w, ε, tn+1,q′,end(w)).

Thus configout(σ · (tn+1, a), tn+1) = (σms · w, ε, tn+1, q′, end(w)).
Let us consider tε ∈ R≥0 such that between tn+1 − tε and tn+1, the enforcement monitor does not read any input nor 
produce any output, i.e., for all t ∈ [tn+1 − tε, tn+1], config(t) is such that only rule idle applies.
Let us examine Eϕ(σ · (tn+1, a), t). We have:

Eϕ(σ · (tn+1,a), t) = Eϕ(σ · (tn+1,a), tn+1 − tε)

·Eϕ(σ · (tn+1,a), tn+1 − tε, tn+1)

·Eϕ(σ · (tn+1,a), tn+1, t).

Let us examine Eϕ(σ , t). We have:

Eϕ(σ , t) = Eϕ(σ , tn+1 − tε) · Eϕ(σ , tn+1 − tε, tn+1) · Eϕ(σ , tn+1, t).

Observe that Eϕ(σ · (tn+1, a), tn+1 − tε) = Eϕ(σ , tn+1 − tε) because obs(σ · (tn+1, a), tn+1 − tε) = σ according to the 
definition of obs. Moreover, Eϕ(σ · (tn+1, a), tn+1 − tε, tn+1) = ε since only rule idle applies during the considered time 
interval.
Furthermore, according to Lemma 7 (p. 36), since configout(σ · (tn+1, a), tn+1) = (σms · w, ε, tn+1, q′, end(w)), we get 
Eϕ(σ · (tn+1, a), tn+1, t) = obs(σms · w, t).
Now we further distinguish two more sub-cases, based on whether end(σms · w) = end(w) > t or not (whether all 
the elements in the memory can be released as output by date t or not).
∗ Case end(w) > t .

We further distinguish two more sub-cases based on whether end(σms) > t , or not.
· Case end(σms) > t . In this case, we know that obs(σms · w, t) = obs(σms, t). Hence, we can derive that Eϕ(σ ·

(tn+1, a), t) = Eϕ(σ , t). Also, from the induction hypothesis, we know that Eϕ(σ , t) = obs(Eϕ(σ ), t).
Regarding enforcement function Eϕ , we have

storeϕ(σ · (tn+1,a)) = �1
(
storeϕ(σ )

) · min�lex,end κϕ(σs,σc · (tn+1,a)).

Moreover,

obs
(

Eϕ (σ · (tn+1,a)) , t
)

= obs
(
�1

(
storeϕ (σ · (tn+1,a))

)
, t

)
= obs

(
�

(
store (σ )

) · min κ (σ ,σ · (t ,a)), t
)
.
1 ϕ �lex,end ϕ s c n+1
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One can have

obs
(

Eϕ (σ · (tn+1,a)) , t
) = �1

(
storeϕ(σ )

) · o,

where o � min�lex,end κϕ(σs, σc · (tn+1, a)), which is equal to obs(Eϕ(σ ), t) · o, only if the dates computed by the 
update function are different from the dates computed by Eϕ . This would violate the induction hypothesis stating 
that Eϕ(σ , t) = obs(Eϕ(σ ), t). Hence, we have obs(Eϕ(σ · (tn+1, a)), t) = obs

(
�1

(
storeϕ (σ )

)
, t

) = obs(Eϕ(σ ), t). 
Thus, obs(Eϕ(σ · (tn+1, a)), t) = Eϕ(σ · (tn+1, a), t).

· Case end(σms) ≤ t . In this case, we can follow the same reasoning as in the previous case to obtain the expected 
result.

∗ Case end(w) ≤ t .
In this case, similarly following Lemma 7 (p. 36), we have Eϕ(σ ·(tn+1, a), tn+1, t) = obs(σms · w, t) = σms · w . We can 
also derive that Eϕ(σ , tn+1, t) = σms. Consequently, we have Eϕ(σ · (tn+1, a), t) = Eϕ(σ , t) · w . From the induction 
hypothesis, we know that obs(Eϕ(σ ), t) = Eϕ(σ , t), and we have Eϕ(σ · (tn+1, a), t) = obs(Eϕ(σ ), t) · w .
Moreover, we have

storeϕ(σ · (tn+1,a)) = �1
(
storeϕ(σ )

) · min�lex,end κϕ(σs,σc · (tn+1,a)),

and thus

obs
(

Eϕ (σ · (tn+1,a)) , t
)

= obs
(
�1

(
storeϕ (σ )

) · min�lex,end κϕ(σs,σc · (tn+1,a)), t
)
.

Henceforth, we have obs(Eϕ(σ ·(tn+1, a)), t) = storeϕ(σ ) ·min�lex,end κϕ(σs, σc ·(tn+1, a)) = Eϕ(σ ) ·min�lex,end κϕ(σs,

σc · (tn+1, a)), since, σc = σmc and from the definition of κϕ and update, we know the dates computed for the 
subsequence σc · (tn+1, a) by Eϕ and Eϕ are equal. Finally, we have obs(Eϕ(σ · (tn+1, a)), t) = Eϕ(σ · (tn+1, a), t). �
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