
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-011-0196-8

RUNTIME VERIFICATION

What can you verify and enforce at runtime?

Yliès Falcone · Jean-Claude Fernandez ·
Laurent Mounier

© Springer-Verlag 2011

Abstract The underlying property, its definition, and
representation play a major role when monitoring a system.
Having a suitable and convenient framework to express prop-
erties is thus a concern for runtime analysis. It is desirable to
delineate in this framework the sets of properties for which
runtime analysis approaches can be applied to. This paper
presents a unified view of runtime verification and enforce-
ment of properties in the Safety-Progress classification. First,
we extend the Safety-Progress classification of properties in a
runtime context. Second, we characterize the set of properties
which can be verified (monitorable properties) and enforced
(enforceable properties) at runtime. We propose in particular
an alternative definition of “property monitoring” to the one
classically used in this context. Finally, for the delineated
sets of properties, we define specialized verification and
enforcement monitors.

Keywords Runtime verification · Property monitoring ·
Property enforcement · Monitorable properties ·
Enforceable properties · Safety-Progress characterization

1 Introduction

In the past decades, we have seen the emergence of a
world in which information systems are ubiquitous. Sys-
tem dissemination entails a growing need of confidence.
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System failures in history showed limits of existing engi-
neering methodologies and enabled the emergence of formal
methods [9]. Ideally, one would like to validate a program
prior to its execution. However, static validation methods
such as model-checking [12] suffer from limits preventing
their use in real large-scale applications. For instance, those
techniques are often bound to the design stage of a system,
and hence, they are not shaped to face-off specification evolu-
tion. Even when those techniques (e.g., static analysis [10])
do scale well, they are limited by the properties they can
check and may not be able to check interesting behavioral
properties. Thus, the verification of some properties and elim-
ination of some faults have to be complemented using meth-
ods relying on dynamic analysis. In this paper, we are inter-
ested in runtime verification and runtime enforcement. These
methods, said to be incomplete, operate on one execution of
the system. Acknowledging the loss of completeness enables
to face-off the limitations of static validation methods.

Runtime-verification [3,4,21,32,34] is an effective tech-
nique to ensure at execution time that a system meets a
desirable behavior. It can be used in numerous application
domains and more particularly when integrating together
untrusted software components. A possible approach for run-
time verification consists in analyzing a run of the system
under scrutiny in an incremental way using a decision proce-
dure called a monitor. This monitor may be generated from
a user-provided high-level specification (consisting in e.g., a
property expressed by temporal logic formula or an autom-
aton). The primary goal of this monitor is to detect viola-
tion or satisfaction with respect to the given specification. It
can be viewed as a state machine (with an output function)
processing an execution sequence (step by step) of the mon-
itored program and producing a sequence of verdicts (truth
values taken from a truth-domain) indicating specification
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satisfaction or violation. Most research endeavors focused
on monitoring safety properties (stating that something bad
can never happen), as seen for example in [22,33]. Moreover,
it has been shown by Viswanathan and Kim [37] that some
computability constraints apply to runtime monitors. Con-
sidering the monitoring of safety properties, the violation
detection mechanism used in the runtime device needs to be
effective. Thus, for a safety property to be monitorable, it
has to be co-recursively enumerable. However, the authors
of [11] show that, when monitoring is purposed to detect
violations of a property, safety properties are not the only
monitorable properties. Recently, a new definition of monit-
orability was given by Pnueli and Zaks [32] where monitor-
ing not only detects violations but also satisfactions, and it
is proved in [3] that safety and co-safety properties represent
only a proper subset of the set of the monitorable properties.

Runtime enforcement is an extension of runtime verification
aiming to circumvent property violations. It was initiated by
the work of Schneider [35] on the so-called security auto-
mata. In this work, the enforcement monitor watches the
current execution sequence and halts the underlying program
whenever it deviates from the desired property. Schneider
announced that security automata are able to enforce the
whole class of safety properties. The results in [37], previ-
ously mentioned in Sect. 1, that impose computability con-
straints on monitors also apply to security automata. Thus,
the known class of enforceable properties with security auto-
mata was refined into the class of co-recursively enumerable
properties. Later, Hamlen et al. [20] addressed the question of
determining, in general, the class of properties enforceable on
programs seen as Turing machines. The authors showed that
enforcement at runtime can be addressed for co-recursively
enumerable properties.

More recently, Ligatti et al. [28] showed that it is possible
to enforce at runtime more than safety properties. Using more
powerful enforcement mechanisms called edit-automata, it
is possible to enforce the larger class of infinite renewal prop-
erties. Within the classical safety-liveness dichotomy, the
renewal class is a super set of the safety class which con-
tains some liveness properties (but not all). More than simply
halting an underlying program, edit-automata can also sup-
press (i.e., freeze) and insert (frozen) actions in the current
execution sequence.

Several tools have been proposed in this context, and
in practice, there is not always a clear distinction between
runtime-verification and runtime-enforcement. For instance,
a verification monitor may execute an exception handler
when detecting an error, hence modifying the initial program
execution.

Motivations and contributions Based on the amount of works
published and existing tools now available within the run-
time-validation community, it appears that this technique

progressed a lot in the last decade and seems now mature
enough to address concrete industrial challenges. However,
some interesting questions remain about its expressiveness.
More precisely, the main questions we consider in this work
are as follows: what are the classes of properties that can be
handled at runtime, and is there a distinct answer for runtime
verification and runtime enforcement? These questions are
not original in themselves, but we propose here to address
them within a unified framework: the Safety-Progress (SP)
classification of properties [6,29]. The contributions of the
paper are then as follows:

1. to propose a suitable framework for specifying and rea-
soning about properties in a runtime context;

2. to integrate and improve within this framework some
existing expressiveness results related to runtime moni-
toring [3,4,32], and to propose an alternative definition
of the notion of monitorability, leveraging the semantics
of finite execution sequences;

3. and to improve some recent results related to property
enforcement [15,16], giving a more accurate classifica-
tion of enforceable properties;

4. to get a generic monitor synthesis technique, allowing to
produce either a verification or an enforcement monitor
from the same property description.

Let us illustrate a bit more the second motivation. Consider a
system on which it is possible to evaluate two atomic proposi-
tions called p and q. At system runtime, system events are fed
to a monitor. Each event is a pair containing the truth-values
of p and q. Now let us consider the following requirement:
“Either p is always true or q is eventually true”. This means
that, for the observed sequence of events, either p is evalu-
ated to true on every event, or there exists an event on which
q is evaluated to true. Now consider the two following possi-
ble executions of the system, represented by their sequences
of events of length 2:

– {p, q} · {p, q}: on both events p is true, q is false;
– {p, q} · {p, q}: on the first event p is true and q is false,

on the second event p and q are false.

After observation of the first sequence of events, one can rea-
sonably state that the property is “currently” true. Thus, if the
program execution stops after this observation, the require-
ment is satisfied. Indeed, p has been always true during the
program execution. Conversely, after observing the second
sequence of events, one can reasonably state that the property
is “currently” false. Indeed, the last observed event does not
fulfill the requirement (neither p nor q evaluate to true).

We will see in Sect. 5 that this kind of property is monitor-
able according to the classical definition of monitorability.
Moreover, a monitor built following this definition of mon-
itorability would produce the same verdict for those two
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sequences, namely a do not know verdict. This situation
is undesirable from our point of view. Thus, we will pro-
pose an alternative definition of monitorability able to better
cope with these kinds of properties and to give more precise
verdicts.

This paper is a revised and extended version of [17] which
appeared in the 9th international workshop on runtime verifi-
cation. This new version brings the following additional con-
tributions. First, it contains a more comprehensive theoretical
basis by revisiting and extending results about the Safety-
Progress classification of properties. Moreover, we provide
additional results on monitorability. Furthermore, the syn-
thesis of verification and enforcement monitors is given with
full details (it was previously sketched). Finally, the presen-
tation has been improved by means of additional examples,
corrected results, and complete proofs.

Paper Organization The remainder of this article is orga-
nized as follows. First, Sect. 2 introduces some preliminary
notations used throughout this paper, and Sect. 3 overviews
related work on the issues we address. In Sect. 4, we propose
an extension of the Safety-Progress classification of proper-
ties in a runtime verification context. Section 5 is dedicated to
runtime monitoring, whereas Sect. 6 is dedicated to runtime
enforcement. In both sections, we provide some characteriza-
tions of the classes of properties that can be handled by these
techniques, with respect to the Safety-Progress framework.
Then, in Sect. 7, we show how to obtain runtime verification
and enforcement monitors for the delineated sets of proper-
ties. Finally, we give some concluding remarks and future
work in Sect. 8.

In order to facilitate the reading of this article, some of the
proofs have been sketched. Complete proofs can be found in
Appendix.

2 Preliminaries and notations

This section introduces some background, namely the notions
of program execution sequences and program properties.

2.1 Sequences and execution sequences

Considering a finite set of elements E , we define notations
about sequences of elements belonging to E . A sequence
σ containing elements of E is formally defined by a total
function σ : I → E where I is either the integer interval
[0, n] for some n ∈ N, or N itself (the set of natural num-
bers). We denote by E∗ the set of finite sequences over E
(partial function from N) by E+ the set of non-empty finite
sequences over E and by Eω the set of infinite sequences

over E . The set E∞ def= E∗ ∪ Eω is the set of all sequences
over E . The empty sequence of E is denoted by εE or ε
when clear from context. The length (number of elements)

of a finite sequence σ is noted |σ |, and the (i + 1)th element
of σ is denoted by σi . For a finite sequence σ ∈ E∗, we
may use last(σ ) to denote the last element of σ , i.e., σ|σ |−1.
For two sequences σ ∈ E∗, σ ′ ∈ E∞, we denote by σ · σ ′
the concatenation of σ and σ ′, and by σ ≺ σ ′ the fact that
σ is a strict prefix of σ ′. The sequence σ is said to be a
strict prefix of σ ′ ∈ E∞ when ∀i ∈ [0, |σ | − 1], σi = σ ′

i

and |σ | < |σ ′|. When σ ′ ∈ E∗, we note σ 
 σ ′ def= σ ≺
σ ′ ∨ σ = σ ′. For σ ∈ E∞ and n ∈ N, σ···n is the sub-
sequence containing the n + 1 first elements of σ . More-
over, when |σ | > n, the subsequence σn··· is the sequence
containing all elements of σ but the n first ones. The set of
prefixes pref (σ ) of a sequence σ ∈ E∞ is defined as follows.

If σ ∈ E∗, then pref (σ )
def= {σ ′ ∈ E∗ | σ ′ 
 σ }. If σ ∈ Eω,

then pref (σ )
def= {σ ′ ∈ E∗ | σ ′ ≺ σ }. The set Pref (X) of

prefixes of a set of sequences X is the union of the sets of

prefixes of X -sequences: Pref (X)
def= ⋃

σ∈X pref (σ ). The
set Pref (X, σ ) of prefixes of a set of sequences X which are

also strict prefixes of a sequence σ ∈ �∞ is: Pref ≺(X, σ )
def=

Pref (X)∩pref (σ )\{σ }. Theσ -continuations, i.e., the contin-
uations of a sequence σ , are the finite and infinite sequences
belonging to the set {σ ′ ∈ E∞ | σ ≺ σ ′}. For σ ′ ∈ E∞ a
σ -continuation, if σ ′ = σ · σ ′′, then σ ′′ ∈ E∞ is called an
extension of σ .

A program P is considered as a generator of execution
sequences. We are interested in a restricted set of opera-
tions the program can perform. These operations influence
the truth-value of properties the program is supposed to ful-
fill. Such execution sequences can be made of access events
on a secure system to its resources, or kernel operations
on an operating system. In a software context, these events
may be abstractions of relevant instructions such as variable
modifications or procedure calls. These events may also be
fed from the underlying program and contain the evalua-
tion of some propositions of the system under scrutiny. We
abstract these operations by a finite set of events, namely
an alphabet �. We denote by P� a program for which the
alphabet is �. The set of execution sequences of P� is
denoted by Exec(P�) ⊆ �∞. This set is prefix-closed, i.e.,
∀σ ∈ Exec(P�),∀σ ′ ∈ �∗, σ ′ 
 σ ⇒ σ ′ ∈ Exec(P�). In
the remainder of this article, we use an alphabet �.

2.2 Properties

Properties as sets of execution sequences A finitary property
(resp. an infinitary property, a property) is a subset of execu-
tion sequences of �∗ (resp. �ω, �∞). Considering a given
finite (resp. infinite, finite or infinite) execution sequence σ
and a property φ (resp. ϕ, θ ), when σ ∈ φ, noted φ(σ) (resp.
σ ∈ ϕ, denoted ϕ(σ), σ ∈ θ , noted θ(σ )), we say that σ sat-
isfies φ (resp. ϕ, θ ). A consequence of this definition is that
properties we will consider are restricted to single execution
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sequences,1 excluding specific properties defined on power-
sets of execution sequences (like fairness, for instance).

Runtime properties In this paper, we will focus on properties
to be evaluated at runtime. As stated in Sect. 1, this means
that we would have to consider finite and infinite execution
sequences (that a program may produce). A runtime verifi-
cation technique should address both kinds of sequences in
a uniform way. Hence, we introduce a notion of “runtime
property” (r-property) as a pair of finite/infinite execution
sequence sets2:

Definition 1 (runtime properties) An r-property is a pair
(φ, ϕ) ⊆ �∗ × �ω. The property φ is called the finitary
part of the r-property, whereas ϕ is called the infinitary part
of the r-property.

Intuitively, the finitary property φ represents the desir-
able property that finite execution sequences should fulfill,
whereas the infinitary property ϕ is the expected property for
infinite execution sequences. Notations for r-properties fol-
low from the notations for finitary and infinitary properties.
For an r-property (φ, ϕ), its negation, noted (φ, ϕ), is defined
as (�∗ \ φ,�ω \ ϕ). Boolean combinations of r-properties
are defined in a natural way: (φ1, ϕ1) ∨ (φ2, ϕ2) = (φ1 ∪
φ2, ϕ1 ∪ ϕ2), and (φ1, ϕ1) ∧ (φ2, ϕ2) = (φ1 ∩ φ2, ϕ1 ∩ ϕ2).
Considering an execution sequence σ ∈ Exec(P�), we say
that σ satisfies (φ, ϕ)when σ ∈ �∗∧φ(σ)∨σ ∈ �ω∧ϕ(σ).
For an r-property	 = (φ, ϕ), we note	(σ) (resp. ¬	(σ))
whenσ satisfies (resp. does not satisfy) (φ, ϕ). The set of pre-
fixes of an r-property 	 = (φ, ϕ) is defined as: Pref (	) =
Pref (φ) ∪ Pref (ϕ). Intersection between finitary, infinitary
properties and r-properties is straightforward and denoted
using operator �, e.g., �∗ � (φ, ϕ) = φ.

Evaluation of r-properties Monitorability, enforceability, and
monitor synthesis are based on the evaluation of r-properties
by a monitor. Evaluating an execution sequence σ w.r.t. an
r-property consists in producing a verdict regarding the cur-
rent property-satisfaction of σ or future satisfactions of the
possible σ -continuations. As a matter of fact, the verdicts
produced by monitors are not necessarily usual Boolean
values: they are truth-values taken from a truth-domain. A
truth-domain is a lattice, i.e., a partially ordered set with an
upper-bound and a lower-bound. Examples of truth-domains
are the classical Boolean domain {true, false} or the real-
number interval [0, 1], or any relevant set of values used
for evaluating properties. Considering a truth-domain B, an

1 This is the distinction, made by Schneider [35], between properties
and (general) policies. The set of properties (defined over single exe-
cution sequences) is a subset of the set of policies (defined over sets of
execution sequences).
2 Using a pair of sets makes the distinction between the finitary and
infinitary parts of the property more explicit.

Fig. 1 Principle of runtime verification

r-property 	 and a finite execution sequence σ , the evalua-
tion of σ ∈ �∗ w.r.t. 	 in B, noted [[	]]B(σ ), is an element
of B depending on	(σ) and satisfaction of σ -continuations
w.r.t. 	.

The sets of monitorable and enforceable properties
(Sects. 5, 6) rely both upon the truth-domain and evaluation
function we consider.

3 Related work

This section overviews some related work on the topics we
will discuss in this paper.3 In particular, we summarize the
basic concepts used for runtime verification and runtime
enforcement, and we recall the existing results in terms of
sets of properties that can be addressed by each of these
techniques.

3.1 Runtime verification

Basic concepts As stated in Sect. 1, the notion of runtime
verification can be formalized by a verification monitor (see
Fig. 1) whose behavior consists in translating a sequence of
events σ ∈ �∞ into a sequence of verdictsω ∈ B

∞, where B

is a given truth-domain. This monitor is defined with respect
to an r-property	, and the sequence of verdictsω is expected
to give some information on the evaluation of 	 on σ with
respect to B. Thus, one of the problems to be addressed is
that each evaluation [[	]]B(σ···n) = ω···n of a finite sequence
should not only give some relevant information on 	(σ···n),
but also possibly on 	(σ). In this context, several notions
of monitorability were proposed in the past, and we review
below the most important results.

Monitorability in the sense of [37] Viswanathan and Kim
gave the first characterization of monitorable properties
in [37]. Monitorable properties were characterized as a strict
subset of safety properties defined over infinite sequences.
The authors show that, due to the undecidability of some
problems, a verification monitor is limited by some com-
putability constraints. Moreover, this definition of monitor-
ability was specifically defined for the detection of errors.
Thus, the mechanism used for the error detection needs to
be effective. Consequently, a property ϕ ⊆ �ω was defined

3 The interested reader may consult [21] (resp. [13]) for more informa-
tion on runtime verification (resp. runtime enforcement).
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to be monitorable if it is a safety property and �∗ \ Pref (ϕ)
is recursively enumerable. The authors establish the equality
between this set of properties and the class	0

1 of the arithmet-
ical hierarchy which is the class of co-recursively enumerable
properties.

Monitorability in the sense of [32] Pnueli et al. gave a more
general notion of monitorable properties relying on the notion
of verdict determinacy by a finite sequence. More precisely,
considering a finite sequence σ ∈ �∗, a property θ ⊆ �∞
is negatively determined (resp. positively determined) by an
execution sequence σ if σ and each of its possible contin-
uations does not satisfy (resp. does satisfy) θ . Then θ is
σ -monitorable if σ has a continuation s.t. θ is negatively
or positively determined by this continuation. Finally, θ is
monitorable if it is σ -monitorable for every σ ∈ �∗. The
idea is that it becomes unnecessary to continue the execution
of a θ -monitor after reading σ if θ is not σ -monitorable.

In Sect. 5, we give the corresponding formal definition in
the context of r-properties.

Monitorability in the sense of [3] Bauer et al., inspired
from Pnueli’s definition of monitorable properties, proposed
a slightly different one based on the notion of good and
bad prefix introduced in model-checking by Kupferman and
Vardi [24]. The intuitive idea is that with monitorable prop-
erties it is possible to “detect” a violation or satisfaction of
infinitary properties with finite sequences. More precisely,
the definition of monitorable properties comes in the follow-
ing way. Considering an infinitary property ϕ ⊆ �ω, a prefix
σ is said to be a bad prefix, noted bad_prefix(σ, ϕ) (resp. good
prefix, noted good_prefix(σ, ϕ)) of ϕ if ∀w ∈ �ω,¬ϕ(σ ·w)
(resp. ∀w ∈ �ω, ϕ(σ · w)). Then a prefix σ is said to be
ugly if it does neither have good nor bad continuation, i.e.,
¬∃v ∈ �ω, bad_prefix(σ · v, ϕ) ∨ good_prefix(σ · v, ϕ).
Finally, a property is said to be monitorable if it has no ugly
prefix, formally: ∀σ ∈ �∗, ∃v ∈ �∗, bad_prefix(σ · v, ϕ)∨
good_prefix(σ · v, ϕ).
About previous characterizations of monitorable properties
The first characterization of monitorable properties given
in [37] may seem arbitrary. It characterizes the class of mon-
itorable properties directly as a class of properties.

However, let us remark that, in this definition a monitor
is dedicated to the detection of “bad behaviors” from finite
observations. It seems reasonable that a verification monitor
is used to detect “good” behaviors as well, e.g., the satisfac-
tion of a desired property. This is actually the idea behind the
definition given in [32]. The last definition, given in [3], is
equivalent to the previous one on �ω. We will refer to the
definition given in [32] as the classical definition as it was
enunciated before the definition in [3]. Furthermore, Bauer
et al. have shown that, according to this definition, the set
of monitorable properties is a strict superset of safety and

Fig. 2 Principle of runtime enforcement

co-safety properties. These classes of properties are taken
from the classical Safety-Liveness classification of proper-
ties [1,25]. They also gave an example of request/acknowl-
edge property which is not monitorable. Such a property can
be framed in the set of response properties (see Sect. 4) w.r.t.
the SP classification (see Example 5 in Sect. 5).

3.2 Runtime enforcement

Basic concepts In runtime enforcement, the purpose of an
enforcement monitor (see Fig. 2) used at runtime is to trans-
form an input sequence σ ∈ �∞ into an output sequence
o ∈ �∞ with respect to an r-property	. The expected con-
straints on o are (usually) as follows:

soundness: o should be a correct execution sequence, i.e.,
	 should evaluate to true on o;
transparency: the enforcement operation should preserve
as much as possible the initial program behavior by mod-
ifying the input sequence in a minimal way. A possible
interpretation is that when σ does not satisfy 	 then o
should be the longest correct prefix of σ .

According to this definition, the set of properties that
can be enforced at runtime clearly depends on the capa-
bilities of the enforcement mechanism. For this purpose,
the authors of [20] proposed a very general classification
of enforceable properties: a program is viewed as a Turing
machine, and the enforcement mechanisms they consid-
ered were based respectively on static analysis, program
rewriting and runtime enforcement monitors. Other research
efforts [16,27,28,35,37] focused more specifically on run-
time enforcement monitors and proposed a characterization
of enforceable properties in this context. We summarize these
results below.

Security automata and co-recursively enumerable safety
properties Schneider introduced security automata (a vari-
ant of Büchi automata) as the first runtime mechanism for
enforcing properties in [35]. The announced set of enforce-
able properties with this kind of security automata is the set
of safety properties. Then Schneider, Hamlen, and Morri-
sett refined the set of enforceable properties and showed that
these security automata were actually restrained by the com-
putational limits exhibited by Viswanathan and Kim in [37].
Hence, Schneider, Hamlen, and Morrisett showed that the
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set of co-recursively enumerable safety properties is a strict
upper limit of the power of (execution) enforcement monitors
defined as security automata [20].

Edit-automata and infinite renewal properties Ligatti
et al. [27,28] introduced edit-automata as runtime monitors.
Depending on the current input and its control state, an edit-
automaton can either insert a new action by replacing the
current input, or suppress it. The properties enforced by edit-
automata are called infinite renewal properties: it is a super-
set of safety properties and contains some liveness properties
(but not all). More precisely, a property θ is said to be an infi-
nite renewal property if each valid infinite sequence σ has an
infinite number of valid prefixes:

∀σ ∈ �∞, θ(σ ) ⇒ ∀σ ′ ∈ �∗, σ ′ ≺ σ

⇒ ∃σ ′′ ∈ �∗, σ ′ 
 σ ′′ ≺ σ ∧ θ(σ ′′).

Shallow history automata and an information-based lat-
tice of enforceable policies Fong [19] studied the effect of
restraining the capacity of the runtime execution monitor
and the effect on the enforcement power. Shallow history
automata (SHA) keep as history a set of access events the
underlying program made. Fong showed that these automata
can enforce a set of properties strictly contained in the set of
properties enforceable by Schneider’s automata. The result
has been generalized by using abstraction mechanisms on an
equivalent variant of Schneider’s automata. It raised up an
information-based lattice of enforceable policies. At the top
of this lattice is the set of properties enforceable by security
automata (SHA keeps history of all events). At the bottom of
this lattice is the set of policies prohibiting a set of events
(SHA does not distinguish between prefixes of execution
sequences made of the same events).

Fong’s classification has a practical interest in the sense
that it studies the effect of practical programming constraint
(limited memory). It also shows that some classical security
policies remain enforceable using such shallow automata.

Generic runtime enforcers and response properties In previ-
ous work [16,18], we introduced a generic notion of enforce-
ment monitor encompassing previous mechanisms and gave
a lower-bound on the set of properties they can enforce
in the Safety-Progress classification (see Sect. 4). In this
paper, we will show that this bound is tight. Furthermore,
in [18], we have studied the question of enforcement moni-
tor composition.

3.3 Synthesis of monitors

We give a short overview of the works related to the synthesis
of monitors. An exhaustive list of works on monitor synthesis
is far beyond the scope of this paper. We refer to [21,26,34]

(resp. [13]) for more information on this topic in runtime
verification (resp. runtime enforcement).

For runtime verification Generally, runtime verification mon-
itors are generated from LTL-based specifications, as seen
recently in [3,7]. Alternatively, ω-regular expressions have
been used as a basis for generating monitors, as for example
in [11].

For runtime enforcement In [30], Martinelli and Matteucci
tackle the synthesis of enforcement mechanisms as defined
by Ligatti. More generally, the authors consider security auto-
mata and edit-automata. The monitor is modeled by an alge-
braic operator expressed in CCS. The program under scrutiny
is then a term Y �K X where X is the target program, Y the
controller program and �K the operator modeling the mon-
itor, where K is the kind of monitor (truncation, insertion,
suppression, or edit). The desired property for the underly-
ing system is formalized usingμ-calculus. In [31], Matteucci
extends the approach in the context of real-time systems.
In [15,18], we defined transformations for some classes of
the safety-progress classification of properties. Those class-
specific transformations take as input a Streett automaton
recognizing a property and produce an enforcement moni-
tor for this property. In this paper, we will provide a unified
class-independent transformation.

4 The SP classification in a runtime context

This section recalls and extends some results about the
Safety-Progress classification of properties [5,6,29]. In the
original papers, this classification introduced a hierarchy
between regular properties4 defined as sets of infinite exe-
cution sequences. We extend the classification with finite-
length execution sequences in a conservative way.

4.1 Informal description

The Safety-Progress classification is made of four basic clas-
ses over execution sequences. Informally, the classes were
defined as follows:

– safety properties are the properties for which whenever a
sequence satisfies a property, all its prefixes satisfy this
property;

– guarantee properties are the properties for which when-
ever a sequence satisfies a property, there are some pre-
fixes (at least one) satisfying this property;

– response properties are the properties for which whenever
a sequence satisfies a property, an infinite number of its
prefixes satisfy this property;

4 In the following, the term property will stand for regular property.
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– persistence properties are the properties for which when-
ever a sequence satisfies a property, all but finitely many
of its prefixes satisfy this property; i.e., a finite number
of its prefixes does not satisfy the property.

Furthermore, two extra classes can be defined as finite
Boolean combinations (union and intersection) of basic
classes.

– The obligation class can be defined as the class obtained
by Boolean combinations of safety and guarantee prop-
erties.

– The reactivity class can be defined as the class obtained by
Boolean combinations of response and persistence prop-
erties. This is the most general class containing all linear
temporal properties [5].

An r-property of a given class is said to be pure when it
is a property of none of the other sub-classes.

The Safety-Progress classification is an alternative to the
more classical Safety-Liveness dichotomy [1,25]. Unlike this
later, the Safety-Progress classification is a hierarchy and not
a partition. It provides a finer-grain classification, and the
properties of each class are characterized according to four
views [5]: a language-theoretic view, a topological view, a
temporal logic view, and an automata-based view. The lan-
guage-theoretic view describes the hierarchy according to
the way each class can be constructed from sets of finite
sequences. The topological view characterizes the classes
as sets with topological properties. The third vision links
the classes to their expression in temporal logic. At last, the
automata view gives syntactic characterizations on automata
recognizing properties of a given class. We will consider here
only the language-theoretic and the automata views dedicated
to r-properties.

4.2 The language-theoretic view of r-properties

4.2.1 Construction of r-properties

The language-theoretic view of the Safety-Progress classifi-
cation is based on the construction of infinitary properties and
finitary properties from finitary ones. It relies on the use of
four operators A, E, R, P (building infinitary properties) and
four operators A f , E f , R f , Pf (building finitary properties)
applying to finitary properties. In the original classification of
Manna and Pnueli, the operators A, E, R, P, A f , E f were
introduced. In this paper, we add the operators R f and Pf and
give a formal definition of all operators. In these definitions,
ψ is a finitary property over �.

Definition 2 (Operators A, E, R, P)

– A(ψ) = {σ ∈ �ω | ∀σ ′ ∈ �∗, σ ′ ≺ σ ⇒ ψ(σ ′)}.

– E(ψ) = {σ ∈ �ω | ∃σ ′ ∈ �∗, σ ′ ≺ σ ∧ ψ(σ ′)}.
– R(ψ) = {σ ∈ �ω | ∀σ ′ ∈ �∗, σ ′ ≺ σ ⇒ ∃σ ′′

∈ �∗, σ ′ ≺ σ ′′ ≺ σ ∧ ψ(σ ′′)}.
– P(ψ) = {σ ∈ �ω | ∃σ ′ ∈ �∗,∀σ ′′ ∈ �∗, σ ′ ≺ σ ′′

≺ σ ⇒ ψ(σ ′′)}.

A(ψ) consists of all infinite words σ s.t. all prefixes of σ
belong to ψ . E(ψ) consists of all infinite words σ s.t. some
prefixes of σ belong toψ . R(ψ) consists of all infinite words
σ s.t. infinitely many prefixes of σ belong to ψ . P(ψ) con-
sists of all infinite words σ s.t. all but finitely many prefixes
of σ belong to ψ .

The operators A f , E f , R f , Pf build finitary properties
from finitary ones.

Definition 3 (Operators A f , E f , R f , Pf )

– A f (ψ) = {σ ∈ �∗ | ∀σ ′ ∈ �∗, σ ′ 
 σ ⇒ ψ(σ ′)}.
– E f (ψ) = {σ ∈ �∗ | ∃σ ′ ∈ �∗, σ ′ 
 σ ∧ ψ(σ ′)}.
– R f (ψ) = {σ ∈ �∗ | ψ(σ) ∧ ∀n ∈ N, ∃σ ′ ∈ �∗, σ ≺
σ ′ ∧ |σ ′| ≥ n ∧ ψ(σ ′)}.

– Pf (ψ) = {σ ∈ �∗ | ψ(σ) ∧ ∃σ ′ ∈ �∗, σ 
 σ ′ ∧ ∀n ∈
N, ∃σ ′′ ∈ �∗, |σ ′′| = n ∧ ψ(σ ′ · σ ′′)}.

A f (ψ) consists of all finite words σ s.t. all prefixes of
σ belong to ψ . One can observe that A f (ψ) is the largest
prefix-closed subset of ψ . E f (ψ) consists of all finite words
σ s.t. some prefixes of σ belong to ψ . One can observe that
E f (ψ) = ψ · �∗. R f (ψ) consists of all finite words σ s.t.
ψ(σ) and there exists an infinite number of continuations σ ′
of σ also belonging to ψ . Pf (ψ) consists of all finite words
σ belonging to ψ s.t. there exists a continuation σ ′ of σ s.t.
σ ′ persistently has continuations σ ′′ staying inψ (i.e., σ ′ ·σ ′′
belongs to ψ).

Based on these operators, each class can be seen from the
language-theoretic view.

Definition 4 	 = (φ, ϕ) is defined to be:

– A safety r-property if 	 = (A f (ψ), A(ψ)) for some
finitary propertyψ , i.e., all prefixes of a finite word σ ∈ φ
or of an infinite word σ ∈ ϕ belong to ψ .

– A guarantee r-property if	 = (E f (ψ), E(ψ)) for some
finitary propertyψ , i.e., each finite word σ ∈ φ or infinite
word σ ∈ ϕ is guaranteed to have some prefixes (at least
one) belonging to ψ .

– A response r-property if 	 = (R f (ψ), R(ψ)) for some
finitary property ψ , i.e., each finite word σ ∈ φ or infi-
nite word σ ∈ ϕ recurrently has (infinitely many) prefixes
belonging to ψ .

– A persistence r-property if 	 = (Pf (ψ), P(ψ)) for
some finitary property ψ , i.e., each finite word σ ∈ φ

or infinite word σ ∈ ϕ persistently has (continuously
from a certain point on) prefixes belonging to ψ .
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In all cases, we say that	 is built overψ . Furthermore, obli-
gation (resp. reactivity) r-properties are obtained by Boolean
combinations of safety and guarantee (resp. response and per-
sistence) r-properties.

Given a set of events �, Safety(�) (resp. Guarantee(�),
Obligation(�), Response(�), Persistence(�)) designates
the set of safety (resp. guarantee, obligation, response, per-
sistence) r-properties defined over �.

We illustrate in the following example the construction of
infinitary properties from finitary ones (described as regular
expressions) for each of the four operators.

Example 1 (Construction of infinitary and finitary properties
from finitary ones—r-properties) We consider a client–server
application, with a set of observable events � ⊆ {r, g, d}
where r denotes a client request of a given resource and g
(resp. d) denotes a corresponding grant (resp. deny) of this
resource provided by the server.

– For the finitary property ψ = ε + r+ · g∗, A f (ψ) =
ε+r+·g∗, A(ψ) = rω+r+·gω,	1 = (A f (ψ), A(ψ)) is
a safety r-property. This language contains all the words
that have either only occurrences of r or a finite num-
ber of occurrences of r (at least one) followed only by
occurrences of g. According to this property, a resource
should be requested at least once to be granted, and, when
granted once, it should not be requested anymore.

– For the finitary propertyψ = r+ ·g, E f (ψ) = r+ ·g ·�∗,
E(ψ) = r+ · g ·�ω, 	2 = (E f (ψ), E(ψ)) is a guaran-
tee r-property. This property tells that the client will issue
some requests and will receive a positive answer later on.

– For the finitary property ψ = g + (r · g)∗, R f (ψ) =
(r · g)∗, R(ψ) = (r · g)ω, 	3 = (R f (ψ), R(ψ)) is a
response r-property. This language contains all the words
that have infinitely many occurrences of r · g. This prop-
erty tells that clients will repeatedly send requests and
receive back a positive answer (the pattern r · g can be
seen here as a transaction).

– For the finitary property ψ = g + r · g · (r + r · g)∗,
Pf (ψ) = r · g · (r + r · g)∗, P(ψ) = r · g · (r + r · g)ω,
	4 = (Pf (ψ), P(ψ)) is a persistence r-property. This
language contains all the words starting with r · g · r and
ending with occurrences of r + r · g. According to this
property, after a first granted resource, at some point this
resource should be granted forever.

4.2.2 Some useful facts about the language view

Now, we give some useful facts about r-properties in the lan-
guage view. Those facts will be used in the remainder when
characterizing the set of monitorable properties.

Basic classes were defined in a constructive fashion. It is
sometimes interesting to have a direct characterization for

the properties of those classes. The following property gives
a characterization for safety and guarantee r-properties. The
proof is a direct adaptation of the proof given in [5].

Property 1 (Characterization of safety and guarantee
r-properties) An r-property 	 = (φ, ϕ) is

– a safety iff 	 = (A f (Pref (φ)), A(Pref (ϕ))),

– a guarantee iff 	 = (
E f (Pref (φ)), E(Pref (ϕ))

)
.

We expose the closure of safety and guarantee r-proper-
ties as a straightforward consequence of definitions of safety
and guarantee r-properties.

Property 2 (Closure of r-properties) Considering an
r-property	 = (φ, ϕ) defined over an alphabet� built from
a finitary property ψ , the following facts hold:

1. If 	 is a safety r-property, all prefixes of a sequence
belonging to 	 also belong to 	, i.e., ∀σ ∈ �∞,	(σ)
⇒ ∀σ ′ ≺ σ,	(σ ′).

2. If 	 is a guarantee r-property, all continuations of a
finite sequence belonging to 	 also belong to 	, i.e.,
∀σ ∈ �∗,	(σ) ⇒ ∀σ ′ ∈ �∞,	(σ · σ ′).

Proof The proof can be found in Appendix A.1.1; it uses the
definitions of the operators A f , A, E f , E . ��

The following lemma (inspired from [5]) provides a
decomposition of each obligation properties in a normal
form.

Lemma 1 Any obligation r-property can be represented as
the intersection

k⋂

i=1

(Safetyi ∪ Guaranteei )

for some k > 0, where Safetyi and Guaranteei are, respec-
tively, safety and guarantee r-properties. We refer to this
presentation as the conjunctive normal form of obligation
r-properties.

When an r-property 	 is expressed as ∩k
i=1(Safetyi ∪

Guaranteei ), 	 is said to be a k-obligation r-property. The
set of k-obligation r-properties (with k ≥ 1) is denoted
k−Obligation(�). Similar definitions and properties hold for
reactivity r-properties which are expressed by Boolean com-
binations of response and persistence r-properties.

4.3 The automata view of r-properties

For the automata view of the Safety-Progress classification,
we follow [5] and define r-properties using Streett automata.
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Furthermore, for each class of the Safety-Progress classifica-
tion, it is possible to syntactically characterize a recognizing
finite-state automaton. Moreover, we introduce transforma-
tions that take a deterministic finite-state automaton and a
“modification pattern” so as to obtain a Streett automaton.
These transformations are the representatives in the automata
view of the operators defined in the language view.

4.3.1 Streett automata

We define a variant of deterministic and complete Streett
automata (introduced in [36] and used in [5]) for prop-
erty recognition.5 These automata process events and decide
properties of interest. We add to original Streett automata a
finite-sequence recognizing criterion in such a way that these
automata uniformly recognize r-properties.

Definition 5 (Streett automaton) A deterministic finite-state
Streett automaton is a tuple (Q, qinit, �,−→, {(R1, P1), . . . ,

(Rm, Pm)}) defined relatively to a set of events �. The set
Q is the set of automaton states; qinit ∈ Q is the initial state.
The function −→: Q × � → Q is the (complete) tran-
sition function. In the following, for q, q ′ ∈ Q, e ∈ �,
we abbreviate −→ (q, e) = q ′ by q

e−→ q ′. The set
{(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all
i ≤ n; Ri ⊆ Q are the sets of recurrent states, and Pi ⊆ Q
are the sets of persistent states.

We refer to an automaton with m accepting pairs as
an m-automaton. When m = 1, a 1-automaton is also
called a plain-automaton, and we refer to R1 and P1 as
R and P . Moreover, for σ = σ0 · · · σn−1 a word over
� of length n and q, q ′ ∈ QA two states, we note

q
σ−→ q ′ when ∃q1, . . . , qn−2 ∈ QA, q

σ0−→ q1 ∧ · · · ∧
qn−2

σn−1−→ q ′. In the following A = (QA, qA
init, �,−→A,

{(R1, P1), . . . , (Rm, Pm)}) designates a deterministic
finite state Streett m-automaton.

For q ∈ QA, ReachA(q) is the set of reachable states from
q with at least one transition in A (denoted Reach(q) when
clear from context), i.e., ReachA(q)

def= {q ′ ∈ QA | ∃σ ∈
�+, q

σ−→A q ′}. For σ ∈ �∞, the run of σ on A is the
sequence of states involved by the execution of σ on A. It is
formally defined as run(σ,A) = q0 · q1 · · · where ∀i, (qi ∈
QA ∧ qi

σi−→A qi+1)∧ q0 = qA
init . The trace resulting in the

execution of σ on A is the unique sequence (finite or not)
of tuples (q0, σ0, q1) · (q1, σ1, q2) · · · where run(σ,A) =
q0 · q1 · · ·.

For an execution sequence σ ∈�ω on a Streett automa-
ton A, we define vinf (σ,A), as the set of states appearing

5 There exist several equivalent definitions of Streett automata dedi-
cated to the recognition of infinite sequences. We choose here to follow
the definition used in [5].

infinitely often in run(σ,A). It is formally defined as follows:

vinf (σ,A) def= {q ∈ QA | ∀n ∈ N, ∃m ∈ N,m > n∧q = qm

with run(σ,A) = q0 · q1 · · · }.
For a Streett automaton, the notion of acceptance condi-

tion is defined using the accepting pairs.

Definition 6 (Acceptance condition for infinite sequences)
For σ ∈ �ω, we say that A accepts σ if ∀i ∈ [1,m],
vinf (σ,A) ∩ Ri �= ∅ ∨ vinf (σ,A) ⊆ Pi .

To deal with r-properties, we need to also define an
acceptance criterion for finite sequences: a finite sequence
is accepted by a Streett automaton if and only if it terminates
on a distinguished state Ri or Pi for each accepting pair i .

Definition 7 (Acceptance condition for finite sequences)
For a finite-length execution sequence σ ∈ �∗ s.t. |σ | = n,
we say that the m-automaton A accepts σ if (∃q0, . . . , qn ∈
QA, run(σ,A) = q0 · · · qn ∧ q0 = qA

init and ∀i ∈ [1,m],
qn ∈ Pi ∪ Ri ).

4.3.2 The hierarchy of automata

An interesting feature of Streett automata is that the class
of properties they recognize can be easily characterized by
some syntactic considerations.

– A safety automaton is a plain-automaton s.t. R = ∅, and
there is no transition from a state q ∈ P to a state q ′ ∈ P .

– A guarantee automaton is a plain-automaton s.t. P = ∅,
and there is no transition from a state q ∈ R to a state
q ′ ∈ R.

– An m-obligation automaton is an m-automaton s.t. for
each i in [1,m]:
– there is no transition from q ∈ Pi to q ′ ∈ Pi ,
– there is no transition from q ∈ Ri to q ′ ∈ Ri .

– A response automaton is a plain-automaton s.t. P = ∅.
– A persistence automaton is a plain-automaton s.t. R = ∅.
– A reactivity automaton is any unrestricted automaton.

The syntactic restrictions are illustrated in Fig. 4: shapes
of Streett automata for basic classes are depicted. One may
remark that these syntactic restrictions hold for the automata
represented in Fig. 3.

Automata and properties We now link Streett automata to
r-properties.

Definition 8 (Automata and r-properties) We say that a
Streett automaton A defines an r-property (φ, ϕ) ∈ 2�

∗×�ω

if and only if the set of finite (resp. infinite) execution
sequences accepted by A is equal to φ (resp. ϕ), which is
noted L(A) = (φ, ϕ). Conversely, an r-property (φ, ϕ) ∈
2�

∗×�ω is said to be specifiable by an automaton A if the set
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Fig. 3 Examples of Streett automata

Fig. 4 Schematic illustrations of the shapes of Streett automata for basic classes

of finite (resp. infinite) execution sequences accepted by the
automaton A is φ (resp. ϕ).

Example 2 (Streett Automata) In Fig. 3 are represented Stre-
ett plain-automata for the properties presented in Example 1.

– A	1 is a safety automaton; its set of recurrent states is
empty; its set of persistent states is P = {1, 2, 3}. A finite
sequence is accepted if its run ends in either states 1, 2
or 3, meaning that, if a grant happened there was at least
one request previously. An infinite sequence is accepted
if the only states visited infinitely often are states 1, 2,
or 3, meaning that requests have been made, and they
were followed by only grants.

– A	2 is a guarantee automaton; its set of persistent states
is empty; its set of recurrent states is R = {3}. A finite
sequence is accepted if its run ends in state 3. An infi-
nite sequence is accepted if the state 3 is visited infinitely
often. In both cases, it means that requests have been
issued and then have been granted.

– A	3 is a response automaton; its set of persistent states
is empty; its set of recurrent states is R = {1}. A finite
sequence is accepted if its run ends in state 1, meaning that
every request has been followed by a grant (in this order).
An infinite sequence is accepted if it visits the state 1 infi-
nitely often, meaning that this infinite sequence contains
a succession of action sequences “one request followed
by one grant”.

– A	4 is a persistence automaton; its set of recurrent states
is empty; its set of persistent states is P = {3, 4}. A
finite sequence is accepted if its run ends in state 3 or 4,
meaning that a first successful request has been made and,

after that, the user performs only successful requests (if
he makes a requests, this request is granted). An infinite
sequence is accepted if it visits infinitely often only states
3 and 4, meaning that after a first successful request all
user’s requests have been granted.

In Sect. 4.5 we link the syntactic characterizations on the
automata to the semantic characterization of the properties
they specify.

4.3.3 From a DFA to a Streett automaton

We now introduce four transformations allowing to obtain a
Streett automaton, given a deterministic finite-state autom-
aton and a “pattern” for this underlying property. These
patterns are inspired from the different classes of the Safety-
Progress hierarchy. These simple transformations corre-
spond, in the automata view, to the operators in the language
view and the temporal modalities in the logical view.6 We
start by first defining those transformations and then prove
their soundness.

A deterministic finite-state automaton (DFA) [23], is given
relatively to an alphabet � and is here formally defined as
a tuple (Q , qinit,−→, F ), where Q is a finite set of states,
qinit ∈ Q is the initial state, −→: Q×� → Q is the transition
function, and F ⊆ Q is the set of accepting states.

Definitions of the transformations In the following defi-

nitions, Aψ = (QAψ , q
Aψ

init ,−→Aψ
, FAψ ) designates a

6 i.e., operators A, E, R, P (and their finitary versions) of the language
view and the temporal modalities � ,♦ ,� ♦ ,♦ � of the logical
view.
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complete DFA recognizing a finitary regular property ψ . We
define a transformation for each basic class of the hierarchy.

Synthesis of safety automata For this class of r-properties,
the transformation is defined as follows:

Definition 9 (DFA to Streett safety automaton) The transfor-
mation of Aψ into a Streett safety automaton is DFA2S_Saf

(Aψ) = (QA	, qA	
init ,→A	

, {(∅, P)}) and defined by:

– QA	 = FAψ ∪ {sink}, where sink /∈ QAψ ,

– qA	
init = q

Aψ

init if q
Aψ

init ∈ FAψ , and sink otherwise,
– →A	

is defined as the smallest relation verifying:

– q
e−→A	

q ′ if q ∈ FAψ ∧ q ′ ∈ FAψ ∧ q
e−→Aψ

q ′
(TSafe1),

– q
e−→A	

sink if ∃q ′ ∈ QAψ , q ′ /∈ FAψ ∧ q
e−→Aψ

q ′ (TSafe2),
– ∀e ∈ �, sink

e−→A	
sink (TSafe3),

– P = ReachA	
(qA	

init ) \ {sink}, (m = 1).

One can remark that the resulting automaton is indeed a
Streett safety automaton since R = ∅, and there is no transi-
tion from the states in P to the states in P . This transformation
adds a sink state and modifies the transition function in order
to redispatch the transitions outgoing from accepting states
to the sink state. Furthermore, the transitions outgoing from a
non-accepting state have been removed. The set of persistent
states is the set of accepting states of the DFA.

Moreover, according to the syntactic restrictions of the
obtained Streett safety automata, the following property
holds: for a sequence σ ∈ �ω and an automaton result-
ing of the transformation A	, if sink ∈ vinf (σ,A	), then
vinf (σ,A	) = {sink}; else vinf (σ,A	) ⊆ P .

Synthesis of Streett guarantee automata For this class of
r-properties, the transformation is defined as follows:

Definition 10 (DFA to Streett guarantee automaton) The
transformation of Aψ into a Streett guarantee automaton

is DFA2S_Guar(Aψ) = (QA	, qA	
init , →A	

, {(R,∅)}) and
defined by:

– QA	 is the smallest subset of QAψ containing the reach-
able states from the initial state qA	

init with −→A	
(defined

below),

– qA	
init = q

Aψ

init ,
– →A	

is defined as the smallest relation verifying:

– q
e−→A	

q if ∃q ′ ∈ QAψ , q
e−→Aψ

q ′ ∧ q ∈ FAψ

(TGuar1),
– q

e−→A	
q ′ if q /∈ FAψ ∧ q

e−→Aψ
q ′ (TGuar2),

– R = FAψ , (m = 1).

Fig. 5 Principle for tagging recurrent states in DFA2S_Res

One may remark that the resulting automaton is indeed a
Streett guarantee automaton since P = ∅ and there is no tran-
sition from the R-states to the R-states. This automaton may
not be minimal regarding the number of R-states. They can
be merged into one unique state since they are all equivalent
w.r.t. property recognition. This transformation modifies the
transition function in the following manner: outgoing transi-
tions from the accepting states (to an accepting state or not)
are modified into a loop on the same state. Indeed, when a
run reaches a state in F , this suffix suffices in order to satisfy
the guarantee property. The initial state is not modified, and
the set of states of the Streett automaton is defined as the
smallest set of reachable states from the initial state with the
new transition function.

Synthesis of Streett response automata For this class of
r-properties, the transformation is defined as follows:

Definition 11 (DFA to Streett response automaton) The
transformation of Aψ into a Streett response automaton

is DFA2S_Resp(Aψ) = (QA	, qA	
init ,→A	

, {(R,∅)}) and
defined by:

– QA	 = QAψ ,

– qA	
init = q

Aψ

init ,
– →A	

=→Aψ
,

– R = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧
(2) } ∪ {q ∈ FAψ | q −→Aψ

q}, where

∀ j ∈ [0, l − 1], q j −→Aψ
q j+1 (1)

∃i ∈ [0, l], ∃ j ∈ [i, l − 1], q j ∈ FAψ ∧ qi = ql ∧ q0 = q.

(2)

The resulting automaton is indeed a Streett response
automaton since P = ∅. This transformation does neither
modify the set of states nor the transition function. It marks
as recurrent states (cf. Fig. 5) every accepting state of the DFA
s.t. it is possible from this state to reach a cycle containing at
least one accepting state.

Synthesis of Streett persistence automata For this class of
r-properties, the transformation is defined as follows:

Definition 12 (DFA to Streett persistence automaton) The
transformation of Aψ into a Streett persistence automaton
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Fig. 6 Principle for tagging persistent states in DFA2S_Per

is DFA2S_Per(Aψ) = (QA	, qA	
init , →A	

, {(∅, P)}) and
defined by:

– QA	 = QAψ ,

– qA	
init = q

Aψ

init ,
– →A	

=→Aψ
,

– P = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧
(3) } ∪ {q ∈ FAψ | q −→Aψ

q}, where

∃i ∈ [0, l],∀ j ∈ [i, l − 1], q j ∈ FAψ

∧qi = ql ∧ q0 = q. (3)

The resulting automation is indeed a Streett persistence
automaton since R = ∅. This transformation does neither
modify the set of states nor the transition function. It marks
(cf. Fig. 6) as persistent state every accepting state of the
DFA from which it is possible to reach a cycle of accepting
states.

Soundness of the transformations Given a finitary propertyψ ,
defining a regular language over an alphabet� and specified
by a DFA Aψ , the safety (resp. guarantee, response, persis-
tence) r-property (X f (ψ), X (ψ)) where X ∈ {A, E, R, P}
is specified by the Streett automaton obtained by the transfor-
mation DFA2S specific to safety (resp. guarantee, response,
persistence) properties. This is stated formally by the follow-
ing theorem:

Theorem 1 (Soundness of the transformations of DFAs
to Streett automata) The transformation DFA2S_Saf (resp.
DFA2S_Guar, DFA2S_Resp, DFA2S_Per) in the automata
view “corresponds” to the operator A f and A (resp. E f

and E, R f and R, Pf and P) in the language view. For-
mally, when L(Aψ) = ψ ,

A	 = DFA2S_Saf (Aψ) ⇒ L(A	) = (A f (ψ), A(ψ))
A	 = DFA2S_Guar(Aψ) ⇒ L(A	) = (E f (ψ), E(ψ))
A	 = DFA2S_Resp(Aψ) ⇒ L(A	) = (R f (ψ), R(ψ))
A	 = DFA2S_Per(Aψ) ⇒ L(A	) = (Pf (ψ), P(ψ))

Proof Proofs are conducted for each class of properties and
the associated transformation by using the acceptance crite-
ria and examining runs of accepted sequences. The complete
proof can be found in Appendix A.1.2. ��

Remark 1 Let us remark that these transformations may
entail a loss of information. It is in general not possible to find
again the finitary language from which a Streett automaton
has been built. Consider for example the Streett guarantee
automaton represented on Fig. 3. There exists an infinite
number of finitary languages from which this automaton
can be constructed. Indeed, to obtain them, it suffices to
re-transform this Streett automaton into a minimal DFA by
forgetting accepting pairs and changing the R-state into an
accepting state. Then, from this accepting state, we can add
arbitrary transitions. The automata produced by doing so will
always be transformed by DFA2S_Guar into A	2.

4.4 Characterizing states of Streett automata

To better identify particular execution sequences on a Streett
automaton we characterize some subsets of its states in terms
of reachability of distinguished states. More precisely, the set
P

A = {GoodA,GoodA
c ,BadA

c , BadA} is a partition of QA,
s.t. GoodA, GoodA

c , BadA
c , BadA designate respectively the

good (resp. currently good, currently bad, bad) states. The
set P

A is defined as follows:

– q is in GoodA iff it terminates an accepted sequence and
every sequence starting from q is accepted:

GoodA def= {q ∈ ⋂m
i = 1(Ri ∪ Pi ) | ReachA(q) ⊆ ⋂m

i = 1
(Ri ∪ Pi )};

– q is in GoodA
c iff it terminates an accepted sequence and

there exist non accepted sequences starting from q:

GoodA
c

def= {q ∈ ⋂m
i = 1(Ri ∪ Pi ) | ReachA(q) �⊆ ⋂m

i = 1
(Ri ∪ Pi )};

– q is in BadA
c iff it terminates a non accepted sequence

and there exist accepted sequences starting from q:

BadA
c

def= {q ∈ ⋃m
i = 1(Ri ∩ Pi ) | ReachA(q) �⊆ ⋃m

i = 1
(Ri ∩ Pi )};

– q is in BadA iff it terminates a non accepted sequence
and every sequence starting from q is not accepted:

BadA def= {q ∈ ⋃m
i = 1(Ri ∩ Pi ) | ReachA(q) ⊆ ⋃m

i = 1
(Ri ∩ Pi )}.

The subsets are illustrated for basic classes in Fig. 7.

Example 3 (Characterization of Streett automata states) We
illustrate the characterization on the states of the Streett auto-
mata presented in Example 2:

– BadA	1 = {4}, GoodA	1
c = {1, 2, 3},

– BadA	2 = {4}, BadA	2
c = {1, 2}, GoodA	2 = {3},

– BadA	3 = {3}, BadA	2
c = {2}, GoodA	3

c = {1},
– BadA	4 = {5}, BadA	4

c = {1, 2, 6}, GoodA	4
c = {3, 4}.
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Fig. 7 Characterization of states for basic classes

Fig. 8 The Safety-Progress classification of r-properties

Remark 2 For a Streett automaton A	, all states in BadA	

(resp. GoodA	 ) are equivalent w.r.t. property recognition—
they can be merged into one single state.

This characterization of states will be useful in the follow-
ing sections when characterizing monitorable properties and
when synthesizing monitors.

4.5 Summary

A graphical representation of the Safety-Progress hierarchy
of properties is depicted in Fig. 8. A link between two classes
means that the higher class contains strictly the lower one.
Furthermore, for each class, we have recalled and uniformly
extended the characterizations in the language-theoretic and
automata views.

In Table 1 is represented each “basic block”, i.e., the
element used to build an r-property. In the language view,
r-properties are built from a finitary language ψ , and using
operators X f , and X , with X ∈ {A, E, R, P}. In the auto-
mata view, a finite-state automaton is transformed, by one of
the transformations DFA2S specific to a class of properties,
into a Streett automaton which recognizes (X f (ψ), X (ψ))
according to the class of properties.

Table 1 Ways to specify properties according to the views

Basic block Language view Automata view
ψ ⊆ �∗ A (DFA)

r-property (X f (ψ), X (ψ)) DFA2S_X(A)
X ∈ {A, E, R, P} X ∈ {Saf .,Guar.,Resp.,Persit.}

Table 2 Recognizing criteria according to the considered view

Language view Automata view

Finite seq ∈ X f (ψ) (Definition 2) Finite seq criterion
(Definition 7)

Infinite seq ∈ X (ψ) (Definition 3) Infinite seq criterion
(Definition 6)

Remark 3 It is worth noticing that property interpretation
of finite sequences extends to infinite sequences in a con-
sistent way, depending on the class of properties under
consideration:

– for a safety property 	, ∀i ∈ N,	(σ···i ) ⇒ 	(σ),
– for a guarantee property 	, ∃i ∈ N,	(σ···i ) ⇒ ¬	(σ),
– for a response property 	,

∞∃ i ∈ N,	(σ···i ) ⇒ 	(σ),

– for a persistence property 	, ¬(∞∃ i ∈ N,¬	(σ···i )) ⇒
¬	(σ).

5 Monitorability w.r.t. the SP classification

As stated in Sect. 1, studying the question of monitorability
amounts to studying the expressiveness of runtime verifi-
cation, i.e., characterizing the classes of properties that can
be verified at runtime. In this section, we first recall and
extend existing monitorability results in the Safety-Progress
classification of properties. Second, we propose to param-
eterize the classical definition with a truth-domain. Third,
we propose an alternative definition of monitorability and
characterize monitorable properties according to this new
definition.

In fact, characterizing the set of “monitorable” properties
depends on several parameters: the property semantics for
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finite sequences, the set of monitor verdicts we consider, and
the exact definition of monitoring.

5.1 Monitorable properties according to the classical
definition of monitorability

We express the classical definition of monitorability given
by Pnueli and Zaks in the SP framework introduced in the
previous section. Then we characterize the set of monitorable
properties according to this classical definition.

5.1.1 The classical definition of monitorability

The main objective of monitoring, in its classical definition,
is to evaluate an (infinitary) property ϕ on a possibly infinite
execution sequence from one of its finite prefix. Intuitively,
the idea is to be able to detect verdicts, i.e., find an evaluation,
w.r.t. an infinitary property, from a finite observation of a sys-
tem behavior. This is formalized as follows for r-properties:

Definition 13 (Positive/negative determinacy of an
r-property [32]) Let σ ∈ �∗, an r-property 	 ⊆ �∗ × �ω

is said to be:

– negatively determined by σ if ∀μ ∈ �∞,¬	(σ · μ);
– positively determined by σ if ∀μ ∈ �∞,	(σ · μ).

An r-property is negatively (resp. positively) determined
if every possible future continuation (finite or infinite) does
not (resp. does) satisfy the property. The practical meaning
is as follows: when a monitor observes a system in order
to check a property, if this property is negatively or posi-
tively determined, then the observation of the system can be
stopped. In this case, a monitor emits the verdict ⊥ (resp. �)
after reading σ if the property is negatively (resp. positively
determined) by σ . The obtained verdict is definitive. In other
cases, a monitor issues the value “?”, meaning that no defin-
itive verdict can be produced.

Definition 14 (Monitorable r-properties, “classical” defi-
nition [32]) An r-property 	 is:

– σ -monitorable, if there exists a (finite) μ ∈ �∗ s.t. 	 is
positively or negatively determined by σ · μ;

– monitorable, if it is σ -monitorable for every σ ∈ �∗.

The set of monitorable properties, according to the clas-
sical definition is noted MPc. An r-property is monitorable
if, for any execution sequence that can be observed, a pos-
sible continuation of this sequence determines negatively or
positively the property. One can notice that the classical def-
inition of monitorability is bound to an implicit 3-valued
truth-domain {⊥, ?,�} where the truth-values are issued by
a monitor as described previously.

Remark that the classical definition of monitorability is
hard to use in practice. Hence, a characterization of monitor-
able properties is needed in practice.

5.1.2 Characterization of monitorable properties according
to the classical definition

One of our first objectives is to characterize the subset of mon-
itorable properties within the Safety-Progress classification.

We first enunciate a lemma that will be used later on. This
lemma states that the set of MPc-monitorable properties is
closed under Boolean operations.

Lemma 2 (Closure of monitorable properties under boolean
operations) Given two r-properties 	1, 	2, we have:

	1,	2 ∈ MPc ⇒ 	1 ∧	2 ∈ MPc,

	1,	2 ∈ MPc ⇒ 	1 ∨	2 ∈ MPc,

	1 ∈ MPc ⇒ ¬	1 ∈ MPc.

Proof The complete proof is given in Appendix A.2.1. Let
us consider two r-properties 	1,	2 ∈ MPc.

– The proof of 	1 ∧ 	2 ∈ MPc consists in showing that
	1 ∧	2 is σ -monitorable for any sequence σ ∈ �∗. Let
σ ∈ �∗, let us exhibit an extension μ ∈ �∗ s.t.	1 ∧	2

is negatively or positively determined by σ ·μ. As 	1 is
monitorable, there exists a sequence μ1 s.t. 	1 is posi-
tively or negatively determined by σ ·μ1. Then, as	2 is
monitorable, there exists a sequence μ2 s.t. 	1 ∧ 	2 is
negatively or positively determined by σ · μ1 · μ2. Then
one has to analyze the different Boolean combinations to
obtain the expected result.

– The proof of 	1 ∨	2 ∈ MPc is similar.
– The proof of ¬	1 ∈ MPc is straightforward by noticing

that for any sequence σ ∈ �∗, if 	1 is positively (resp.
negatively) determined by σ , then ¬	 is negatively (resp.
positively) determined by σ . ��

We are now able to establish that the set of monitorable
properties according to the classical definition strictly con-
tains the set of obligation properties.

Theorem 2 (Obligation(�) ⊂ MPc) The obligation proper-
ties are strictly contained in the set of monitorable properties.

Proof The formal proof can be found in Appendix A.2.2 and
uses the following facts:

– Safety and guarantee properties are monitorable.
– The set of obligation properties is the union of the sets of

k-obligation properties for k ≥ 1 (Lemma 1).
– Union and intersection of two monitorable properties are

monitorable (Lemma 2).
– Example 6 shows that the inclusion is strict. ��
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Thus, we have extended the previous bound established
by Bauer et al. in [3]7 stating that

Safety(�) ∪ Guarantee(�) ⊂ MPc.

Indeed, the set of obligation properties is a strict super set of
the union of safety and guarantee properties.

Example 4 (Classical monitoring of an obligation property)
We go back to the example presented in Sect. 1, defined using
two atomic propositions p or q, stating that p should always
hold or q should eventually hold. This is a 1-obligation
r-property,8 defined as the disjunction of a safety r-property
(“p should always hold”) and a guarantee r-property (“q
should eventually hold”). According to the classical defini-
tion of monitorability, this property is monitorable. Indeed,
for any finite sequence σ , this property can be positively
determined by σ · {p, q} or by σ · {p, q}, i.e., by completing
σ with an event in which q is true.

Beyond Obligation properties Following the classical defini-
tion of monitorability, it is possible to show that there exist
non-monitorable and monitorable properties for super clas-
ses of the Obligation class. The above two properties are
pure response properties: one is not monitorable, whereas
the other one is monitorable.

Example 5 (Non-monitorable response property [3]) The
(response) property “Every request is eventually followed by
an acknowledgement”9 is not monitorable. This property is
represented by the Streett (response) automaton depicted in
Fig. 9 with R = {1}. Its alphabet is � = {req, ack, oth}
where req (resp. ack, oth) denotes the request (resp. the
acknowledgment, any other event). Using the acceptance cri-
teria for finite and infinite sequences, one can reasonably be
convinced that this automaton defines the considered prop-
erty. Indeed, a finite sequence is accepted if and only if previ-
ous requests have been acknowledged. An infinite sequence
is accepted if and only if state 1 is visited infinitely often
which means for an infinite sequence that requests have been
acknowledged.

For this property, there are two limitations for monitor-
ing using the classical definition of monitorability. First, it
is impossible to distinguish correct (ending in state 1) and
incorrect finite sequences (ending in state 2): both evaluate
to “ ? ”. Second, for all finite sequences, it is never possible
to decide � or ⊥ since every finite sequence can be extended
to correct or incorrect infinite continuations. In other words,

7 In [3], guarantee properties are named co-safety properties.
8 Seen in the logical view, this property can be defined by the temporal
logic formula �p ∨ ♦q.
9 This property can be expressed in an event-based LTL as �(req ⇒
♦ack).

Fig. 9 Non-monitorable response property—R = {1}, P = ∅

Fig. 10 Monitorable response property—R = {1}, P = ∅

it is never possible to satisfy or falsify this property with a
finite observation.

Example 6 (Monitorable response property) The (response)
property “Every request should be acknowledged, and it is
forbidden to send two successive requests (without acknowl-
edgment)” is monitorable. This property is represented by
the Streett response automaton depicted in Fig. 10 with R =
{1} and the same alphabet � as in Example 5. Notice that
this property is indeed a pure response property: it cannot
be represented by a finite-state Streett obligation automaton.
Intuitively, given an execution sequence, this r-property can
always be negatively determined by one of its continuations.
Indeed, for any σ ∈ �∗, the property is negatively deter-
mined by σ · req · req and is thus σ -monitorable.

Thus, there exist monitorable (pure) response properties.
Consequently, using Lemma 2, there exist also monitorable
pure persistence and reactivity properties. Indeed, monitor-
able properties are closed under Boolean operations.

5.2 Parametrization of the classical definition
of monitorability

As we will see, the characterization of monitorable prop-
erties may also depend on a truth-domain B we consider
when evaluating an execution sequence. Thus, we parame-
terize the classical definition of monitorable properties with
a truth-domain.

The first truth-domain we have studied is a 3-valued truth-
domain B3

def= {⊥, ?,�}. This truth-domain is inherent in the
classical definition. The value “⊥” is used to express prop-
erty violation when the property is negatively determined.
The value “�” is used to express property satisfaction when
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the property is positively determined. The value “?” is used
to express that no verdict can be produced. B3 can be viewed
as a complete lattice, whose minimal value is ⊥ and maxi-
mal value is �. Boolean operators ∨ and ∧ are then defined
respectively as upper and lower bounds.

The classical definition of monitorability is purposed to
the detection of verdicts for infinitary properties, i.e., to detect
either � or ⊥. This definition can be parameterized by a truth-
domain B containing at least one of these two elements:

Definition 15 (Parameterized classical monitorability) For
a truth-domain B s.t. B ∩ {⊥,�} �= ∅, an r-property 	 is:

– σ -monitorable with B, if there exist b ∈ B and a (finite)
μ ∈ �∗ s.t.

– b = ⊥ and 	 is negatively determined by σ · μ, or
– b = � and 	 is positively determined by σ · μ;

– monitorable with B if it is σ -monitorable with B for every
σ ∈ �∗.

For a truth-domain B, we will note MP(B) the set of mon-
itorable properties, according to the definition of parame-
terized classical monitorability. We now tackle the question
of how the underlying considered truth-domain may influ-
ence the class of monitorable properties, according to a truth-
domain derived from B3.

Remark 4 (MPc = MP(B3)) The previous parameterized
definition of classical monitorability amounts to the classi-
cal definition given by Pnueli and Zaks when instantiated
with B3.

Remark 5 (Finer truth-domains) According to Definition 15,
we can notice that adding further truth-values to B3 has no
influence on the set of monitorable properties, i.e., ∀B : B ⊃
B3 ⇒ MP(B) = MP(B3).

This latest remark shows a first limitation of the definition
of (parameterized) classical monitorability: considering finer
truth-domains, as it could be required in specific application
domains, will not increase the set of monitorable properties.
This is one of the motivations to introduce an alternative
definition of monitorability (in Sect. 5.3).

Monitorability with a truth-domain of cardinality 2 Restrain-
ing B3 to a truth-domain of cardinality 2 allows only either
positive or negative determinacy and hence reduces the set of
monitorable properties. Indeed, the purpose of the monitor is
then either to detect only bad behaviors or only good behav-
iors (but not both). In the sequel, we consider two subsets of

B3, namely B
⊥
2

def= {⊥, ?} and B
�
2

def= {?,�}.
However, there is no simple characterization of these prop-

erties in the Safety-Progress hierarchy. Intuitively one may

think that with B
⊥
2 = {⊥, ?}, the set of monitorable prop-

erties would be the set of safety properties. Actually, there
are numerous safety properties which can never be negatively
determined. For example, the r-property true = (�∗, �ω) =
(A f (�

∗), A(�∗)) can neither be negatively determined nor
falsified. Moreover, all safety properties which are valid for-
ever for execution sequences longer than a given k ∈ N are
not σ − B

⊥
2 -monitorable when |σ | > k. For these kinds of

properties, a monitor would produce only verdict sequences
containing “?” when evaluating an execution sequence. Sim-
ilarly, there exist many guarantee properties that cannot be
positively determined and therefore are not monitorable with
B

�
2 = {?,�}.
Regarding these sets of monitorable properties, it appears

that there is no simple characterization, in terms of classes
of the Safety-Progress classification. However, in Sect. 5.4,
we will provide a syntactic criterion on Streett automata in
order to decide whether the r-property recognized by a given
automaton is monitorable according to the mentioned truth-
domains.

5.3 Monitorable properties according to an alternative
definition of monitorability

The interest of previous definitions of monitorability is due
to two facts: the underlying truth-domain is 2- or 3-valued,
and the aim is the detection of verdict of infinitary properties.
Although it is possible to give a semantics to all reactive prop-
erties with either a 2- or 3-valued truth-domain, the question
is whether those values make sense for some properties in a
monitoring context.

As noticed in [3,26], it seems interesting to investigate
further the set of monitorable properties and to answer more
precisely questions like “what verdict to issue if the pro-
gram execution stops here”. This means a better distinction
between finite sequences which evaluate to “?” in a 2- or a
3-valued truth-domain.

Hence, the authors of [3,26] proposed to consider a
4-valued truth-domain B4 = {⊥,⊥c,�c,�}. The truth-
value �c (resp. ⊥c) denotes “currently true” (resp. “currently
false”) and it expresses “	-satisfaction (resp. 	-violation)
if the program execution stops here”. Boolean operators ∨
and ∧ are defined in [3]. Using B4 leads to an alternative
definition of monitoring. This new definition leverages the
evaluation of finite sequences in the Safety-Progress classi-
fication framework.

5.3.1 Property evaluation in a truth-domain

We first introduce how, given an r-property, we evaluate
an execution sequence in the truth-domains we considered
so far.
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Definition 16 (Property evaluation w.r.t. a truth-domain)
For each of the possible truth-domain B, we define the eval-
uation functions [[·]]B(·) : 2�

∗×�ω ×�∗ → B as follows:
For B

⊥
2 :

[[	]]
B

⊥
2
(σ ) = ⊥ if ∀μ ∈ �∞,¬	(σ · μ);

[[	]]
B

⊥
2
(σ ) = ? otherwise.

For B
�
2 :

[[	]]
B

�
2
(σ ) = � if ∀μ ∈ �∞,	(σ · μ);

[[	]]
B

�
2
(σ ) = ? otherwise.

For B3:

[[	]]B3(σ ) = ⊥ if ¬	(σ) ∧ ∀μ ∈ �∞,¬	(σ · μ);
[[	]]B3(σ ) = � if 	(σ) ∧ ∀μ ∈ �∞,	(σ · μ);
[[	]]B3(σ ) = ? otherwise.

For B4:

[[	]]B4(σ ) = [[	]]B3(σ ) if [[	]]B3(σ ) = ⊥∨[[	]]B3(σ ) =
�,
[[	]]B4(σ ) = �c if [[	]]B3(σ ) = ? ∧	(σ),
[[	]]B4(σ ) = ⊥c if [[	]]B3(σ ) = ? ∧ ¬	(σ).

Remark 6 The defined property evaluation w.r.t. B4 is similar
to the semantics of the LTL variant RV-LTL defined in [4].

5.3.2 An alternative definition of monitorability

Intuitively, the monitorability notion we propose relies on the
ability for a given monitor to distinguish between good and
bad finite execution sequences with respect to a property	.

Definition 17 (Alternative monitorability) An r-property
	 = (φ, ϕ) is said to be monitorable with the truth-domain
B, or B-monitorable if

∀σgood ∈ φ,∀σbad ∈ φ, [[	]]B(σgood) �= [[	]]B(σbad).

We note MP∗(B), the set of monitorable properties with truth-
domain B according to this definition.

Thus, an r-property is monitorable with a given truth-
domain B if and only if evaluations of good and bad finite
execution sequences lead to distinct values. Remark that this
definition seemingly does not rely on the infinitary part of the
r-property (although this infinitary part is taken into account
in the evaluation function).

5.3.3 Characterization of monitorable properties

Lemma 3 (MP∗(B3), safety, and guarantee properties) The
set of monitorable properties (according to Definition 17)
with B3 is included in the union of safety and guarantee
properties. Formally:

MP∗(B3) ⊆ Safety(�) ∪ Guarantee(�).

Proof The formal proof can be found in Appendix A.2.3. It
is done by reductio ad absurdum and supposing the existence
of an r-property	 = (φ, ϕ) defined on� which is neither a
safety nor a guarantee r-property. The proof shows the exis-
tence of two execution sequences, one good, the other one
bad, for 	 s.t. these sequences are evaluated to “?”. ��

Theorem 3 (Multi-valued characterization of alternative
monitorability) The sets of monitorable properties accord-
ing to the truth-domains considered so far are as follows:

(i) MP∗(B⊥
2 ) = Safety(�),

(ii) MP∗(B�
2 ) = Guarantee(�),

(iii) MP∗(B3) = Safety(�) ∪ Guarantee(�),
(iv) MP∗(B4) = Reactivity(�).

The proof can be found in Appendix A.2.4.

Example 7 (Alternative monitoring of an obligation prop-
erty) Let us go back again to the property considered in
Sect. 1, stating that “p should always hold or q should even-
tually hold”. We examine again the execution sequences:
σgood = {p, q} · {p, q} and σbad = {p, q} · {p, q}. Consid-
ering B3, we have [[	]]B3(σgood) = [[	]]B3(σbad) =?. Thus,
	 is not B3-monitorable. However,	 is B4-monitorable and
[[	]]B4(σgood) = �c and [[	]]B4(σbad) = ⊥c.

This example shows how the finite sequence semantics
leverages the interest of monitoring certain properties. Fur-
thermore, it shows that under our definition of monitoring,
ambiguous situations, such as those encountered with the
classical definition, are avoided.

Our definition of monitorability has the advantage of being
able to identify the properties which should not be monitored
with a truth-domain “not fine enough”. Indeed, the last prop-
erty shows that if we build a monitor for such a property with
the truth-domain B3, this monitor would produce an evalua-
tion “?” for correct and incorrect execution sequences w.r.t.
the property. This seems not desirable to us.

Furthermore, we have shown in Sect. 4.4 that, for a given
finite sequence σ and an r-property 	, [[	]]B4(σ ) is easy to
compute from the set of states of a Streett automaton recog-
nizing 	.
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5.4 Characterizations in the automata view

Although some sets of monitorable properties we considered
cannot be precisely expressed in terms of Safety-Progress
classes, it is still possible to characterize them with some
syntactic criteria on Streett automata. It relies on the char-
acterization of the states of Streett automata introduced in
Sect. 4.4.

Property 3 (Correspondence between Streett automata
states and B4) Given a Streett m-automaton recognizing
an r-property 	 and a sequence σ ∈ �∗ of length n s.t.
run(σ,A	) = q0 · · · qn , we have:

qn ∈ GoodA	 ⇔ [[	]]B4(σ ) = �,
qn ∈ GoodA	

c ⇔ [[	]]B4(σ ) = �c,

qn ∈ BadA	
c ⇔ [[	]]B4(σ ) = ⊥c,

qn ∈ BadA	 ⇔ [[	]]B4(σ ) = ⊥.
Proof The proof is given in Appendix A.2; it uses the accep-
tance criteria of Streett automata to establish the correspon-
dence. ��
Remark 7 (Correspondence with B3, B

⊥
2 , and B

�
2 ) From

Property 3 and Definition 16, one can easily deduce a corre-
spondence between the set of states and the evaluation in the
truth-domain of a lower cardinality:

– For B3:

– qn ∈ GoodA	 ⇔ [[	]]B3(σ ) = �,

– qn ∈ GoodA	
c ∪ BadA	

c ⇔ [[	]]B3(σ ) =?
– qn ∈ BadA	 ⇔ [[	]]B3(σ ) = ⊥.

– For B
�
2 :

– qn ∈ GoodA	 ⇔ [[	]]
B

�
2
(σ ) = �,

– qn ∈ GoodA	
c ∪BadA	

c ∪BadA	 ⇔ [[	]]
B

�
2
(σ ) = ?.

– For B
⊥
2 :

– qn ∈ BadA	 ⇔ [[	]]
B

⊥
2
(σ ) = ⊥,

– qn ∈ BadA	∪GoodA	
c ∪BadA	

c ⇔ [[	]]
B

⊥
2
(σ ) = ?.

Now we are able to give an exact characterization of mon-
itorable properties in the automata view.

Theorem 4 (Automata view of classical monitorability) The
r-property 	 recognized by the Streett m-automaton A	 =
(QA	, qA	

init ,→A	
, {(R1, P1), · · ·, (Rm, Pm)}) is

(i) MP(B⊥
2 )-monitorable iff

∀q ∈ Reach(qA	
init ),Reach(q) ∩ BadA	 �= ∅;

(ii) MP(B�
2 )-monitorable iff

∀q ∈ Reach(qA	
init ),Reach(q) ∩ GoodA	 �= ∅;

(iii) MP(B3)-monitorable iff
∀q ∈ Reach(qA	

init ),Reach(q)∩(BadA	∪GoodA	) �=
∅.

Proof This property is established by noticing, first, that it
is a consequence of Property 3 and, second, that we are con-
sidering deterministic and complete Streett automata. Thus,
the two following facts are equivalent:

– from every accessible state, a bad (resp. good, bad or
good) is reachable;

– every finite sequence has a continuation that determines
negatively (resp. positively, negatively or positively) the
underlying property. ��

Example 8 (Automata view of classical monitorability) We
illustrate the use of the previous theorem to state whether the
properties of Example 2 (Fig. 3), with their provided auto-
mata, are monitorable according to the classical definition:

– The property 	1 specified by A	1 is B
⊥
2 -monitorable,

and thus B3-monitorable; but not B
�
2 -monitorable.

– The property	2 specified by A	2 is B
�
2 -monitorable and

B
⊥
2 -monitorable, and thus B3-monitorable.

– The property 	3 specified by A	3 is B
⊥
2 -monitorable,

and thus B3-monitorable, but not B
�
2 -monitorable.

– The property 	4 specified by A	4 is B
⊥
2 -monitorable,

and thus B3-monitorable, but not B
�
2 -monitorable.

Theorem 5 (Automata view of alternative monitorability)
The r-property 	 recognized by the Streett m-automaton
A	 = (QA	, qA	

init ,→A	
, {(R1, P1), · · · , (Rm, Pm)}) is

(i) MP∗(B⊥
2 )-monitorable iff BadA	 = ⋃m

i=1 Ri ∩ Pi ;
(ii) MP∗(B�

2 )-monitorable iff GoodA	 = ⋂m
i=1 Ri ∪ Pi ;

(iii) MP∗(B3)-monitorable iff

�q ∈ Reach(qA	
init ) ∩ ⋂m

i=1 Ri ∪ Pi ,

�q ′ ∈ Reach(qA	
init ) ∩ ⋃m

i=1 Ri ∩ Pi ,

q ∈ GoodA	
c ∧ q ′ ∈ BadA	

c .

Proof The proof is conducted in three steps:

(i) The expressed condition generalizes the syntactic
restriction of Streett safety automata and is also a con-
dition when a given not minimal Streett m-automaton
is recognizing a safety property and can be minimized
so as to be represented as a Streett safety automaton.

(ii) The expressed condition generalizes the syntactic
restriction of Streett guarantee automata and is also a
condition when a given not minimal Streett m-autom-
aton is recognizing a guarantee property and can be
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Fig. 11 Monitorable r-properties in the Safety-Progress classification

minimized so as to be represented as a Streett safety
automaton.

(iii) The third condition can be established using the two
following facts:

– An r-property is not monitorable according to this
theorem if and only if for two sequences, a good
and a bad sequences evaluate to “?”. Other evalua-
tions are not simultaneously possible for a bad and
good sequences.

– We are considering deterministic and complete
Streett automata. ��

5.5 Summary

We depict in Fig. 11 the main results obtained in this section,
which can be summarized as follows:

– The classes of monitorable properties, according to the
classical definition, are:

– MP(B�
2 ), which cannot be compared directly with any

other class;
– MP(B⊥

2 ), which cannot be compared directly with any
other class;

– and MP(B3) = MPc which contains strictly the class
of obligation properties.

– The classes of monitorable properties, according to the
new definition we introduced are:

– MP∗(B⊥
2 ) is the set of safety r-properties;

– MP∗(B�
2 ) is the set of guarantee r-properties;

– MP∗(B3) is strictly contained in the class of obliga-
tion r-properties and is the union of the sets of safety
and guarantee properties;

– and MP∗(B4) is the set of reactivity r-properties.

Remark that using the truth-domain B4 does not add any
expressiveness to the classical definition of monitorability
(i.e., MP(B4) = MP(B3)). Indeed, this definition is bound

to the notion of positive and negative determinacy. However,
using this domain would permit to better distinguish execu-
tion sequences and to avoid ambiguity exposed in Example 4.
Note also that some obligation properties (between MP(B3)

and MP∗(B3)) should not be monitored unless with a truth-
domain equipped with an interpretation of finite sequences
allowing to distinguish good and bad finite sequences (e.g.,
with truth-values ⊥c and �c).

Remark 8 One can notice that the monitorability results
expressed in the automata view (i.e., Theorems 4 and 5)
hold only for regular r-properties. Whereas the results that
were not expressed in the automata view (i.e., Lemma 2,
Theorems 2 and 3) hold for all r-properties (e.g., regu-
lar, context-free, context-sensitive, recursively enumerable),
independently from any computability constraint on their
recognizing mechanisms.

6 Enforceability w.r.t. the SP classification

Now we address the question of the expressiveness of runtime
enforcement, i.e., we characterize the class of enforceable
properties. In Sect. 3, we have seen that the previous pro-
posed classes were delineated according to the mechanism
used to enforce the properties. Such mechanisms should obey
the soundness and transparency constraints. We choose here
to take an alternative approach. Indeed, we believe that the set
of enforceable properties can be characterized independently
from any enforcement mechanism complying to these con-
straints, provided that this memory is unbounded but finite.
This will give us an upper-bound of the set of enforceable
properties with any enforcement mechanism.

6.1 Enforcement criteria

The enforcement constraints exposed in Sect. 3, namely
soundness and transparency, express a relation between the
input sequence (submitted to an enforcement monitor) and
an output sequence (produced by this monitor). We interpret
these constraints in the following way: if the input sequence
already verifies the property, then it should remain unchanged
(up to a given equivalence relation); otherwise, its longest
prefix satisfying the property should be issued.10

A consequence is that an r-property (φ, ϕ) will be consid-
ered as enforceable only if each incorrect infinite sequence
has a longest correct prefix. This means that any infinite incor-
rect sequence should have only a finite number of correct

10 An alternative interpretation could consist in correcting an erroneous
sequence by adding extra events.
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prefixes.11 We give two enforcement criteria in the language
and automata views.

Definition 18 (Enforcement criterion in the language view)
An r-property (φ, ϕ) is said to be enforceable if ∀σ ∈ �ω,
¬ϕ(σ) ⇒
∃σ ′ ∈ �∗, σ ′ ≺ σ ∧ ∀σ ′′ ∈ �∗, σ ′ ≺ σ ′′ ≺ σ ⇒ ¬φ(σ ′′)

(4)

Alternatively, it is possible to express an enforcement
criterion for an r-property 	 on its recognizing Streett
m-automaton A	. This criterion uses the set S(A	) of (max-
imal and non-maximal) Strongly Connected Components of
A	. For an m-automaton A	 and s an SCC of A	, we define
Is

def= {i ∈ [1,m] | s ⊆ Ri ∧ s ∩ Pi �= ∅}. Intuitively, Is is the
set of accepting pairs of A	 that leads the infinite sequences,
visiting infinitely often the SCC s, to be rejected. The crite-
rion is formally expressed as follows:

Definition 19 (Enforcement criterion in the automata view)
The r-property	 recognized by an m-automaton A	 is said
to be enforceable if

∀s ∈ S(A	), Is �= ∅ ⇒ ∃i ∈ Is, s ⊆ Pi (5)

Intuitively, this later enforcement criterion states that for
every non-accepting SCC s (s is non-accepting because
it contains at least one pair in [1,m] for which the infi-
nite acceptance criterion is not satisfied), then, among these
indexes, there is at least one index i s.t. all states in the SCC
s are in Pi .

Enforcement criteria of Definitions 18 and 19 are equiva-
lent, as stated below.

Property 4 (Equivalence between enforcement criteria)
Considering an r-property 	 = (φ, ϕ), recognized by a
Streett m-automaton (QA	, qA	

init , �,→A	
, {(R1, P1), . . . ,

(Rm, Pm)}), we have:

(4) ⇔ (5).

Proof We just give a sketch of the proof, the formal proof can
be found in Appendix A.3.1. The proof shows the implica-
tions in both ways and uses the definitions of the acceptance
criteria of Streett automata for finite and infinite sequences.
Then one has to remark that:

– (4) expresses a condition on the set of infinite sequences
that do not satisfy the r-property;

– (5) expresses a condition on the set of SCC s that reject
the sequences visiting s infinitely often.

11 Note that those criteria differ from the existence of bad prefixes. Bad
prefixes are sequences which cannot be extended to correct (finite or
infinite) ones, i.e., sequences that determine negatively the underlying
property.

As we are dealing with complete and deterministic automata,
these conditions are equivalent. ��

The set of enforceable r-properties, equivalently defined
by Definition 4 or Definition 5, is denoted EP. We will now
characterize EP w.r.t. the SP classification. We will prove
that EP is exactly the class of response properties. Note that
the enforcement criterion in the automata view is still useful
as it provides a syntactic procedure to determine whether a
property is enforceable or not.

6.2 Enforceable properties

We start first by proving that response properties are enforce-
able. Then we give the intuition on the non-enforceability of
persistence properties by providing an illustrative example.
Then we prove that the set of response properties is exactly
the set EP.

Theorem 6 (Response properties are enforceable)

Response (�) ⊆ EP.

Proof Indeed, consider a response r-property 	 = (φ, ϕ)

and an execution sequence σ ∈ �ω. 	 can be expressed
as (R f (ψ), R(ψ)) for a given finitary language ψ . Let us
suppose that ¬ϕ(σ). It means that σ �∈ R(ψ), i.e., σ has
finitely many prefixes belonging to ψ . Consider the set S =
{σ ′ ∈ �∗ | ∀σ ′′ ∈ �∗, σ ′ ≺ σ ′′ ≺ σ ∧ ¬ψ(σ ′′)} of finite
sequences from which all finite continuations do not satisfy
ψ . As ¬R(ψ)(σ ), this set is not empty. Let us note σ0 the
smallest element of S regarding ≺. We have ∀σ ′ ∈ �∗, σ0 ≺
σ ′ ≺ σ ⇒ ¬ψ(σ ′). Since ∀ψ ′ ⊆ �∗, R f (ψ

′) ⊆ ψ ′ (cf. the
definition of operators building finitary properties), it implies
that ∀σ ′ ∈ �∗, σ0 ≺ σ ′ ≺ σ ⇒ ¬φ(σ ′). Thus,	 is enforce-
able according to Definition 18. ��

A straightforward consequence is that safety, guarantee
and obligation r-properties are enforceable. We prove that,
in fact, pure persistence properties are not enforceable. Let
us explain the intuition through an example.

For� ⊇ {a, b}, an example of pure persistence r-property
is 	 = (�∗ · a+, �∗ · aω) stating that “it will be eventually
true that a always occurs”. One can notice that this property
is neither a safety, guarantee nor obligation property. 	 is
recognized by the Streett automaton A	 depicted in Fig. 12
(with P = {1}). One can understand the enforcement limita-
tion intuitively with the following argument: if this property
was enforceable it would imply that an enforcement monitor
can decide from a certain point that the underlying program
will always produce the event a. However, such a decision can
never be taken by a monitor without memorizing the entire
execution sequence beforehand. This is unrealistic for an infi-
nite sequence. More formally, as stated in Definition 18, an
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Fig. 12 Non-enforceable persistence r-property

r-property (φ, ϕ) is enforceable if for all infinite execution
sequences σ when ¬ϕ(σ), the longest prefix of σ satisfy-
ing φ always exists. For the above automaton, the execu-
tion sequence σ ′

bad = (a · b)ω does not satisfy the property
whereas an infinite number of its prefixes do (prefixes ending
with a).

Applying enforcement criteria on persistence properties,
it turns out that the enforceable persistence properties are in
fact response properties.

Theorem 7 (Enforceable persistence properties are res-
ponse properties)

Persistence(�) ∩ EP ⊆ Response(�).

Proof A persistence r-property	 becomes non-enforceable
as soon as there exists a SCC of R-states containing a P-state
and a P-state on its recognizing automaton A	 (see Defini-
tion 19). Indeed, on a Streett automaton, it allows infinite
invalid execution sequences with an infinite number of valid
prefixes. When removing this possibility on a Streett autom-
aton, the constrained automaton can be easily translated to a
response automaton. Indeed, the states visited infinitely often
are then either all in P or P , i.e., ∀σ ∈ �ω, vinf (σ,A	) ∩
P �= ∅ ⇔ vinf (σ,A	) ⊆ P . On such automaton, there is no
difference between R-states and P-states. Consequently, by
re-tagging P-states to R-states, this automaton recognizes
the same property. The re-tagged automaton is a response
automaton. ��
Corollary 1 Pure persistence properties are not enforce-
able:

(Persistence(�)\Response(�)) ∩ EP = ∅.
Proof This is a direct consequence of Theorem 7. ��
Theorem 8 (Enforceable m-reactivity properties are res-
ponse properties)

Reactivity(�) ∩ EP ⊆ Response(�).

Proof The formal proof can be found in Appendix A.3.2.
The proof shows that an m-reactivity automaton which is
constrained by the enforcement criterion (Definition 19) can
be translated to an m-response automaton accepting exactly
the same sequences. Thus, the only enforceable reactivity
properties are the response ones. ��

Corollary 2 Pure reactivity properties are not enforceable:

Reactivity(�) �⊆ EP
Reactivity(�)\(Persistence(�) ∪ Response(�)) ∩ EP=∅.
Proof This is a direct consequence of Theorem 8. ��
Corollary 3 Enforceable properties are exactly response
properties:

EP = Response(�).

Proof It remains to prove that the set of enforceable proper-
ties is included in the set of response properties. Suppose that
there exists an enforceable property which is not a response
one. Then, according to the definition of the Safety-Progress
hierarchy, this property would be either a pure persistence or
a pure reactivity property. Consequently, this property would
not be enforceable. ��
Example 9 (Enforceable and not enforceable properties) We
illustrate the enforcement criterion on the properties intro-
duced in Example 1 and represented by their Streett automata
described in Example 2 and depicted in Fig. 3.

– The properties 	1,	2,	3 are enforceable.
– The property 	4 is not enforceable; e.g., the infinite

sequence r · g · (r · d · r · g)ω is not accepted while this
sequence has an infinite number of correct prefixes: e.g.,
all sequences belonging to r · g · (r · d · r · g)∗.

Being enforceable or not can be determined rather easily
either by observing the automata and using the acceptance
criteria for finite and infinite sequences or by using the crite-
rion in the automata view.

7 Monitor synthesis

Now we show how it is possible to obtain easily a mon-
itor either for verifying or enforcing a property thanks to
the framework introduced in Sect. 4. Generally speaking, a
monitor is a device processing an input sequence of events
or states in an incremental fashion. It is purposed to yield a
property-specific decision according to its goal. In (classic)
runtime verification, such a decision is a truth-value taken
from a truth-domain. This truth-value states an appraisal of
property satisfaction or violation by the input sequence. For
runtime enforcement, the monitor produces a sequence of
enforcement operations. The monitor uses an internal mem-
ory and applies enforcement operations to the input event and
its current memory so as to modify the input sequence and
produce an output sequence. The relation between the input
and output sequences should follow enforcement monitoring
constraints: soundness and transparency (Sect. 3.2).
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Fig. 13 Automaton transformations

In the following, we consider a Streett m-automaton
A	 = (QA	, qA	

init ,→A	
, {(R1, P1), . . . , (Rm, Pm)}) and

	 the r-property recognized by A	. Moreover, we evalu-
ate properties only in B4, and consequently, we abbreviate
[[	]]B4(·) by [[	]](·).

The general monitor synthesis procedure is depicted in
Fig. 13. From a “pattern” X corresponding to one of the
basic classes of the hierarchy and a DFA Aψ recognizing
a finitary property ψ ⊆ �∗, DFA2S_X yields a Streett
automaton recognizing the r-property (X f (ψ), X (ψ)). Then
using Streett2VM (resp. Streett2EM) one is able to obtain a
verification (resp. enforcement) monitor for the r-property
(X f (ψ), X (ψ)).

7.1 Monitor: a general definition

A monitor is a procedure consuming events fed by an under-
lying program and producing an appraisal in the current state
depending on the sequence read so far. Considered mon-
itors are deterministic finite-state machines producing an
output in a relevant domain. This domain will be refined
for special-purpose monitors (verification and enforcement).
For verification monitors, this output function gives a truth-
value (a verdict) in B4 regarding the evaluation of the current
sequence relatively to the desired property. For enforcement
monitors (EMs), this output function gives an enforcement
operation inducing a modification on the input sequence so
as to enforce the desired property.

Definition 20 (Monitor) A monitor A is a 5-tuple
(QA, qA

init,−→A, XA, �A) defined relatively to a set of
events �. The finite set QA denotes the control states
and qA

init ∈ QA is the initial state. The complete function
−→A: QA ×� → QA is the transition function. In the fol-
lowing, we abbreviate −→A (q, a) = q ′ by q

a−→A q ′. The
set of values XA depends on the purpose of the monitor (ver-
ification or enforcement). The function �A : QA → XA is
an output function, producing values in XA from states.

7.2 Synthesizing monitors for runtime verification

In the following,12 we consider monitorable r-properties 	
and (φ, ϕ) in MP∗(B4).

Definition 21 (Verification monitor) A verification monitor
(VM) A? is a monitor with XA = B4.

Such monitors are independent from any specification for-
malism and can be easily adapted to the specification for-
malism from which they are generated. We define the notion
of verification sequence produced by a monitor and what it
means to verify a property for a monitor. It amounts to define
the verification performed by a VM A? while reading an
input σ ∈ �∗ (produced by P�) and producing a sequence
b ∈ B4

+.

Definition 22 (Sequence verification) The verification func-
tion [[A?]](·) : �∗ → B4

+, defining the verification
performed by A?, produces a verification sequence while
reading σ . This verification sequence is defined as follows:

∀σ ∈ �∗, [[A?]](σ ) = �A?(qA?
init ) · · ·�A?(qn) (6)

with qA?
init

σ0−→A? q1
σ1−→A? · · · qn−1

σn−1−→A? qn and |σ | = n.

Definition 23 (Monitor soundness) A monitor A? is sound
w.r.t.	 = (φ, ϕ) ∈ MP∗(B4)onP� , noted Ver(A?,	,P�),
if

∀σ ∈ Exec(P�) ∩�∗, last([[A?]](σ )) = [[	]]B4(σ ).

where [[·]]B4 is defined in Definition 16.

This definition states that the verification sequence produced
by A? matches the evaluation function of a sequences w.r.t.
an r-property.

Using the set P
A	 of a Streett automaton A	, we show

how it is possible to obtain a verification monitor for the
r-property 	.

Definition 24 (Streett2VM transformation) Given a Streett
m-automaton A	 = (QA	, qA	

init , �,−→A	
,

{(R1, P1), . . . , (Rm, Pm)}) recognizing 	 ∈ MP∗(B4), we
define the transformation Streett2VM(A	) = (QA	, qA	

init ,

→A	
,B4, �) s.t.� : QA? → B4 produces truth-values from

states depending on the set P
A	 : ∀q ∈ QA	,

q ∈ GoodA	 ⇒ �(q)=�, q ∈ GoodA	
c ⇒ �(q)=�c,

q ∈ BadA	
c ⇒ �(q) = ⊥c, q ∈ BadA	 ⇒ �(q) =⊥.

An r-property 	 is verifiable on P� by a VM A?	

obtained by the application of Streett2VM on the automa-
ton recognizing 	.

12 The synthesis of verification monitors is presented for r-properties
in MP∗(B4) and can be adapted in a straightforward manner for other
sets of monitorable properties using the results in Sect. 5.
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Example 10 (Verification monitors) In Fig. 14 are repre-
sented VMs for the properties introduced in Example 1, spec-
ified by Streett automata in Fig. 3 and synthesized with the
Streett2VM transformation.

Theorem 9 (Correctness of Streett2VM) Given A	 recog-
nizing 	, we have:

	 ∈ MP∗(B4) ∧ A?	 = Streett2VM(A	)

⇒ Ver(A?	,	,P�).
Proof The proof of this theorem relies on the correctness
of the computation performed while obtaining P

A	 for A	

(Property 3). ��

7.3 Synthesizing monitors for runtime enforcement

In the remainder, we consider enforceable r-properties
(φ, ϕ) and 	 ∈ EP, and a Streett m-automaton A	 =
(QA	, qA	

init , �,−→A	
, {(R1, P1), . . . , (Rm, Pm)}) recog-

nizing 	. An EM is producing enforcement operations
depending on its current state.

Definition 25 (Enforcement monitor) An EM A! is a
5-tuple (QA! , qA!

init ,−→A! , Ops, �). Enforcement opera-
tions of Ops performed by the EM are aimed to operate
a modification of the internal memory and potentially pro-
duce an output, i.e., each enforcement operation is a function:
� × �∗ → �∗ × �∗. Then � : QA↓ → Ops is the output
function, producing enforcement operations from states.

The considered enforcement operations allow enforce-
ment monitors either to halt the target program (when the
current input sequence irreparably violates the property), or
to store the current event in a memory device (when a deci-
sion has to be postponed), or to dump the content of the
memory device (when the target program went back to a
correct behavior), or to switch off the monitor when all pos-
sible continuations of the current input sequence are correct
w.r.t. the property under scrutiny.13

Definition 26 (Enforcement operations) We define a set of
enforcement operations Ops = {halt, store, dump, off } as
follows: ∀e ∈ � ∪ {ε�},∀m ∈ �∗,

halt(e,m) = (ε�,m), store(e,m) = (ε�,m · e),
dump(e,m) = (m · e, ε�), off (e,m) = (m · e, ε�).

where e designates the input event of the monitor and m the
memory device content.

13 Although dump and off have the same definition, distinguishing them
is useful in practice. Indeed, the off operation is intended to be produced
when all continuations of the current execution sequence are correct
w.r.t. the property. It allows to determine when the EM is not needed
anymore. Consequently, it helps reducing the performance impact on
the underlying program.

Note that the off and dump operations have the same def-
initions. From a theoretical perspective, the off is indeed not
necessary. However, it has a practical interest. In order to
limit the monitor’s impact on the original program (perfor-
mance wise), it is of interest to know when the monitor is not
needed anymore.

We define the transformation performed by an EM A!
while reading an input sequence σ ∈ �∗ and producing an
output sequence o ∈ �∗.

Definition 27 (Sequence transformation) The sequence
transformation function [[A!]](·) : �∗ → �∗ relies on the
function [[A!]](·, ·, ·) : �∗ × QA! × �∗ → �∗ defining the
transformation performed on the current state and the inter-
nal memory content: [[A!]](σ, q,m) is the output sequence
produced while reading σ from state q and (initial) memory
content m.

∀q ∈ QA! ,∀m ∈ �∗, [[A!]](ε�, q,m) = ε� (7)

[[A!]](e · σ, q,m) = o · [[A!]](σ, q ′,m′) (8)

with q
e−→A! q ′ ∧ �(q ′) = α ∈ Ops ∧ α(e,m) = (o,m′).

The empty sequence ε� is transformed into itself by A!,
this is the case when the underlying program does not produce
any event (7). An execution sequence e ·σ is (incrementally)
transformed according to the transition fired by the input e:
the current memory content and the input e are applied to
the enforcement operation of the arriving-state transition; it
induces a new memory content and an output o (8).

We define now the notion of property-enforcement by an
EM. The notion of enforcement relates the input sequence
produced by the program and given to the EM and the output
sequence allowed by the EM (correct w.r.t. the property under
consideration).14

Definition 28 (Property-enforcement) For 	 = (φ, ϕ) ∈
EP, we say that A! enforces	onP� , noted Enf (A!,	,P�),
iff for any σ ∈ Exec(P�)∩�∗, there exists o ∈ �∞, s.t. the
following constraints hold:

[[A!]](σ, qA!
init , ε) = o (9)

	(σ) ⇒ σ = o (10)

¬	(σ) ∧ Pref ≺(φ, σ ) = ∅ ⇒ o = ε (11)

¬	(σ) ∧ Pref ≺(φ, σ ) �= ∅ ⇒ o = Max(Pref ≺(φ, σ ))
(12)

(9)–(12) ensure soundness and transparency of A!: (9) stipu-
lates that the sequence σ is transformed by A! into a sequence
o; (10) ensures that if σ already satisfy the property then it

14 In the general case, the comparison between input and output
sequences is performed up to some equivalence relation ≈⊆ �∞×�∞.
Note that the considered equivalence relation should preserve the
r-property under consideration.
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Fig. 14 Examples of verification monitors

is not transformed. (11) ensures that, when no prefix of σ
satisfies the property, the EM outputs nothing (the empty
sequence ε�). (12) ensures that, if some prefix of σ satis-
fies the property, o is the longest prefix of σ satisfying the
property.

Soundness comes from the fact that the produced sequence
o, when different from ε� , always satisfies the property φ.
Transparency is ensured by the fact that correct execution
sequences are not changed, and incorrect ones are restricted
to their longest correct prefix.

One may remark that it would have been possible to set
Max(Pref ≺(φ, σ )) to ε� when Pref ≺(φ, σ ) = ∅ and merge
the two last constraints. However, we choose to distinguish
explicitly the case in which Pref ≺(φ, σ ) = ∅ as it highlights
some differences when an EM produces ε� . Sometimes it cor-
responds to the only correct prefix of the property. But it can
also be an incorrect sequence w.r.t. the property. In practice,
when implementing an EM for a system, this sequence can
be “tagged” as incorrect.15

Finally, since we have to deal with potentially infinite input
sequences, the output sequence should be produced in an
incremental way16: for each current prefix σ of the input
sequence read by the EM, the current output o produced
should be sound and transparent with respect to 	 and σ .
This means that deciding whether a finite sequence σ veri-
fies	 or not should be computable in a finite amount of time
(and reading only a finite continuation of σ ).

We synthesize EMs from Streett automata in the frame-
work of r-properties. This transformation was previously
introduced in the form of several transformations [15,18].
Here, we generalize those transformations into a unique one.

Definition 29 (Streett2EM transformation) The transforma-
tion Streett2EM(A	) = (QA	, qA	

init ,−→A	
, Ops, �) is

defined s.t. �: QA!	 → Ops produces enforcement opera-
tions: ∀q ∈ A	,

15 This latter case is avoided in [28] by assuming that properties under
consideration always contain ε� .
16 From a more general perspective, we can see this limitation from
a runtime verification point of view. Verifying infinitary properties at
runtime on a produced execution sequence, in essence, should be done
by checking finite prefixes of the current sequence.

q ∈ GoodA	 ⇒ �(q) = off ; q ∈ GoodA	
c ⇒ �(q) = dump;

q ∈ BadA	
c ⇒ �(q) = store ; q ∈ BadA	 ⇒ �(q) = halt.

Example 11 (Enforcement monitors) Figure 15 represents
EMs for the properties introduced in Example 1, specified
by Streett automata in Fig. 3, and synthesized with the Stre-
ett2EM transformation.

An r-property 	 ∈ EP is enforceable on P� by an EM
obtained by the application of Streett2EM on the automaton
recognizing 	.

Theorem 10 (Correctness of Streett2EM) Given A	 recog-
nizing 	 ∈ EP, we have:

A!	 = Streett2EM(A	) ⇒ Enf (A!	,	,P�).
Proof Correctness of the general transformation relies on the
correctness (proved in [15]) of the transformations specific
to each class of properties. Indeed, this general transforma-
tion reduces to the specific transformation when applied to a
specific class of properties. ��

Such a unified transformation is useful in practice (from
an implementation point of view) as it can be applied to any
Streett automaton (regardless of the class of the recognized
property).

7.4 Discussion

One of the important challenges in runtime verification is
the practical interest of the specification formalism. An ideal
specification language should be easy to use by end-users.
Moreover, a desirable feature, advocated by this paper, is
the need for addressing both infinite and finite execution
sequences.

One could reproach the two following facts to the pro-
posed synthesis approach:

– First, several mechanisms are needed: DFAs, Streett auto-
mata, and finally verification and enforcement monitors.

– Second, one may question the usefulness of the DFA to
Streett transformations. Arguably, it would be possible
to generate monitors directly for properties specified by
Streett automata (written by hand or generated from tem-
poral logic formula).
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Fig. 15 Examples of enforcement monitors

In our point of view, using the DFA2Streett transforma-
tions in the synthesis process has the three following advan-
tages:

– The DFA2Streett transformations complete the picture
of the Safety-Progress classification, by providing con-
structive tools in the automata view that are the coun-
terparts of the language-theoretic operators (A, E, R, P ,
A f , E f , R f , Pf ) in the language view.

– The direct translation from a supposed ideal specification
formalism to a Streett automaton would be difficult. This
formalism would have to address both finite and infinite
behaviors, requiring a design expertise. It is likely that
such a translation would be error-prone or lead to ambig-
uous specifications.

– One of the underlying arguments for using our approach
is that the end-user is only required to specify a finite
behavior and indicate the wished pattern (used with the
finitary property). Thus, the infinite behavior is compre-
hended by the user by only seeing patterns like “always”,
“at least once”, “regularly”, or “persistently”. The user
is thus kept from specifying the infinite behavior with
Streett automata.

A complex translation is avoided, replaced by two simpler
transformations, and the required work from the user seems
to be simpler.

8 Conclusion and future work

Conclusion We have extended the Safety-Progress classifica-
tion of properties in a runtime validation context. This hierar-
chical organization of properties turned out to be a convenient
framework for specifying properties purposed to be used at
runtime. We addressed in a unified way the problem of mon-
itorability and enforceability of properties at runtime using
this general framework. We provided the first exact character-
ization of monitorable properties according to the classical
definition of monitorability proposed by Pnueli and Zaks.
We generalized the classical definition of monitorability by
parameterizing it by a truth-domain. We introduced a new
definition of monitorability based on distinguishability of

good and bad execution sequences. This definition is based
on positive and negative determinacy as well. However, we
believe that it better corresponds to practical needs and tool
implementations and fits better in the hierarchy of proper-
ties. Moreover, this alternative definition is able to better
distinguish equivocal situations that a monitor would have
to face off without a finite sequence interpretation. Further-
more, we have delineated the set of enforceable properties
w.r.t. the SP classification. This set of properties was charac-
terized independently from any enforcement mechanism. It
is thus an upper-bound for the set of properties that could be
addressed by any enforcement mechanism. Furthermore, we
have given general synthesis procedures to generate runtime
and enforcement monitors in this framework.

Future work The proposed approach raises new research
perspectives and open questions. First, it seems interesting to
consider this approach in the testing perspective. A monitor
(passively) observes the execution of the program. Notably,
it has no control on the produced events and their sequenc-
ing. In a testing context, the notion of controllable event is
introduced. An interesting issue would be to characterize the
set of testable properties in the SP framework, as it was initi-
ated in [14]. Note that the definitions of positive and negative
determinacy is rather appropriate in this context. Indeed, in a
test campaign, one is concerned with the set of all execution
sequences that can be produced by the underlying program.
Notions of positive and negative determinacy seem to be a
first approximation of the set of possible future execution
sequences of a program.

An additional issue to take into consideration is to deal
with a reduced observability on the system under scrutiny. In
practical situations, the desired property may refer to events
out of the observation scope of a monitor. Similarly, it seems
interesting to see how it is possible to characterize the set of
properties for which other runtime-verification derived tech-
niques can be applied (e.g., runtime reflection [26]).

Another research perspective is to relax the soundness
and transparency constraints or consider different definitions
of runtime enforcement. Specific enforcement mechanisms
shall be designed. For instance, augmented enforcers may
enjoy more handling abilities on the sequences submitted in
input. It seems interesting to see the impact on the set of
enforceable properties.
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Furthermore, an interesting question would be to
investigate how the automata-view of the SP classification
transposes to other sets of properties such as context-free
languages. The classification used in this paper focuses on
regular properties. In the quest of expressiveness for specifi-
cation languages, relying on a classification appears as a good
way to delineate monitorable and enforceable properties.

Finally, the question of expressiveness is somehow also
related to parametric properties, i.e., the properties expressed
using events with formal parameters whose concrete values
are obtained at runtime. Lots of runtime verification frame-
works now handle parametric properties. Among them, two
kinds of approaches can be distinguished in state-of-the-art
frameworks:

– RuleR [2] is able to handle expressive parametric specifi-
cations thanks to a general approach based on rule rewrit-
ing,

– MOP [8] has been recently leveraged with the so-called
slicing approach to monitor some form of parametric
specification in a more efficient way.

It is rather clear that being able to express parametric
properties is an asset in runtime verification and is surely
desirable from a practical point of view. Now, as runtime
verification is always concerned with efficiency, one ques-
tion is to find the right balance between the gained expres-
siveness and the induced overhead, i.e., a runtime verification
framework should be chosen so as to meet the just needed
level of expressiveness to specify the requirements. More-
over, another related question is to investigate whether it
is more efficient to enhance expressiveness by considering
parametric properties or using a more expressive specifica-
tion formalism.
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Appendix A: Proofs

A.1 Proofs for Sect. 4

A.1.1 Proof of Property 2: Closure of r-properties

We prove the two facts in order:

1. We have either φ(σ) or ϕ(σ), i.e., all prefixes σ ′ of
σ belong to ψ . Necessarily, all prefixes σ ′′ of σ ′ also
belong toψ , i.e.,ψ(σ ′′). By definition, that means σ ′ ∈
A f (ψ), i.e., φ(σ ′) and 	(σ ′).

2. 	(σ) implies that σ has at least one prefix σ0 
 σ

belonging to ψ : σ ∈ E f (ψ). Then any continuation of

σ built using any finite or infinite sequence σ ′ has at
least the same prefix belonging to ψ . If σ ′ ∈ �∗, we
have σ0 
 σ 
 σ · σ ′ and σ · σ ′ ∈ E f (ψ). If σ ′ ∈ �ω,
we have σ0 
 σ ≺ σ · σ ′ and σ · σ ′ ∈ E(ψ). ��

A.1.2 Proof of Theorem 1: Soundness
of the transformations of DFAs to Streett automata

Considering a DFA Aψ = (QAψ , q
Aψ

init ,→Aψ
, F) (we omit

the superscript of F for the sake of clarity), s.t. L(Aψ) = ψ ,
we have to prove that:

A	 = DFA2S_Saf (Aψ) ⇒ L(A	) = (A f (ψ), A(ψ))

A	 = DFA2S_Guar(Aψ) ⇒ L(A	) = (E f (ψ), E(ψ))

A	 = DFA2S_Resp(Aψ) ⇒ L(A	) = (R f (ψ), R(ψ))

A	 = DFA2S_Per(Aψ) ⇒ L(A	) = (Pf (ψ), P(ψ))

In the following proofs, for a finite sequence σ of length
n, we may use the notion of run of σ on Aψ or on a Streett
automaton A	 obtained by the transformations. We note:

– run(σ,Aψ) = q0 · · · qn ,
– run(σ,A	) = q ′

0 · · · q ′
n .

For Safety properties. We show that the r-property
accepted by A	 (obtained using DFA2S_Saf ) is exactly
(A f (ψ), A(ψ)).

Let σ ∈ �∞ s.t. (A f (ψ), A(ψ))(σ ), let us prove that the
sequence σ is accepted by A	. We have two cases: σ is a
finite sequence or not.

– Let us consider σ ∈ �∗ s.t. |σ | = n, then by definition of
r-properties:σ ∈ A f (ψ), i.e., every prefix ofσ belongs to
ψ . Let us examine run(σ,Aψ) = q0 · · · qn . As L(Aψ) =
ψ , we have ∀i ∈ [0, n], qi ∈ F . By definition of the
transformation DFA2S_Saf, we have ∀i ∈ [0, n], qi ∈ P .
According to (TSafe1), we have run(σ,A	) = q0 · · · qn .
Using the acceptance criterion for finite sequences, σ is
accepted by A	.

– Let σ ∈ �ω, then by definition of r-properties: σ ∈
A(ψ), i.e., every finite prefix of σ belongs to ψ . Let us
suppose that σ is not accepted by A	. According to the
acceptance criterion for infinite sequences (Definition 6),
we would have vinf (σ,A	) �⊆ P (as A	 is a safety
automaton, R = ∅). By definition of the transformation
DFA2S_Saf and the shape of the obtained automaton A	,
we have vinf (σ,A	) = {sink}. Using (TSafe2), we know
that there exists a smallest prefix σ ′ of σ , s.t. the run
of σ ′ on A	 reaches the state sink. By the definition of
DFA2S_Saf , we can deduce that the run of σ ′ on Aψ ends
in a state in F . As L(Aψ) = ψ , σ ′ /∈ ψ . We obtain a con-
tradiction with σ ∈ A(ψ), and σ is actually accepted by
A	.
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Let σ be a sequence accepted by A	, let us prove that σ ∈
(A f (ψ), A(ψ)). We distinguish again two cases: σ is a finite
sequence or not.

– Let σ ∈ �∗ s.t. |σ | = n, then by definition of the accep-
tance criterion for finite sequences of Streett automata
(Definition 7), we have q ′

n ∈ P . As A	 is a safety
automaton, we can deduce that ∀i ∈ [0, n], q ′

i ∈ P .
Following the definition of DFA2S_Saf , we find that all
the states visited during the run of σ on Aψ are in F :
∀i ∈ [0, n], qi ∈ F (and qi = q ′

i ). By definition of the
acceptance criterion for DFAs, we can deduce that every
prefix of σ is accepted by Aψ . As L(Aψ) = ψ , we can
deduce that all prefixes ofσ belong toψ , i.e.,σ ∈ A f (ψ).

– If σ ∈ �ω, then by definition of the acceptance crite-
rion for infinite sequences (Definition 6), we know that
vinf (σ,A	) ⊆ P . Let us suppose that σ /∈ A(ψ), by def-
inition of the operator A (see Definition 2), there exists
a strict prefix σ ′ of σ not belonging to ψ . Let n′ = |σ ′|.
As L(Aψ) = ψ , the run of σ ′ on Aψ , run(σ ′,Aψ) =
q0 · · · qn′ , satisfies q0 = q

Aψ

init ∧ qn′ /∈ F . According to
the definition of the transformation DFA2S_Saf and the
rule (TSafe2), we have q ′

n′ = sink /∈ P . Furthermore, using
(TSafe3), every continuation of σ ′ has its run ending in
sink. We deduce that vinf (σ,A	) = {sink} �⊆ P . Which
is a contradiction with the initial hypothesis, and gives us
σ ∈ A(ψ). ��

For Guarantee properties We show that the sets of sequ-
ences accepted by A	 obtained by DFA2S_Guar are exactly
(E f (ψ), E(ψ)).

Let σ ∈ �∞ s.t. (E f (ψ), E(ψ))(σ ), let us prove that the
sequence σ is accepted by A	. We have two subcases: σ is
a finite sequence or not.

– Let us consider σ ∈ �∗ s.t. |σ | = n, then by definition
of r-properties: σ ∈ E f (ψ), i.e., σ has at least one prefix
which belongs to ψ . Let us consider Ssat = {σ ′ ∈ �∗ |
σ ′ 
 σ∧σ ′ ∈ ψ}, the set of prefixes of σ which belong to
ψ . As σ ∈ E f (ψ), we can deduce that Ssat �= ∅, Ssat has
thus a smallest elementσmin . Let n′ = |σmin|. We have, by
definition of σmin , ∀σ ′ ∈ �∗, σ ′ ≺ σmin ⇒ σ ′ /∈ ψ . Let
us examine run(σmin,Aψ) = q0 · · · qn′ . As L(Aψ) = ψ ,
we have ∀i ∈ [0, n′ − 1], qi /∈ F ∧ qn′ ∈ F . Accord-
ing to (TGuar2), we have run(σmin,A	) = q0 · · · qn′ with
∀i ∈ [0, n′−1], qi /∈ R∧qn′ ∈ R. Following (TGuar1), we
have ∀i ∈ [n′, n], qi ∈ R. According to the acceptance
criterion for finite sequences, σ is accepted by A	.

– Let σ ∈ �ω, then by definition of r-properties: σ ∈
E(ψ), i.e., (at least) one finite prefix of σ belongs to ψ .
Let us suppose that σ is not accepted by A	. Accord-
ing to the acceptance criterion for infinite sequences

(Definition 6), we have vinf (σ,A	) ∩ R = ∅ (as A	

is a guarantee automaton, P = ∅). In other words, we
have vinf (σ,A	) ⊆ R. As A	 is a guarantee automa-
ton, every state visited by the run of σ on A	 is in R.
Indeed, according to the shape of the transition function
of guarantee automata, if a state of R is visited, we have
vinf (σ,A	)∩ R �= ∅. Let us consider now the prefixes of
σ . During the run of these prefixes on A	, none of them
visits an R-state. It follows that, according to (TGuar2),
none of the runs on A	 of these prefixes visits a state
in F . As L(Aψ) = ψ , we deduce that none of the pre-
fixes of σ belongs to ψ . We obtain a contradiction with
σ ∈ E(ψ), and consequently σ is actually accepted by
A	.

Let σ be a sequence accepted by A	, let us prove that
σ ∈ (E f (ψ), E(ψ)). We distinguish two cases: σ is a finite
sequence or not.

– Let σ ∈ �∗ s.t. |σ | = n, then by definition of the accep-
tance criterion for finite sequences (Definition 7), we have
qn ∈ R. Let us suppose that σ /∈ E f (ψ), i.e., none of
the prefixes of σ belongs to ψ . As L(Aψ) = ψ , the
run of σ on Aψ satisfies: ∀i ∈ [0, n], qi /∈ F . Starting

from q
Aψ

init = qA	
init /∈ R, and using (TGuar2), we find that

run(σ,A	) = q ′
0 · · · q ′

n with ∀i ∈ [0, n], q ′
i /∈ R. This is

a contradiction with q ′
n ∈ R, and thus σ ∈ E f (ψ).

– Let σ ∈ �ω, then by definition of the acceptance cri-
terion for infinite sequences (Definition 6), we have
vinf (σ, A	)∩ R �= ∅. As A	 is a guarantee automaton,
it means that vinf (σ,A	) ⊆ R. According to the shape of
the transition function for guarantee automata, it means
that there is a prefix σ ′ of σ on A	 for which the run
switches from states in R to states in R. More formally,
∃σ ′ ∈ �∗, σ ′ ≺ σ ∧ |σ ′| = n′ ∧ ∀i ∈ [0, n′ − 1], q ′

i ∈
R ∧ ∀i ≥ n′, q ′

i ∈ R. Let us suppose that σ /∈ E(ψ),
i.e., σ has no prefix belonging to ψ . As L(Aψ) = ψ ,
the run of σ on Aψ satisfies: ∀i ∈ N, qi /∈ F . Similarly
to the finitary case, and according to the transformation
DFA2S_Guar (TGuar2), it would question the existence of
σ ′. We deduce that σ ∈ E(ψ). ��

For Response properties We show that the r-property
accepted by A	, obtained with DFA2S_Resp is exactly
(R f (ψ), R(ψ)).

Let σ ∈ �∞ s.t. (R f (ψ), R(ψ))(σ ), let us prove that the
sequence σ is accepted by A	. We have two subcases: σ is
a finite sequence or not.

– Let σ ∈ �∗, thus σ ∈ R f (ψ). Proving that σ is accepted
by A	 amounts to show that the run of σ on A	, i.e.,
run(σ,A	), ends in a R-state (i.e., q ′

n ∈ R). First of all, let
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us remark that σ ∈ R f (ψ) gives us ψ(σ). Furthermore,
as L(Aψ) = ψ , we can deduce that qn ∈ F . As σ ∈
R f (ψ), ∀n ∈ N, ∃σ ′ ∈ �∗, σ ≺ σ ′ ∧ |σ ′| ≥ n ∧ ψ(σ ′)
(cf. Definition 3).
Let n′ = |F | be the number of accepting states of Aψ .
Now let us consider the set S = {σ ′′ ∈ �∗ | σ ≺ σ ′′ ∧
|{σ ′ ∈ �∗ | σ ≺ σ ′ ≺ σ ′′ ∧ σ ′ ∈ ψ}| > n′}. This set
contains the sequences which are continuations of σ and
have at least n′ prefixes longer than σ and belonging to
ψ . As σ ∈ R f (ψ), we know that S �= ∅, thus S has a
smallest element σmin . Let us examine the run of σmin

on Aψ : run(σ,Aψ) = run(σ,A	) = q0 · · · q|σmin | =
q0 · · · qn · · · q|σmin |. Between qn and q|σmin |, there are at
least n′ + 1 accepting states. As |F | = n′, two states
between qn and q|σmin | are identical. Moreover, we have
∀i ∈ [n, |σmin| − 1], qi →Aψ

qi+1. Which allows us to
deduce, using the definition of DFA2S_Resp that qn = q ′

n
is tagged as a R-state. According to the acceptance crite-
rion for finite sequences, σ is accepted by A	.

– Let σ ∈ �ω, thus σ ∈ R(ψ), i.e., ∀σ ′ ∈ �∗, ∃σ ′′ ∈
�∗, σ ′ ≺ σ ′′ ≺ σ ∧ ψ(σ ′′) holds for σ . Let us examine
the run of σ on A	, we will show that this run visits at
least one R-state infinitely often. Indeed, let us consider
a prefix σ ′ of σ , we can find an unbounded number of
σ ′-continuations σ ′′, s.t. ψ(σ ′′). Furthermore, for each
of these continuations, it is possible to find an unbounded
number of continuations σ ′′′ s.t.ψ(σ ′′′). Using L(Aψ) =
Aψ , the runs of the sequences σ ′′ and the sequences σ ′′′
on the automaton Aψ end on a F-state. Using the same
reasoning as the one used for finite sequences, the state
on which the run of σ ′′ on A	 is a R-state. Thus, we can
build a series (σi )i∈N of σ -prefixes (of strictly growing
length) s.t. the run of each σi ends in a R-state. Thus, an
infinite number of prefixes of σ go through a R-state. As
|R| ∈ N, there exists a state in R visited infinitely often
during the run of σ on A	. According to the acceptance
criterion for infinite sequences, σ is accepted by A	.

Let σ be a sequence accepted by A	, let us prove that
σ ∈ (R f (ψ), R(ψ)). We distinguish again two cases: σ is a
finite sequence or not.

– Let σ ∈ �∗ s.t. |σ | = n, then by definition of the accep-
tance criterion for finite sequences (Definition 7), we have
q ′

n ∈ R. According to the definition of the transformation
DFA2S_Resp, we deduce that qn ∈ F and ∃q0, . . . , ql ∈
QAψ , ∃e0, . . . , el ∈ �,

∀ j ∈ [0, l − 1], q j
ei−→Aψ

q j+1 (13)

∃i ∈ [0, l], ∃ j ∈ [i, l − 1], q j ∈ F ∧ qi = ql ∧ q0 = q

(14)

Thus we can build a series (σ j ) j∈N of σ -continua-
tions s.t. ∀ j ∈ N, ψ(σ j ) and σ j is defined as σ j =
σ · e0 · · · ei · (ei+1 · · · el−1 · e0 · · · ei )

j . This series exhib-
its strictly growing continuations of σ belonging to ψ .
According to the definition of the operator R f , we can
deduce that σ ∈ R f (ψ).

– Let σ ∈ �ω, then by definition of the acceptance cri-
terion for infinite sequences (Definition 6), we have
vinf (σ, A	)∩ R �= ∅. Thus, σ has an infinite number of
prefixes for which the run ends in a R-state. Using the def-
inition of DFA2S_Resp, we know that all these prefixes
are accepted by Aψ (as by definition the ending state of
their run is a R-state). Using L(Aψ) = ψ , we know that
all these prefixes belong to ψ and have an unrestricted
number of continuations belonging to ψ . We can deduce
that σ ∈ R(ψ). ��

For Persistence properties. We show that the set of
sequences accepted by A	, obtained with DFA2S_Per is
exactly (Pf (ψ), P(ψ)). Let us remark that, according to the
definition of the transformation (the transition function is
not changed), we have ∀ j ∈ [n − 1, n′ + n′′ − 1], q ′

j −→A	

q ′
j+1 ∧q j −→Aψ

q j+1. Moreover, as QA	 = QAψ , we can
merge the states q j and q ′

j visited by the runs of σ on Aψ

and A	.
Let σ ∈ �∞ s.t. (Pf (ψ), P(ψ))(σ ), let us prove that the

sequence σ is accepted by A	. We have two subcases: σ is
a finite sequence or not.

– Proving that σ is accepted by A	 amounts to show that
the run of σ on A	 ends in a P-state (qn ∈ P). First of
all, let us remark that σ ∈ Pf (ψ) gives usψ(σ). Further-
more, as L(Aψ) = ψ , we can deduce that qn−1 ∈ F . As
σ ∈ Pf (ψ), there exist σ ′, μ ∈ �∗ s.t. (cf. Definition 3):

σ 
 σ ′ ∧ (σ ′ · μ∗ · pref (μ)) ⊆ ψ (15)

Let n′ = |σ ′|, and n′′ = |μ|. Then the runs of σ ′ and
σ ′ · μ on A	 can be expressed:

run(σ ′,A	) = q0 · · · qn · · · qn′

run(σ ′ · μ,A	) = q0 · · · qn · · · qn′ · qn′+1 · · · qn′+n′′

According to (15), we have qn′ ∈ F . We can show by
induction that

run(σ · μ∗,A	) = q0 · · · qn′ · (qn′+1 · · · qn′+n′′)∗.

Moreover, we have ∀ j ∈ [n′ + 1, n′ + n′′], q ′
j ∈ F and

qn′+n′′ −→A	
qn′+1. We can deduce, following the defi-

nition of DFA2S_Per, that qn ∈ P . Indeed, it is sufficient
to take l = n′ + n′′ − n and i = n′ + 1 − n.
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– In order to prove vinf (σ,A	) ⊆ P , it is sufficient to see
that σ can be expressed σ ′ ·μω. From this, every prefix of
σ longer than σ ′ satisfiesψ and has its run which stops in
a F-state on Aψ . Thus, we exhibit a strongly connected
component of F-states which are tagged as P-states by
DFA2S_Per. Thus, the states visited infinitely often dur-
ing the run of σ on A	 are the states of this strongly
connected component, which gives us the expected result.

Let σ be a sequence accepted by A	, let us prove that
σ ∈ (Pf (ψ), P(ψ)). We distinguish two subcases: σ is a
finite sequence or not.

– Let σ ∈ �∗ s.t. |σ | = n, then by definition of the accep-
tance criterion for finite sequences of Streett automata
(Definition 7), we have qn ∈ P . Then there exist two
cases.

• In the first one, we have on one hand qn ∈ F , and on
the other hand ∃n ∈ N \ {0}, ∃q0, . . . , qn ∈ QAψ s.t.:
– ∀ j ∈ [0, n − 1], q j −→Aψ

q j+1, and
– ∃i ∈ [0, n − 1],∀ j ∈ [i, n], q j ∈ F ∧ qi = qn ∧

q0 = qn

We have ψ(σ) since L(Aψ) = ψ . Moreover, there

exist e0, . . . , en−1 ∈ � s.t. ∀ j ∈ [0, n−1], q j
e j−→Aψ

q j+1. We can deduce that ψ(σ · e0 · · · ei ), ψ(σ ·
e0 · · · ei · ei+1), …, ψ(σ · e0 · · · en−1). Let us note
L p = σ ′ · ((e0 · · · en)

∗ · e0 + (e0 · · · en)
∗ · e0 ·

e1 + · · · + (e0 · · · en)
∗ · e0 · · · en−1). As qi = qn

({qi , . . . , qn} is a strongly connected component), we
can prove by induction that L p ⊆ ψ . Furthermore,
∀σ ′ ∈ �∗ ∩ L p, σ · e0 · · · ei 
 σ ′ ⇒ ψ(σ ′), which
proves that σ ∈ Pf (ψ). Indeed, it is sufficient to take
σ ′ = σ · e0 · · · ei , and μ = ei+1 · · · en−1.

• In the second one, we have qn ∈ F and qn −→Aψ
qn .

Thus, ∃e ∈ �, qn
e−→Aψ

qn . We deduce that ψ(σ)
and σ · e∗ ⊆ ψ , as L(Aψ) = ψ , which allows us to
deduce easily that σ ∈ Pf (ψ).

– Letσ ∈ �ω, then by definition of the acceptance criterion
for infinite sequences of Streett automata (Definition 6),
we have vinf (σ,A	) ⊆ P . That is to say, all prefixes of
σ from a certain point on have their run which ends in
a P-state. As the automaton A	 has a finite number of
states, it means that there exists a strongly connected
component C , s.t. the run of σ on A	 “stays in”. More
formally, ∃n,m ∈ N,C = {q ′

0, . . . , q ′
n} ⊆ QA	 ∧

run(σ,A	) = q0 · · · qm · · · ∧ ∀i > m, qi ∈ C . More-
over, as {q ′

0, . . . q
′
n} is a SCC, from every state of C it is

possible to reach any state of C . Let us suppose, without

loss of generality, that q ′
0

e0−→A	
q ′

1
e1−→A	

· · · en−1−→A	

q ′
n

en−→A	
q ′

0, with e0, . . . , en ∈ �. According to the

definition of DFA2S_Per, we have the same transitions
on Aψ , i.e., q ′

0
e0−→Aψ

q ′
1

e1−→Aψ
· · · en−1−→Aψ

q ′
n

en−→Aψ

q ′
0.

Let us note L p = σ ′ · (e0 · · · en)
∗ · (e0 + e0 · e1 + · · · +

e0 · · · en−1) = σ ′ · (e0 · · · en) · pref (e0 · · · en−1). The
sequence σ can be expressed σ ′ · (e0 · · · en)

ω with the
fact that for every sequence σ ′′ ∈ L p which is a con-
tinuation of σ ′, the run of σ ′′ ends in a P-state. This
implies that the runs of these same sequences σ ′′ on
Aψ end in a F-state. As L(Aψ) = ψ , we deduce that
∀σ ′′ ∈ L p, σ

′ 
 σ ′′ ≺ σ ⇒ ψ(σ ′′).
This allows to deduce, using the definition of the operator
P (see Sect. 4.2), that σ ∈ P(ψ). ��

A.2 Proofs for Sect. 5

A.2.1 Proof of Lemma 2: Closure of monitorable properties
under boolean operations

Let us consider two r-properties 	1,	2 ∈ MPc.

– Proof of 	1 ∧ 	2 ∈ MPc. It consists in showing that
	1 ∧	2 is σ -monitorable for any sequence σ ∈ �∗. Let
σ ∈ �∗; let us exhibit an extension μ ∈ �∗ s.t.	1 ∧	2

is negatively or positively determined by σ · μ.
As	1 is monitorable, there existsμ1 s.t.	1 is negatively
or positively determined by σ · μ1, i.e., we have the two
following subcases:

– ∃μ1 ∈ �∗,∀μ′
1 ∈ �∞,¬	1(σ ·μ1 ·μ′

1),	1 is neg-
atively determined by σ · μ1, or,

– ∃μ1 ∈ �∗,∀μ′
1 ∈ �∞,	1(σ · μ1 · μ′

1), 	1 is posi-
tively determined by σ · μ1.

As	2 is also monitorable, it is σ ·μ1-monitorable, there
exists μ2 s.t. 	2 is negatively or positively determined
by σ · μ1 · μ2, i.e., we have the two following subcases:

– ∃μ2 ∈ �∗,∀μ′
2 ∈ �∞,¬	2(σ · μ1 · μ2 · μ′

2), 	2 is
negatively determined by σ · μ1 · μ2, or,

– ∃μ2 ∈ �∗,∀μ′
2 ∈ �∞,	2(σ · μ1 · μ2 · μ′

2), 	2 is
positively determined by σ · μ1 · μ2.

By combination, there exist four cases depending on the
facts that 	1 is positively or negatively determined by
σ · μ1 and 	2 is negatively or positively determined by
σ · μ1 · μ2. We group them into two cases:

– Let us distinguish the case where 	1 is positively
determined by σ ·μ1 and	2 is positively determined
by σ · μ1 · μ2. Then, by taking μ = σ · μ1 · μ2, we
have that	1 ∧	2 is positively determined byμ. This
gives us the expected result.

– In the other cases, it suffices to take μ = σ · μ1 · μ2

to show that 	1 ∧	2 is negatively determined by μ.
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– The proof of 	1 ∨	2 ∈ MPc is similar.
– The proof of ¬	1 ∈ MPc is straightforward by noticing

that for any sequence σ ∈ �∗, if 	1 is positively (resp.
negatively) determined by σ , then ¬	 is negatively (resp.
positively) determined by σ . ��

A.2.2 Proof of Theorem 2: Obligation(�) ⊂ MPc

The set of obligation r-properties is the set of all k-obligation
r-properties for k ∈ N, where a k-obligation is expressed as
follows (Lemma 1):

k⋂

i=1

(Safetyi ∪ Guaranteei ),

where Safetyi and Guaranteei are safety and guarantee r-
properties.

Let 	 ∈ Obligation(�), there exists k ∈ N s.t. 	 ∈
k−Obligation(�). The proof relies on an induction on k and
uses the following facts:

– Safety and guarantee properties are monitorable. Here is
the proof17:

– Let 	 = (A f (ψ), A(ψ)) be a safety r-property, and
σ ∈ �∗. The proof is done by distinguishing two
cases: either there exists a continuation σ ′ ∈ �∗ of σ
s.t. ¬	(σ ′), or there does not exist. In the first case,
we have ¬A f (ψ)(σ

′), i.e., σ ′ does not have all of its
prefixes in ψ . Then the same holds for every continu-
ation σ ′′ of σ ′: ∀σ ′′ ∈ �∗, σ ′ 
 σ ′′ ⇒ ¬A f (ψ)(σ

′′).
It follows that ∀σ ′′ ∈ �∗, σ 
 σ ′ 
 σ ′′ ⇒ ¬	(σ ′′).
That is to say, 	 is negatively determined by σ ′. In
the second case, every continuation of σ satisfies 	,
i.e., 	 is positively determined by σ · ε.

– Let 	 = (E f (ψ), E(ψ)) be a guarantee r-property,
let us prove that 	 is monitorable. The proof can be
similarly conducted. It suffices to consider σ ∈ �∗
and show that there exists a σ -continuation which
makes that	 is negatively or positively determined by
this continuation. Similarly, two cases can be distin-
guished whether there exists a σ -continuation which
satisfies the property.

– Union and intersection of two monitorable properties are
monitorable (Lemma 2).

– Example 6 shows that the inclusion is strict. ��

17 The proof can also be done by examining the syntactic restriction
applying to an automaton recognizing a safety or a guarantee prop-
erty: for all σ ∈ �∗, there exists a continuation μ s.t. this property is
negatively or positively determined by σ · μ. For instance, in a safety
automaton, for each state there exists a path which leads either to a
terminal strongly connected component of states in which the property
is satisfied or in a terminal strongly connected component in which the
property is not satisfied.

A.2.3 Proof of Lemma 3: MP∗(B3), safety,
and guarantee properties

We prove this property by reductio ad absurdum. Let sup-
pose the existence of a reactivity r-property 	 = (φ, ϕ)

defined on � which is neither a safety nor a guarantee: 	 ∈
Reactivity(�) \ (Safety(�) ∪ Guarantee(�)), and which is
monitorable according to Definition 17 with B3.

As 	 ∈ MP∗(B3), by definition we have:

∀σgood ∈ φ, ∀σbad ∈ φ, [[	]]B3(σgood) �= [[	]]B3(σbad)

Let us remark that φ �= ∅ and φ �= ∅ as 	 is neither a safety
nor a guarantee. Indeed, if φ = ∅, then 	 would be nec-
essarily the r-property false, which is a safety. Likewise, if
φ = ∅, i.e., φ = �∗, 	 would be the r-property true which
is a safety as well.

Then we consider two sequences σgood and σbad in �∞:

– Let σgood ∈ φ s.t. there exists σ ′
g ∈ �∞ with ¬	(σgood ·

σ ′
g). We know that such a sequence exists since 	 /∈

Guarantee(�). This is a consequence of Property 2.
– Let σbad ∈ φ s.t. there exists σ ′

b ∈ �∞ with 	(σbad ·
σ ′

b). We know that such a sequence exists since 	 /∈
Safety(�). This is a consequence of Property 2.

According to the definition of the evaluation function for
r-properties in a truth-domain (Definition 16), we have:

[[	]]B3(σgood) = [[	]]B3(σbad) =?

This is a contradiction with 	 ∈ MP∗(B3). ��

A.2.4 Proof of Theorem 3: Multi-valued characterization
of alternative monitorability

We prove each of these facts successively. Let 	 = (φ, ϕ)

be an r-property.

Proof of (i)

– Let 	 ∈ Safety(�), we show that 	 ∈ MP∗(B⊥
2 ). As

	 ∈ Safety(�), there exists a finitary property ψ ⊆ �∗,
s.t. 	 = (A f (ψ), A(ψ)). Let us consider σgood ∈ φ

and σbad ∈ φ, we want to prove that the evaluations in
B

⊥
2 of these two sequences differ. On one hand, we have
	(σgood) (since σgood ∈ φ) and thus [[	]]

B
⊥
2
(σgood)= ?.

On the other hand, we have ¬	(σbad ) and σbad /∈ A f (ψ)

(since σbad /∈ φ). Using Property 2, we have ∀μ ∈
�∞,¬	(σbad · μ), i.e., [[	]]

B
⊥
2
(σbad) = ⊥.

– Let 	 ∈ MP∗(B⊥
2 ), we show that 	 ∈ Safety(�).

According to the characterization of safety properties
given in Property 1, showing that	 is a safety r-property
amounts to show that it verifies 	 = (A f (Pref (φ)),
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A(Pref (ϕ))). This is what we do by showing the inclusion
in both ways.

– 	 � �∗ ⊆ A f (Pref (φ)) is immediate as for every
sequence σ ∈ 	 � �∗ (i.e., σ ∈ φ), σ has all of its
prefixes in Pref (φ). The same holds for 	 � �ω ⊆
A(Pref (ϕ)).

– Let us show that A f (Pref (φ)) ⊆ 	 � �∗. Let
σ ∈ A f (Pref (φ)), we prove that σ ∈ 	 � �∗. As
σ ∈ A f (Pref (φ)), all prefixes ofσ belong to Pref (φ),
i.e., all prefixes of σ are the prefixes of a sequence in
φ. Let σmin be the smallest word in φ which is an con-
tinuation of σ . We distinguish two cases. If σmin = σ ,
then σ ∈ 	. Else (σ ≺ σmin), as σmin ∈ φ, we have
[[	]]

B
⊥
2
(σmin) =?, and consequently, [[	]]

B
⊥
2
(σ )= ?

(otherwise, we could not have [[	]]
B

⊥
2
(σmin) =?).

Using 	 ∈ MP∗(B⊥
2 ), we obtain σ ∈ φ and con-

sequently σ ∈ 	.
The same reasoning can be conducted to show that
A(Pref (ϕ))
⊆ 	 ��ω.

Finally, according to the definition of r-properties (Def-
inition 1), we know that 	 = (φ, ϕ) can be written 	 =
(A f (Pref (φ)),
A(Pref (ϕ))), which gives us the expected result.

Proof of (ii)

– The reasoning used to prove that Guarantee(�) ⊆
MP∗(B�

2 ) is similar to the reasoning used to prove
Safety(�) ⊆ MP∗(B⊥

2 ). It suffices to show that all bad
execution sequences are evaluated to “?”. Furthermore,
all good execution sequences are evaluated to �. Indeed,
once a sequence satisfies a guarantee r-property, all its
continuations also satisfy it.

– Proving that MP∗(B�
2 ) ⊆ Guarantee(�) can be done,

following the reasoning used to prove MP∗(B⊥
2 ) ⊆

Safety(�), by showing that if 	 ∈ MP∗(B�
2 ), then 	

verifies 	 = (
E f (Pref (φ)), E(Pref (ϕ))

)
.

Proof of (iii)

– The proof of Safety(�) ∪ Guarantee(�) ⊆ MP∗(B3) is
straightforward by noticing that:

– MP∗(B⊥
2 ) ⊂ MP∗(B3),

– and MP∗(B�
2 ) ⊂ MP∗(B3).

– The fact that MP∗(B3) ⊆ Safety(�) ∪ Guarantee(�) is
given by Lemma 3.

Proof of (iv) The proof is straightforward by noticing that
every r-property can be evaluated by effectively distinguish-

ing good and bad sequences. In other words, any reactivity
r-property can be evaluated consistently with B4. Indeed, a
good sequence σgood is evaluated to �c or � according to its
continuations. A bad sequence σbad is evaluated to ⊥c or ⊥
according to its continuations. As we can see here, the truth
values ⊥c and �c refine the verdict “?”. ��

A.2.5 Proof of Property 3: Correspondence between Streett
automata states and B4

In this proof, [[	]] stands for [[	]]B4 . Let us consider an exe-
cution sequence σ ∈ �∗ of length n.

Proof of qn ∈ GoodA	 ⇔ [[	]](σ ) = �

– Let us suppose that qn ∈ GoodA	 . Using the acceptance
criterion for finite sequences, we have that σ is accepted
by A	. Furthermore, as A	 specifies 	, we have 	(σ).
Now, let us consider μ ∈ �+ s.t. |σ | + |μ| = n′ > n and
run(σ · μ,A	) = q0 · · · qn′−1. As qn ∈ GoodA	 , we
deduce ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈ ⋂m

i=1 Ri ∪ Pi

and consequently	(σ ·μ). Let us consider μ ∈ �ω, one
may remark that ∀i ∈ [1,m], vinf (σ · μ,A	) ∩ Ri �=
∅ ∨ vinf (σ · μ,A	) ⊆ Pi , which implies 	(σ · μ). We
have 	(σ) ∧ ∀μ ∈ �∞,	(σ · μ), i.e., [[	]](σ ) = �.

– Conversely, let us suppose that [[	]](σ ) = �. By defi-
nition, it means ∀μ ∈ �∞,	(σ · μ). According to the
acceptance criterion of Streett automata, we deduce ∀k ≥
n,∀μ ∈ �∗, run(σ · μ,A	) = q0 · · · qn · · · qk ⇒ qk ∈
⋂m

i=0 Ri ∪ Pi . That is to say ReachA	
(qn) ⊆ ⋂m

i=1(Ri ∪
Pi ), i.e., qn ∈ GoodA	 .

Proof of qn ∈ GoodA	
c ⇔ [[	]](σ ) = �c. The proof

is straightforward by examining the acceptance criterion for
finite sequences.

– Let us suppose that qn ∈ GoodA	
c . Using the acceptance

criterion for finite sequences, we have that σ is accepted
by A	. Moreover, as A	 specifies 	, we deduce 	(σ).
Now, as ReachA(q) �⊆ ⋂m

i=1(Ri ∪ Pi ), there exists a state
q ′ of A	 reachable from q and belonging to

⋃m
i=1(Ri ∩

Pi ). Consequently, there exists μ ∈ �∗ s.t. run(σ ·μ) =
q0 · · · qn · · · q ′. Still following the acceptance criterion
we deduce ¬	(σ · μ), i.e., [[	]](σ ) = �c.

– Conversely, the same reason can be used to prove the
seeked result.

Proof of qn ∈ BadA	
c ⇔ [[	]](σ ) = ⊥c. Similarly, the

proof is straightforward by examining the acceptance crite-
rion for finite sequences of Streett automata.

– Let us suppose that qn ∈ BadA	
c . Using the accep-

tance criterion of finite sequences, we have that σ is not
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accepted by A	. Furthermore, as A	 specifies 	, we
deduce ¬	(σ). Now, as ReachA(q) �⊆ ⋃m

i=1(Ri ∪ Pi ),
there exists a state q ′ of A	 reachable from q and belong-
ing to

⋂m
i=1(Ri ∪ Pi ). Consequently, there existsμ ∈ �∗

s.t. run(σ ·μ) = q0 · · · qn · · · q ′. Still following the accep-
tance criterion, we deduce 	(σ ·μ), i.e., [[	]](σ ) = ⊥c.

– Conversely, the same reason can be conducted.

Proof of qn ∈ BadA	 ⇔ [[	]](σ ) = ⊥. The proof can
be done following the same proof principle that the one used
to prove qn ∈ GoodA	 ⇔ [[	]](σ ) = �.

– Let us suppose that qn ∈ BadA	 . Using the acceptance cri-
terion on finite sequences, we have that σ is not accepted by
A	. Furthermore, as A	 specifies 	, we deduce ¬	(σ).
Now, let us consider μ ∈ �+ s.t. |σ | + |μ| = n′ > n
and run(σ · μ,A	) = q0 · · · qn′−1. As qn ∈ BadA	 , we
have ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈ ⋃m

i=1 Ri ∩ Pi

and consequently ¬	(σ · μ). Let us consider μ ∈ �ω,
one may remark that ∀i ∈ [1,m], vinf (σ ·μ,A	) ∩ Ri =
∅ ∧ vinf (σ · μ,A	) �⊆ Pi , which implies ¬	(σ · μ). We
have ¬	(σ) ∧ ∀μ ∈ �∞,¬	(σ · μ), i.e., [[	]](σ ) = ⊥.

– Conversely, let us suppose that [[	]](σ ) = ⊥. By defini-
tion, it means ∀μ ∈ �∞,¬	(σ · μ). According to the
acceptance criterion of Streett automata, we deduce ∀k ≥
n,∀μ ∈ �∗, run(σ · μ,A	) = q0 · · · qn · · · qk ⇒ qk ∈
⋃m

i=0 Ri ∩ Pi . That is to say, ReachA	
(qn) ⊆ ⋃m

i=1(Ri ∩
Pi ), i.e., qn ∈ BadA	 . ��

A.3 Proofs for Sect. 6

A.3.1 Proof of Property 4: Equivalence
between enforcement criteria

Before proving the equivalence between enforcement crite-
ria, we state and prove an intermediate lemma.

Lemma 1 Considering an m-automaton A	 recognizing an
r-property	 = (φ, ϕ) and s ∈ S(A	) a strongly connected
component of A	. We have:

Is �= ∅ ⇔ ∀σ ∈ �ω, vinf (σ,A	) = s ⇒ ¬ϕ(σ)
The proof is in two steps by proving implications in both

ways.

– Suppose Is �= ∅ and let us consider σ ∈ �ω s.t.
vinf (σ,A	) = s. As Is �= ∅, then ∃i ∈ Is(⊆ [1,m]),
vinf (σ,A	) ⊆ Ri ∧ vinf (σ,A	)∩ Pi �= ∅. Then, using
the acceptance criterion for infinite sequences, one can
deduce that σ is not accepted by A	.

– The other direction is straightforward using the accep-
tance criterion for infinite sequences (Definition 6). ��

Now, let us prove Property 4. This proof relies on the
computation of strongly connected components of a Streett
automaton (SCC), both maximal and non maximal ones. The
proof is in two steps by proving implications in both ways.

– (4) ⇒ (5). Let s be a SCC of A	 s.t. Is �= ∅. Then using
the previous lemma, every sequence s.t. vinf (σ, A	) = s
is rejected by A	. As 	 is enforceable and satisfies (4),
necessarily all prefixes of σ terminating in a state of s are
not accepted. Otherwise, there would exist an accepting
state (w.r.t. the acceptance criterion of finite sequences)
in s. It would then be possible to build σ ′ ∈ �ω with an
infinite number of accepting prefixes, i.e., s.t. (4) is not
satisfied.

– (5) ⇒ (4). Let us consider σ ∈ �ω s.t. ¬ϕ(σ). During
its run on A	, σ visits an SCC s infinitely often.
As ¬ϕ(σ), using the previous lemma, we have Is �=
∅. Using (5), ∃i ∈ Is, vinf (σ,A	) ⊆ Pi (and we
already know vinf (σ,A	) ⊆ Ri ). Let us consider
σ ′ ∈ �∗ s.t. σ ′ ≺ σ , the run of σ ′ on A	 is s.t.
∃q1, . . . , qn ∈ QA	, run(σ ′,A	) = qA	

init · q1 · · · qn ·
{q ∈ vinf (σ,A	)}∗. Consequently, we have ∀σ ′ ≺
σ, |σ ′| ≥ n ⇒ run(σ,A	) = qA	

init · · · q, with q ∈
Ri ∧ q ∈ Pi . Using the acceptance criterion for finite
sequences, we have that σ ′ is not accepted by A	. ��

A.3.2 Proof of Theorem 8: Enforceable m-reactivity
properties are response properties

We show that any enforceable m-reactivity property 	 is
indeed a response property. The proof is based on the auto-
mata view, showing that the (m-reactivity) automaton A	

associated with	 can be transformed into a response autom-
aton A	

′ recognizing the same language.
Let us consider A	 = (QA	, qA	

init , �,−→A	
,

{(R1, P1), . . . , (Rm, Pm)}) the Streett automaton associ-
ated with an enforceable property 	. We now consider
the response automaton A	

′ = (QA	, qA	
init , �,−→A	

, {(R′
1,∅), . . . , (R′

m,∅)}) with R′
i = Ri ∪ Pi for i in [1,m].

We now show that a sequence σ of�∞ is accepted by A	

if and only if it is accepted by A	
′. We distinguish two cases

according to whether σ is a finite or an infinite sequence.

– For a finite sequence σ , it is an accepting sequence of A	

if and only if its run terminates either in a Ri -state or in a
Pi -state for i in [1,m]. Consequently, its run also termi-
nates in a R′

i -state of A	
′ for i in [1,m], and therefore,

it is an accepting sequence of A	
′.

– For an infinite sequence σ , note that the sets vinf (σ, A	)

and vinf (σ,A	
′) coincide.
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Let us assume first that σ is an accepting sequence of A	,
namely

m∧

i=1

vinf (σ,A	) ∩ Ri �= ∅ ∨ vinf (σ,A	) ⊆ Pi .

Since R′
i ⊆ Ri and R′

i ⊆ Pi we have

m∧

i=1

vinf (σ,A	) ∩ R′
i �= ∅.

Consequently, σ is an accepting sequence of A	
′.

Now, let us assume that σ is a non-accepting sequence
of A	. Since 	 is enforceable, then, according to Prop-
erty 4, there exists i ∈ [1,m] such that vinf (σ,A	) ⊆
Ri and vinf (σ,A	) ⊆ Pi . Thus, we can deduce
vinf (σ,A	) ⊆ (Ri ∩ Pi ) and consequently vinf (σ,A	

′)
⊆ R′

i . Therefore, σ is a non-accepting sequence of A	
′.
��
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