FORT: a modular Foundational Ontological Relations Theory for representing and reasoning over the composition of tangible entities – Observations from cultural heritage

Université Grenoble Alpes – LIG/Steamer

Doctoral Thesis defended on September 28th, 2023 in front of the jury members:

Reviewers:	Mme Nathalie AUSSENAC-GILLES, Directrice de Recherche CNRS, Université de Toulouse, IRIT
	M. Cesar GONZALEZ-PEREZ, Chercheur, Spanish National Research Council (CSIC), INCIPIT
Examiners:	M. Jérôme EUZENAT, Directeur de Recherche INRIA, Université Grenoble Alpes
	M. Emilio SANFILIPPO, Chercheur CNR, Italian National Research Council (ISTC), LAO
	Mme Béatrice MARKHOFF, Maîtresse de Conférences HDR, Université de Tours, UMR 7324 CITERES
	Mme Laurence CIAVALDINI-RIVIERE, Professeure des Universités, Université Grenoble Alpes, LUCHIE
Supervisors:	Mme Danielle ZIEBELIN, Professeure des Universités, Université Grenoble Alpes
	Mme Emilie CHALMIN, Maîtresse de Conférences, Université Savoie Mont Blanc, Edytem

Introduction | Context | I. Patrimalp - the community:

The development of interdisciplinary and integrated centered around a heritage object, studied in a cross-disciplinary aspect, within this multidisciplinary field.

The heritage object is conceived as a boundary object: ^[1,2]

- i. Acquires interpretative flexibility
- ii. Structures heterogeneous disciplines
- iii. Forms an intersection point facilitating cooperation
- →Recently used in France in the context of emergence heritage sciences ^[3], and is at the core of Patrimalp.
- → Cross-disciplinary aspect: unique identity, robust interpretation

≻ Examples:

- parietal paintings on archaeological sites.
- applied brocades on savoyard medieval sculptures.

- 2. P. TROMPETTE, D. VINCK (2009) « Retour sur la notion d'objet-frontière », Revue d'anthropologie des connaissances, vol. 3, n° 1, p. 5-27;
- 3. E. ANHEIM et al (2015) « Micro-imagerie de matériaux anciens complexes (I) », Revue de Synthèse, 136(6), p. 329-354 : http://dx.doi.org/10.1007/s11873-014-0249-8

^{1.} S. L. STAR, J. GRIESEMER (1989) "Institutional ecology, 'Translations', and Boundary objects: amateurs and professionals on Berkeley's museum of vertrebate zoologie", Social Studies of Science, 19(3), p. 387-420.

Introduction | Context | II. Patrimalp - the objects: Rock art sites

A group of large red deer with oversized antlers painted in a concave area of the cliff forming a niche facing east.

Micro-sample from rock's surface

Schematic figures composed of anchor-shape figures, grids, comb-shape figures...

F. Danash - PhD Thesis Defense

Introduction | Context | III. Patrimalp - the goal:

- \rightarrow Heritage entities: **Tangible entities** vs. Intangible entities
- \rightarrow Aspects of study: Intangible aspects, Spatiotemporal aspects, Materiality aspect, etc.

Enabling the formation and transmission of new knowledge about the materiality of a tangible entity that is a heritage object.

- Understand the materiality of the tangible entity & link entities that have similar composition
- Document the results & share knowledge across disciplines for re-use and reasoning
- Transmit this knowledge for future generations for preservation & restoration purposes
- Gain insights about the entity's intangible aspects

To find/build an **ontology** as a formal specification of a shared conceptualization centered on the **« materiality of the entity »** enabling **« understanding and representation »**.

Common understanding: Ontology

- Common entity: materiality of the tangible entity
- Shared goal: understanding & representation to form new knowledge

"An ontology is a formal and explicit specification of a shared conceptualization" [1,2,3]

Formal logic e.g. FOL, Conceptual modeling language e.g. UML, Semantic Web language e.g. OWL, etc. The abstract representation of knowledge (reality)

- 1. R. Gruber (1993) "A translation approach to portable ontology specifications." Knowledge acquisition, vol. 5, no. 2, pages 199–220, 1993;
- 2. N. Guarino, P. Giaretta (1995) "Ontologies and knowledge bases", Towards very large knowledge bases, pages 1–2, 1995;
- **3. N. Guarino et al. (2009)** "What is an ontology?" Handbook on ontologies, pages 1–17, 2009.

A. Only an **ontology of composition relations** can represent the materiality of a tangible entity.

B. The ontology should be **domain-independent** in order to achieve interdisciplinary integration.

Introduction | Problematic | VI. Research Proposal:

represent its materiality, using composition relations.

Literature review on ontologies in the CH field that can respond to this modeling problem.

II: Foundational Ontological Relations

State-of-Art | Ontologies for Cultural Heritage | I. Managing & Organizing CH data:

 Managing Cultural Heritage (CH) data: Memory institutions, Organizational institutions and infrastructures, Information systems

 Organizing CH data: knowledge Organization Systems Authority files, Classification and categorization systems, Thesauri, Semantic Networks, Ontology models

Classification Criteria for ontology models:

- Geographical scale: National, International
- Semantics and formality level: Metadata-based, Thesauri-based, Formal ontologies
- Modeling scope: Data-centric, Spatial-centric, Entity-centric

→ OAIS.

→ LRM.

A criteria-based selection of relevant approaches:

Geographical Scale]		
National	FinnON	ТО	
International	CIDOC	CRM, Europeana, LIDO, ABC, Inspire, CHARM, GVP, OAIS, LRM	
			-
Semantics & Formality level		Ontology Model	
Metadata-based models		EDM, LIDO, ABC	
Thesauri-based models		FinnONTO, GVP	• EDM
Formal Ontologies/CDM		CIDOC CRM, CHARM, Inspire, EDM, OAIS, LRM	• CHARM

Modeling scope	Ontology Model	Investigate their
Data-centric	LIDO, ABC, LRM, OAIS	composition relations
Spatial-centric	Inspire, CRMarchaeo	(structural & spatial)
Entity-centric	CIDOC CRM, EDM, FinnONTO, CHARM	

ns

0

5

Re

S

0 d

Ш

C 0

An analysis of the relevant models: CIDOC Conceptual Reference Model (CRM) V7.1.2

"An 'ontology' for CH information i.e. it describes in a formal language the explicit and implicit concepts and relations relevant to the documentation of CH". (<u>https://cidoc-crm.org/node/202</u>)

Structural relations:

- P45 consists of
- P46 composed of

Spatial relations:

- P53 has former or current location
- P54 has current permanent location
- P55 has current location (currently holds)
- P59 has section (is located on or within)
- P89 falls within (contains)

CIDOC CRM could be used as a complementary model for representing the spatiotemporal aspects of a CH entity.

An analysis of the relevant models: The Europeana Data Model (EDM)

"Its goal is to collect metadata about CH entities from European CH institutions, and to enable the search and discovery of these items. It is aimed at being an integration medium for collecting, connecting and enriching the descriptions provided by Europeana's content providers". (Europeana Data Model | Europeana PRO)

 \bigcirc

 \mathcal{O}

Structural relations:

- ore: aggregates from the OAI Object Reuse and Exchange (ORE) namespace
- dcterms: has Part from the Dublin Core namespaces

Spatial relations:

- edm: current Location
- dcterms: spatial

EDM could be used as a complementary data model for describing other representations as descriptive properties for the object.

An analysis of the relevant models: The Cultural Heritage Abstract Reference Model (CHARM)

"It is an abstract reference model intended to be used by a wide and diverse range of organizations and individuals in order to achieve a common understanding about anything that may be the recipient of cultural value".

Overview of CHARM (charminfo.org)

Aggregation relationships:

- SubPlace (a Place and itself)
- SubDivision (a LandDivision and itself)
- Support (a MaterialEntity and a MaterialAspect)
- Content (a StructureEntity and a MaterialEntity)
- Fragment (a CompleteStructure and a StructureFragment, etc.)
- Substructure (a CompleteStructure and itself)
- SubOject (a CompleteObject and itself)
- Element (a ConstructedStructure and a ConstructiveElement)

CHARM could be used as a user-friendly complementary model to construct domain-specific CH ontologies enabling its employment by domain institutions.

Modeling the **composition** of a tangible entity as a **complex structure** to understand and represent its **materiality**, using **composition relations**.

Literature review on ontologies in the CH field that can respond to this modeling problem.

	CIDOC CRM	EDM	CHARM		
Pros	Spatiotemporal elements	Descriptive elements	Domain-specific elements		
Cons	Composition (structural and spatial) relations				

Modeling the **composition** of a tangible entity as a **complex structure** to understand and represent its **materiality**, using **composition relations**.

Literature review on ontologies in the CH field that can respond to this modeling problem.

	CIDOC CRM	EDM	CHARM	
Pros	Spatiotemporal elements	Descriptive elements	Domain-specific elements	
Cons	Compositi	ion (structural and spatia	I) relations	

Acquiring a number of foundational ontological, structural and spatial, relations that enable representing the composition of a tangible entity, within a theory.

Literature review on studies on foundational relations to find a taxonomy/theory.

П

II: Foundational Ontological Relations

2

State-of-Art | Foundational Ontological Relations |]. Overview:

State-of-Art | Foundational Ontological Relations | | **Categorization:**

State-of-Art | Foundational Ontological Relations | II. Categorization:

Mereology : Formal theories of Parts P(x,y)

(Pa1)	Reflexive	P(x,x)			
(Pa2)	Transitive	$P(x,y) \land P(y,z) \rightarrow P(x,z)$			
(Pa3)	Antisymmetric	$P(x,y) \land P(y,x) \rightarrow x = y$			
(D1)	Proper-part	$PP(x,y) =_{df} P(x,y) \land \neg P(y,x)$			
(D2)	Overlap	$O(x,y) =_{df} \exists z (P(z,x) \land P(z,y))$			
(D3)	Underlap	$U(x,y) =_{df} \exists z (P(x, z) \land P(y, z))$			
(D4)	Overcross	$OC(x,y) =_{df} O(x, y) \land \neg P(x, y)$			
(D5)	Undercross	$UC(x,y) =_{df} U(x, y) \land \neg P(y, x)$			
(D6)	Proper-overlap	$PO(x,y) =_{df} OC(x, y) \land OC(y, x)$			
(D7)	Proper- underlap	$PU(x,y) =_{df} UC(x, y) \land UC(y, x)$			
(Pa4)	$PP(x, y) \rightarrow \exists z (P(z, y))$, y) ∧ ¬O(z, x))			
(Pa5)	$\neg P(y, x) \rightarrow \exists z (P(z, x))$	y) ∧ ¬O(z, x))			
(Pa6)	$ U(x, y) \rightarrow \exists z \; \forall w \; (\; O(w, x) \leftrightarrow (\; O(w, x) \lor O(w, y) \;) \;) $				
(Pa7)	$O(x, y) \rightarrow \exists z \forall w (P(w, z) \leftrightarrow (P(w, x) \land P(w, y)))$				
(Pa8)	$\exists x \varphi \rightarrow \exists z \forall y (O(y,$	$z) \leftrightarrow \exists x(\varphi \land O(y, x)))$			

State-of-Art | Foundational Ontological Relations | III. Synthesis:

- Although studies on Mereology have provided a rigid formal framework for representing and assessing parthood relations, however, mereology have been shown
 - too weak to capture the distinctions that mark different types of ((part-whole)) relations
 - too strong to hold as a generalization of a theory of part-whole relations at a conceptual level
- Although studies on Meronomy have allowed for common-sense reasoning over part-whole relations in real life examples, they have been carried out in non-formal frameworks.
- Other efforts that have integrated the strengths of both (Meronomy & Mereology):
 - Guizzardi, 2005: Proposes an extension of mereology with a theory of Integral wholes
 - Distinguishes four types of relations based on « ontological entities », then types of relations based metaproperties e.g. shareabiliy and separability (using ontological dependence)
 - > its primary objective was to support conceptual modeling tasks, particularly within the context of UML
 - > This contribution evolved later to be the current UFO foundational ontology which we inspect later in
 - Keet and Artale, 2008: Develops a taxonomy of meronymic and mereological part-whole relations
 - > Relies heavily on the axiomatization of DOLCE's categories, & considers relations as part-whole typologies
- Spatial properties of entities

Acquiring a number of foundational ontological, structural and spatial, relations that enable representing the composition of a tangible entity, within a theory.

Literature review on studies on foundational relations to find a taxonomy/theory.

	Mereology	Meronomy	Location
Pros	Formality of relations	Common-sense reasoning on relations	Spatial properties
Cons			

(COMPLETED)

Modeling the **composition** of a tangible entity as a **complex structure** to understand and represent its **materiality**, using **composition relations**.

→ Literature review on ontologies in the CH field that can respond to this modeling problem.

Cons	Compositi	on (structural and spatia	al) relations
Pros	Spatiotemporal elements	Descriptive elements	Domain-specific elements
	CIDOC CRM	EDM	CHARM

Acquiring a number of foundational ontological, structural and spatial, relations that enable representing the composition of a tangible entity, within a theory.

→ Literature review on studies on foundational relations to find a taxonomy/theory.

I: Ontologies for Cultural Heritage II: Foundational Ontological Relations

Contributions | Approach | I. Fundamental Objective:

F. Danash, D. Ziebelin, E. Chalmin, A Parthood Approach for Modeling Tangible Objects' Composition TOC – An application on Cultural Heritage. In <u>Book</u>: The 17th Extended Semantic Web Conference, <u>ESWC2020</u>. Lecture Notes in Computer Science, vol 12124. Conference short paper.

relations-exclusive ontology i.e. independent of ontological categories

- A. Modelisation Phase: Formalization of the FORT ontology
 - + Addressing different specification choices: Expressivity & Decidability
 - + Formalizing each at multiple levels: Theoretical & Empirical
 - + Bridging the two specifications

B. Employment Phase: Use of the FORT ontology for an interdisciplinary integration

Methodology step 1:

Specify (conceptually) and formalize (logically) the relations of FORT in a highly-expressive formal language that is adequate for the formalization of foundational theories : a first-order logic (FOL) formalization of the FORT reference ontology.

	Theoretical formalization
Reference Ontology	(1) specify & formalize FOL

Contributions | Modelisation | I. The FORT reference ontology (FOL)

FORT:

- Modular ontology: intralinked & interlinked microtheories
- Meta-ontology
- Ontology of exclusive relations and rules

- Relation's name
- Relation's primitive
- Imported theory's name
 - Definitions
- ---- Axioms

ComponentOf and ElementOf:

 $\begin{array}{ll} (\forall x, y) ComponentOf(x, y) =_{df} P(x, y) \land GED(\varphi(y), \varphi(x)) & (PDd1) \\ & (\forall x, y, z) ComponentOf(x, y) \land ComponentOf(y, z) \Rightarrow ComponentOf(x, z) & (PDt1) \\ & (\forall x) \neg ComponentOf(x, x) & (PDt2) \\ & (\forall x, y) ComponentOf(x, y) \Rightarrow \neg ComponentOf(y, x) & (PDt3) \\ & (\forall x, y) ComponentOf(x, y) \Rightarrow PP(x, y) & (PDa1) \\ & (\forall x, y) ComponentOf(x, y) \Rightarrow \exists z (P(z, y) \land \neg O(z, x)) & (PDt4) \end{array}$

 $(\forall x, y)$ ElementOf $(x, y) =_{df} P(x, y) \land SED(y, x)$

Contributions | Modelisation | I. The FORT reference ontology (FOL)

3

Cons	Compositi	on (structural and spatia	al) relations
Pros	Spatiotemporal elements	Descriptive elements	Domain-specific elements
	CIDOC CRM	EDM	CHARM

	Mereology	Meronomy	Location
Pros	Formality of relations	Common-sense reasoning on relations	Spatial properties
Cons		Unified theory of relations	

Contributions | Modelisation | I. The FORT reference ontology (FOL)

Contribution 1:

We have specified and formalized a **unified** language of minimal set of foundational ontological relations **(structural and spatial)**, namely **FORT** [F. Danash et al., 2022].

F. Danash, D. Ziebelin, FORT: a minimal Foundational Ontological Relations Theory for Conceptual Modeling Tasks. In: The 41st International Conference on Conceptual Modeling (<u>ER2022</u>), Forum track, 2022. <u>Conference paper</u>.

Methodology step 2:

analyze the relations of FORT in the presence of other foundational theories that encompass foundational relations as a relation-based alignment, and validate FORT as a theory by serializing FORT in another formal language that validates the existence of models using consistency checks : a Common Logic (CLIF) serialization of the FORT reference ontology.

1. Analyzing FORT in view of other meta-ontologies:

1. Analyzing FORT in view of other meta-ontologies:

1. Analyzing FORT in view of other meta-ontologies:

Relation Meta- Ontology	Dependence	Parthood	Parthood + Dependence	Parthood + Connection	Entity-to- Region	Entity-to- Entity	Membership	Constitution	Constitution + Dependence
<u>FORT</u>	SED, GED	CEM	ComponentOf ,ElementOf	MT	L (VARZI)	EL	memberOf +U	constitutes	SCD, GCD
<u>BFO</u>	s-depends- on	own mereology	-	-	occupies-SR	located-in	member-of, + Aggregate	-	-
DOLCE	SD, GD	GEM	-	-	(qualities)	-	-	k	SK & GK
<u>UFO</u>	ed, ind & gfd	GEM	-	-	(attributes)	-	member-of, + Collection	constituted- by	GCD

BFO: The Basic Foundational Ontology

DOLCE: A Descriptive Ontology for Linguistic and Cognitive Engineering **UFO**: the Unified Foundational Ontology

Similar consideration of the relation

Different consideration of the relation

3

F. Danash - PhD Thesis Defense

Contributions | Modelisation | II. The FORT reference ontology (CL)

2. Validating FORT using CL:

> Running consistency checks using the CLIF serialization:

- Import and reuse existing CLIF theories: mereology CEM, mereotopology MT, and location (Varzi)
- · Serialize other micro-theories in order of « what comes first »
- Use the Hets tool to perform consistency checks on the FORT macrotheory
- > Translating FORT into other TPTP, LADR, and CASL syntaxes

Forming DOL ontologies and running automatic theorem proofs²

Contribution 2

We have demonstrated the **novelty** and **consistency** of FORT by analyzing it in view of other meta-ontologies of relations and validating its consistency [F. Danash et al., 2022].

https://github.com/DanashFatima/FORT/tree/main/FORT-CL-ontology

F. Danash, D. Ziebelin, **On the Analysis of FORT; arguments, alignment to FOs, and CLIF validation**. In: The 6th Workshop on Foundational Ontology (FOUST VI), @ The Joint Ontology Workshops (JOWO'2022). Workshop paper.

1 (cl-text https://raw.githubusercontent.com/DanashFatima/FORT/main/FORT-CL-

3 (cl-imports https://raw.githubusercontent.com/DanashFatima/FORT/main/FORT-

5 (cl-imports https://raw.githubusercontent.com/DanashFatima/FORT/main/FORT-

(and (part x y) (exists (PSI PHI) (and (PSI y) (PHI x) (GED (PSI y)

The "component-of" relation in CLIF.

ontology/componentOf_definition.CLIF

CL-ontology/dependence_definitions.CLIF)

generically existentially dependent on x')

15 (cl-comment 'componentOf is a proper part of relation')

8 (cl-comment 'Identifier: FORT_Pd1')

16 (cl-comment 'Identifier: FORT_Pa1')

(iff (componentOf x y)

(if (componentOf x y)
 (ppart x y)

9 (forall (x y)

17 (forall (x y)

13 14)

20)

(PHI x))))

CL-ontology/colore/mereology/cem_mereology.CLIF)

7 (cl-comment 'x is a component of y iff x is a part of y and y is

Methodology step 3:

extract a secondary decidable fragment from the original formalization that guarantees desirable computational services, and translate the FOL-formalization into a decidable, yet expressive, knowledge representation and reasoning language : a SROIQ Description Logic formalization of the FORT lightweight ontology.

Contributions | Modelisation | III. The FORT lightweight ontology (SROIQ)

1. The proposed translation procedure:

- Input: a set of FOL formulas: S₀
- Six steps:
 - Clausal Form (CF): S₁
 - Horn Rules (HR): S₂
 - Expressible Horn Rules (HR^E): S₃
 - Graph Rules (G_R): S_4
 - Non structured set of SROIQ axioms (SROIQ_{nonS}): S₅
- Output: a structured set of SROIQ axioms: S₆

Contributions | Modelisation | III. The FORT lightweight ontology (SROIQ)

Contribution 3:

We have extracted a **decidable fragment** of FORT by translating the FOL theory into the decidable SROIQ, based on a generic and systematic procedure [F. Danash et al., 2023].

https://githubecom/DanashFatima/FORT/Main/FORT-SRQLAntenmalization

F. Danash, D. Ziebelin, Translating FOL-theories into SROIQ-TBoxes. In: Rtopstatutes M/SIGAPP Symposium On Applied Computing Modeling (SAC2023), Knowledge Representation and Reasoning track, 2023. Conference short paper stitutes

: Irregular order

Methodology step 4:

specify and implement the T-boxes of the SROIQ formalization into a semantic web ontological model: an OWL2-DL implementation of the FORT lightweight ontology.

Implementing the OWL ontology using Protégé:

3

Methodology step 5:

import the ontology in practice according to the application setting, and link it to other ontologies based on an employment method : a proof of FORT's applicability.

1. Direct Employment

Goal:

Use FORT's relations as an expressive language to semantically enhance the domain relations of the domain/task ontology.

Task:

Alignment between the domain's relations (R_{domain}) and FORT's relations (R_{FORT})

 $< R_{domain}$, (\equiv , \leq , \geq), R_{FORT} >

2. Indirect Employment

Goal:

Exploit the semantics of FORT within an interdisciplinary application in which multiple domain ontologies exist.

Integration-based:

- Relations alignment
- Concepts alignment

Aggregation-based:

- Query translation
- Graph saturation
- Query translation

Methodology step 4:

specify and implement the T-boxes of the SROIQ formalization into a semantic web ontological model: an OWL2-DL implementation of the FORT lightweight ontology.

Methodology step 5:

import the ontology in practice according to the application setting, and link it to other ontologies based on an employment method : a proof of FORT's applicability.

Contribution 4:

We have **provided an OWL** ontology and **designed its possible employment methods** to supported the practice of FORT in the Semantic Web.

I: Ontologies for Cultural Heritage II: Foundational Ontological Relations

Applied Ontological Approach & Ontology engineering Methodology:

Applied Ontological Approach & Ontology engineering Methodology:

- I. Proposed an unified and well-founded language of relations and rule constraints: FORT_{FOL} reference ontology [methodology-step-1]
- II. Demonstrated the novelty and consistency of our proposed language in view of existing theories: FORT_{CL} reference ontology [methodology-step-2]
- III. Established a decidable formalization of our proposed language with a generic translation procedure: FORT_{SROIQ} lightweight ontology [methodology-step-3]
- IV. Supported the practice of our proposed language in the SW and designed its employment methods: FORT_{OWL} lightweight ontology + practice design [methodology-steps-4+5]

Going back to Patrimalp's research problem:

FORT has laid the foundation for representing the materiality of a cross-disciplinary tangible entity, providing thus the primary element of this representation and making it available for future architectural development in CH applications.

Research Close-term

1. An ontology architecture for a CH interdisciplinary application using FORT INDIRECT Employment: using the strength of each of FORT, CIDOC CRM, EDM, and CHARM

Development Close-term

2. Demonstrate FORT's convenience for materiality representation of entities in Patrimalp DIRECT Employment examples

Two examples:

- Archaeology Ontology
- Brocades Ontology

Development Close-term

2. Demonstrate FORT's convenience for materiality representation of entities in Patrimalp DIRECT Employment: (1) Archaeology example

Query 1: Find the red deers on panels of the north face of RDC.

```
Select distinct ?figure Where {
 ?rdc rdf:type archeo:ArchaeologicalSite;
      rdfs:label "Rocher du Château"@fr .
 ?rdc fort:hasTPP ?nf.
 ?nf rdfs:label "Face Nord"@fr;
      fort:hasPP ?panel .
 ?panel fort:hasEL ?figure .
 ?figure fort:memberOf ?c;
         fort:hasPP ?ms.
 ?c fort:unifiedBy ?p.
   archeo:hasShape archeo:dearShape.
 ?p
 ?ms fort:constitutedBy ?cm.
 ?cm fort:hasElement chemicals:Hematite.
```


Development Close-term

- Demonstrate FORT's convenience for materiality representation of entities in Patrimalp
 DIRECT Employment: (2) Brocades example
- Query 2: Find the brocades which are located on the "Saint Jean" personage of the "Vierge de Pitié" statue and have "Cl" in the tin layer.

```
Select distinct ?b Where {
```

- ?s1 a brocades:Statue; rdfs:label "Vierge de Pitié".
- ?s2 fort:partOf ?s1 ;
 rdfs:label "Saint Jean"@fr.
- ?b a brocades:Brocade ;
 fort:EL ?s2 .
- ?ms a brocades:MicroSample;
 fort:partOf ?b ;
 fort:hasMember ?1 .
- ?1 fort:constitutedBy ?m .
- ?m brocades:layerType brocades:TinLayer ;
 fort:hasElement chemicals:Chlorine .}

Conclusion & Perspectives | Future Directions | The FORT reference ontology:

Research Long-term

3. From an atemporal to a temporal framework

- a. Incorporating time e.g. using a time variable and ternary relations, interval-based temporal logic, temporal constraints using that extend some logics (DLR with "since" and "until")
- b. Study the events that affect the structural and spatial representation of a tangible entity e.g. LODE ontology
- c. Model the behavior between a relation R and an event E

4. Composition of foundational ontological relations

R1\R2	SED(y,z)	Component-of(y,z)	Element-of(y,z)	Located-at(y,z)	Entity-located(y,z)	Member-of(y,z)	Constitutes(x,y)
SED(x,y)	Т						
Component-of(x,y)		Т					
Element-of(x,y)			Т				
Located-at(x,y)				$\neg T$			
Entity-located(x,y)					Т		
Member-of(x,y)						$\neg T$	
Constitutes(x,y)							Т

Development Close-term

5. A semi-automatic decision procedure for the Direct employment of FORT

Publications:

- F. Danash, D. Ziebelin, Translating FOL-theories into SROIQ-TBoxes. In: The ACM/SIGAPP Symposium On Applied Computing Modeling (<u>SAC2023</u>), Knowledge Representation and Reasoning track, 2023. <u>Conference short paper</u>.
- F. Danash, D. Ziebelin, On the Analysis of FORT; arguments, alignment to FOs, and CLIF validation. In: The 6th Workshop on Foundational Ontology (FOUST VI), @ The Joint Ontology Workshops (JOWO'2022). Workshop paper.
- FORT: F. Danash, D. Ziebelin. minimal Foundational Ontological Relations Theory ٠ а Modeling Tasks. Conference for Conceptual In: The 41st International Conceptual on Modeling (ER2022), Forum track, 2022. Conference paper.
- F. Danash, D. Ziebelin, E. Chalmin, A Parthood Approach for Modeling Tangible Objects' Composition TOC An application on Cultural Heritage. In <u>Book</u>: The 17th Extended Semantic Web Conference, <u>ESWC2020</u>. Lecture Notes in Computer Science, vol 12124. <u>Conference short paper.</u>

Thank You!

Doctoral Thesis defended on September 28th, 2023

My most profound gratitude is to **God**.