Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex

Fragmentation and Forward Error Correction for LoRaWAN small Maximum Transmit Unit networks

$\label{eq:course} \begin{array}{lll} & \text{Ulysse COUTAUD}^{1\ 2} \\ & \text{Martin HEUSSE}^1 & \text{Bernard TOURANCHEAU}^1 \end{array}$

¹Université Grenoble Alpes

²Semtech

17 February 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Wireless cellular networks

- Low energy consumption: $\theta(10 \text{ years})$ battery autonomy.
- Low throughput: $\theta(10 \text{Kbps})$.
- Long range: $\theta(10 \text{km})$.
- Huge capacity: $\theta(1000 \text{ nodes})$ connected to a single gateway.

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで …

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 •oo
 oo
 ooo
 oo
 oo
 ooo
 <t

Wireless cellular networks

- Low energy consumption: $\theta(10 \text{ years})$ battery autonomy.
- Low throughput: $\theta(10 \text{Kbps})$.
- Long range: $\theta(10 \text{km})$.
- Huge capacity: $\theta(1000 \text{ nodes})$ connected to a single gateway.

Packet Error Rate (PER) in wireless networks :

- Path Loss.
- Interferences and ambient noise.
- Collisions.

Estimation with Friis : $G_T G_R (\frac{\lambda}{4\pi R})^a = \frac{P_R}{P_T}$

with classic parameters for the target hardware ¹.

- Chirp Spread Spectrum based modulation.
- 6 Spreading Factors (SF).
- SF are orthogonal.
- \Rightarrow Long range communication.
- \Rightarrow Noise resilient.
- \Rightarrow Multiples sub-channel.

Figure: LoRaWANTM protocol stack.¹

- Cellular architecture.
- Uplink oriented: from nodes to network server (NS).
- Asynchronous.
- ISM band.

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 LoRaWANTM
 Maximum
 Transmit
 Unit
 (MTU)

Table: Application payload (without any optional fields in the header) for the minimum and maximum DR in various bands².

Band	Maximum payload size (bytes	
	Min DR	Max DR
EU863-870	51	242
US902-928	11	242
CN779-787	51	242
EU433	51	242
AU915-928	11	242
CN470-510	51	242
AS923	19	250
KR920-923	51	242
IN865-867	51	242
RU864-870	51	242

- ISM duty cycling regulation.
- Time On Air is SF dependant.
- Piggybacked LoRaMAC commands.

²LoRa Alliance Technical Committee Regional Parameters Workgroup. Lorawan 1.1 regional parameters. Technical report, LoRa Alliance, 2018.

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 LoRaWANTM Maximum
 Transmit Unit (MTU)

Table: Application payload (without any optional fields in the header) for the minimum and maximum DR in various bands².

Band Maximu		payload size (bytes)
	Min DR	Max DR
EU863-870	51	242
US902-928	11	242
CN779-787	51	242
EU433	51	242
AU915-928	11	242
CN470-510	51	242
AS923	19	250
KR920-923	51	242
IN865-867	51	242
RU864-870	51	242

- ISM duty cycling regulation.
- Time On Air is SF dependant.
- Piggybacked LoRaMAC commands.
- \Rightarrow Fragmentation.

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 LoRaWANTM Maximum
 Transmit Unit (MTU)

Table: Application payload (without any optional fields in the header) for the minimum and maximum DR in various bands².

Band	Maximum	payload size (bytes)
	Min DR	Max DR
EU863-870	51	242
US902-928	11	242
CN779-787	51	242
EU433	51	242
AU915-928	11	242
CN470-510	51	242
AS923	19	250
KR920-923	51	242
IN865-867	51	242
RU864-870	51	242

- ISM duty cycling regulation.
- Time On Air is SF dependant.
- Piggybacked LoRaMAC commands.
- \Rightarrow Fragmentation.
- ⇒ Increases losses.

Ex: With payload fragmented in 10 pieces over a 10% i.i.d

erasures channel, less than 35% of the data can be delivered.

²LoRa Alliance Technical Committee Regional Parameters Workgroup. Lorawan 1.1 regional parameters. Technical report, LoRa Alliance, 2018. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LoPa	MANTM FOR	iability			
Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex 00000000000000000000000000000000000

To improve Data Delivery Rate (DDR):

- Increase Transmit Power (TxP).
- Increase SF.
- Systematic retransmissions (NBTRANS) : $DDR = 1 (PER)^n$; Time On Air (TOA) $\times n$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲臣 ▶ ○日 ● ◇ ◇ ◇

• Automatic Repeat reQuest (ARQ).

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
	000				
LoRaV	VAN [™] rel	iability			

To improve Data Delivery Rate (DDR):

- Increase Transmit Power (TxP).
- Increase SF.
- Systematic retransmissions (NBTRANS) : $DDR = 1 (PER)^n$; Time On Air (TOA) $\times n$.
- Automatic Repeat reQuest (ARQ).

Adaptive Data Rate (ADR)

• Dynamically adapts the transmissions parameters (TxP, SF, NBTRANS).

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
	000				

Problematic:

• How to decorrelate applicative-MTU and physical-MTU ?

・ロット 4 聞 > 4 画 > 4 画 > 4 目 > 9 4 の >

• How to provide (very) high Data Delivery Rate ?

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	●000	000	00	00000000000000000000000000000000000
LoRa Fr	agmentati	on and Fo	rward Error	Correctio	n

・ロト・4回ト・4回ト・4回ト・4回ト

LoRaFFEC, a protocol to combine :

- Fragmentation
- Forward Error Correction

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 LoRa
 Fragmentation and Forward Error Correction

LoRaFFEC, a protocol to combine :

- Fragmentation
- Forward Error Correction

Sub-layers:

- Integrity.
- Fragmentation.
- Erasure Correction.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0●00	000	00	0000000000000000
LoRaFFEC protocol					

Integrity sub-layer:

Not sont		Sent	
		Cont	
			i
Applicative Co	ounter	Applicative Data Unit	HASH
MSB (3 bytes)	LSB (1 byte)	(n bytes)	(2 bytes)
MSB1 MSB2 MSB3	_		

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	00●0	000		0000000000000000
LoRaFFEC protocol					

Fragmentation sub-layer:

Fragment Counter (1 byte)	Fragment Payload
---------------------------------	------------------

Fragmentation Layer Data Unit

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	000●	000	00	0000000000000000
LoRaF	FEC proto	bcol			

Erasure Correction sub-layer³:

- Pseudo-random linear combinations.
- Coding Rate = 1/2.
- Resolved by Gaussian elimination.

Parameters:

- Window Length (WL).
- Redundancy Density (RD).
- Decoding Depth (DD).
- Decoding complexity : $O(w^2 \times DD)$.

 $^{^{3}}$ Marcelis, Paul J and Rao, Vijay S and Prasad, R Venkatesha. DaRe: Data recovery through application layer coding for LoRaWAN. In Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM Second International Conference on, pages 97?108. IEEE, 2017.

LoRaFFEC Performances Context Problematic 000

LoRaFFEC performances simulation

- Erasure channel
- Independant and identically distributed (iid) erasures
- 1000 Application Data Unit transmissions / experiment

イロト (同) (三) (三) (つ) (つ)

95% confidence interval

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	00●	00	0000000000000000
With fra	agmentatic	n [WL=128; D	D=2; RD=0.61]		

ି ୍ ି 14/30

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	●O	0000000000000000
Conclus	ion LoRaF	FEC			

- Combined fragmentation and application-level error correction.
- Data delivery rate (DDR) >98% up to 40% PER channels.

Further work :

- Loosen LoRaTM physical parameters.
- Improve channel characterization and quality estimation.
- LoRaFFEC incorporated into ADR will improve network capacity and reliability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
				00	

THANKS

<ロト < 母 ト < 茎 ト < 茎 ト 茎 の < で 16/30

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 000
 000
 000
 000
 000
 000
 000

Window Length [DD=2; RD=0.61]

Redundancy Density [DD=2] PER=40%

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000		00000000000000000000000000000000000
Decodir	ng Depth _I v	VL=128; RD=0.	61]		

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	00	00000000000000000000000000000000000

Latency [WL=128; DD=2; RD=0.61]

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	00	00000000000000000000000000000000000
	EEC proto				

LoRaFFEC protocol

LoRaWAN frame

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	00	00000000000000000000000000000000000
LoRaFF	FC proto	col			

Fragments aggregation in LoRaWANTM frame:

Fragment #i	Fragment Payload [i]	Fragment Payload [i+1]	Fragment Payload [i+2]		fragment #i+128	Fragment Payload [i+128]	Fragment Payload [i+1+128]	Fragment Payload [i+2+128]	
----------------	-------------------------	---------------------------	---------------------------	--	--------------------	-----------------------------	-------------------------------	-------------------------------	--

\times	Fragment Number 3	Fragment Payload [3]	Fragment Payload [4]	Pragment Payload [5]	Fragment Payload [131]	Fragment Payload [132]	Pragment Payload [133]	Fragment Payload [6]
----------	-------------------------	-------------------------	----------------------	-------------------------	---------------------------	---------------------------	---------------------------	-------------------------

LoRaFFEC frame

LoRaFFEC frame

LoRaFFEC frame

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	00	0000000000000000
Reliabili	tv in LoRa	WANTM			

Systematic Repetition (SR) of the frames

- each frame is repeated *n* times \Rightarrow PDR = $1 (PER)^n$.
 - \Rightarrow Time On Air (ToA) = ToA[uplink] $\times n$.

Automatic Repeat reQuest (ARQ)

- Uplink frames marked as confirmed
- Re-emitted in absence of downlink acknowledgement.
 - \Rightarrow Overload of the gateways, blind period.
 - \Rightarrow ToA = ToA[uplink] + ToA[acknowledgement].

At the physical layer: Adaptive Data Rate (ADR) protocol

- \Rightarrow Dynamically adapts SF, TxP...
- \Rightarrow Driven jointly by the network server and the node.
- \Rightarrow Rely on channel estimation (measured SNR, RSSI, ...)

 \Rightarrow Rely channel characterisation (Rayleigh fading, Gaussian noise, Log-normal path

loss, ...)

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 000
 000
 000
 000
 000
 000
 000

 State Of the Art:
 Forward Error Correction in
 LoRaWANTM
 000
 000

DaRe (Data Recovery)

- Pseudo random linear combination.
- Low latency.
- No downlinks required.
- Fixed redundancy rate.

CCARR (Channel Coding Adaptive Redundancy Rate) :

- Reed Solomon.
- High PDR.
- Dynamic redundancy rate.

[Marcelis, Paul J and Rao, Vijay S and Prasad, R Venkatesha. DaRe: Data recovery through application layer coding for LoRaWAN. In Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM Second International Conference on, pages 97?108. IEEE, 2017.]

[U.Coutaud and B. Tourancheau. Channel Coding for Better QoS in LoRa Networks. In IEEE, editor, International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 1–9, June 2018.]

Bursty channel

• Log-normal fading with sd=7

P. J. Marcelis, V. Rao, and R. V. Prasad. Dare: Data recovery through application layer coding for lorawan. In Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, pages 97–108. ACM, 2017.

Highly variable PER

T. Ameloot, P. Van Torre, and H. Rogier. A compact low-power LoRa loT sensor node with extended dynamic range for channel measurements. MDPI Sensors, 18(7):2137, 2018.

Residual PER.

J. Petäjäjärvi, K. Mikhaylov, M. Hämäläinen, and J. linatti. Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring. In IEEE, editor, International Symposium on Medical Information and Communication Technology (ISMICT), pages 1–5, 2016.

J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo. On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology. In IEEE, editor, International Conference on ITS Telecommunications (ITST), pages 55–59, 2015.

• Fast Rayleigh fading

T. Attia, M. Heusse, B. Tourancheau, and A. Duda. Experimental Characterization of Packet Reception Rate in LoRaWAN. In Rencontres Francophones sur la Conception de Protocoles, l'Évaluation de Performance et l'Expérimentation des Réseaux de Communication, editor, CoRes, Narbonne, France, June 2019. https://hal.archives-ouvertes.fr/CORES2019/hal-02120199v1.

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex
000	000	0000	000	00	000000000●00000
	والمنتقل والمت		١		

<ロト<部ト<事ト<事ト<事< つへで 26/30

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex				
000	000	0000	000	00	00000000000000000000000000000000000				
Log-normal distribution m=0.56 sd=7.11 (dB)									

< □ ▷ < 률 ▷ < 토 ▷ < 토 ▷ < 토 ♡ < ♡ 27/30

Context	Problematic	LoRaFFEC	Performances	Conclusion	Annex				
000	000	0000	000	00	00000000000000000000000000000000000				
Log-normal distribution sd=1.25 (dB)									

<ロト<

日

ト

<

三

ト

</br />
三

</br />
</br>

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 State Of the Art:
 Forward Error Correction in Wireless

 Networks

- Y.Birk and Y.Keren. Judicious use of redundant transmissions in multichannel aloha networks with deadlines. IEEE, 1999.
- Ender Ayanoglu, Pramod Pancha, Amy R Reibman, and Shilpa Talwar. Forward error control for mpeg-2 video transport in a wireless atm Ian. Mobile Networks and Applications, 1996.
 C. E. Luna, Y. Eisenberg, R. Berry, T. N. Pappas, and A. K. Katsaggelos. Joint source coding and data rate adaptation for energy efficient wireless video streaming. IEEE Journal on Selected Areas in Communications, Dec 2003.

 Context
 Problematic
 LoRaFFEC
 Performances
 Conclusion
 Annex

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

