Design Considerations for Time-Slotted LoRa(WAN)

Dr. Dimitrios 7 orbas

Tyndall National Institute, University College Cork Ireland

Time-slotted communications

- Time is divided in repeated frames and slots
- The nodes are synchronised according to a global clock
- Guard times are added to tolerate slight desynchronisations
- Examples: GSM, IEEE802.15.4e-TSCH, WirelessHART etc.

LoRa and LoRaWAN

- Proprietary spread spectrum modulation
- Trades data rate with sensitivity (distance)
- (almost orthogonal) Spreading Factors (SF) from 7 to 12
- Higher SF → longer range but lower data rate, longer transmission time, and higher energy consumption
- Open source protocol proposed by LoRa Alliance
- ALOHA-based MAC
- Registration, security, roaming, and localisation mechanisms for LoRa devices
- 8+1 channels, 125kHz bandwidth (EU)

Why Time-Slotted LoRa(WAN)?

- Performance guarantees
 - delay, packet delivery
- Long-range
 - No routing, decreased cost, increased mobility
- Industrial IoT applications
 - Frequent packet transmission
 - Reliable communications

Design Considerations

- Radio duty cycle
- Uneven slot length
- Delay / Application duty cycle
- Acknowledgements
- Scheduling
- Synchronisation
- Battery lifetime
- Propagation time
- Security

Frequency		TP	Duty Cycle
Κ	863 – 865 MHz	25 mW ERP	$\leq 0.1\%$ or LBT
L	865 – 868 MHz	25 mW ERP	$\leq 1\%$ or LBT
Μ	868 – 868.6 MHz	25 mW ERP	$\leq 1\%$ or LBT
Ν	868.7 - 869.2 MHz	25 mW ERP	$\leq 0.1\%$ or LBT
0	869.4 - 869.65 MHz	500 mW ERP	$\leq 10\%$ or LBT
Р	869.7 – 870 MHz	5 mW ERP	No requirement
Q	869.7 – 870 MHz	25 mW ERP	$\leq 1\%$ or LBT

TS-LoRa [1]

- Collision-free slot generation mechanism
- Autonomous slot assignment during the OTAA registration

[1] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, D. Pesch, "TS-LoRa: Time-Slotted LoRa(WAN) for the Industrial Internet of Things", *Computer Communications*, Vol. 153, Mar. 2020, pp. 1-10

TS-LoRa frame structure

- Multiple parallel frame structure + a SACK slot
 - SACK = Synchronisation and Acknowledgements

Implementation [2]

(a) Ground floor

(b) 1st floor

- 25 nodes
- SF7-9, 125kHz
- 100bytes packet size

Frequency	SF	Duty Cycle
865.0 – 865.5 MHz	7	$\leq 1\%$
865.6 – 866.1 MHz	8	$\leq 1\%$
866.2 – 866.7 MHz	9	$\leq 1\%$
866.8 – 867.3 MHz	10	$\leq 1\%$
867.4 – 867.9 MHz	11	$\leq 1\%$
868.0 – 868.5 MHz	12	$\leq 1\%$

[2] https://github.com/deltazita/ts-lora

Results [1]

Experiments \rightarrow $\mathbf{1}$

600

В С

10

200

150

0

transmission of 2nd frame

Simulations \downarrow

(a) First minute: (A) node initialisation, (B) join request, (C) synchronisation waiting time

30

Time (sec)

20

Frame 1

Thank you for your attention!

email: <u>dimzorbas@ieee.org</u> Twitter: <u>dimitris.zorbas</u>