TP1 : Introduction to Map-Reduce

2013/2014

1 Running a local job

Download the eclipse project which contains a wordcount example. Execute
it locally to ensure that everything is properly configured.

2 Connecting to the Hadoop cluster

A Hadoop cluster was deployed for this exercise. It contains 1 master and
4 slaves. To test your programs in a grid environment, you should use this
cluster. The IP address of the master is 152.77.78.100, and the Hadoop
executables are in /usr/local/hadoop/bin. The data for this work has been
placed on HDFS.

e Check that you can access this computer with ssh and see if you have
a home dir.

e Check that you have access to the http interfaces of the hadoop cluster.
Open the following URLs in the browser:

http://152.77.78.100:50070/
http://152.77.78.100:8088/

e Do a test:

bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar pi 10 100

e [f everything works, you can start working. Otherwise, ask for help.



3 WordCount

3.1

3.2

Getting started

Using the project provided, prepare the WordCount example for the
grid.

Compilez ce fichier et faites-en un jar comme vu en cours.
Create a simple document and copy it to HDFS.
Run your program on MapReduce and check the output is correct.

Start again, but this time give as input the directory containing Mis-
érables by Victor Hugo.

Interpreting counters

Q 1: Take a look at the counters for your job in the JobTracker inter-
face:

1. What does Reduce input groups mean? How could you change its
value?

2. What does Map input records mean? And Map output records?

3. In your opinion, what is the link between Map output records and

Reduce input records?

Q 2: Add a combiner as seen in class. Execute the updated code on
the 5 tomes of les Misérables.

1. Which counters allow you to see that the combiner worked prop-
erly?

2. Which counter is, in your opinion, the most important to evaluate
the gain provided by the combiner?

4 Query suggestion

Many search engines on Internet suggest associated words when users do a
web search. Our goal for this exercise is to compute the frequency of words
associations to build such a service. To this end, we will analyze an AOL
search engine query log.



Q 3: Create a class implementing the WritableComparable interface to
represent a pair of words.

Q 4: Test it by modifying WordCount in order to compute the occur-
rences of each pair of words used in a query. Be careful about the AOL data
format, the split function of the String class may help you. Test your code
with 2 reducers (cf Hadoop job javadoc).

Q 5: We are only interested in pairs of words that appear more than 3
times. How many are there? Which counters gives this information?

Q 6: We would like to know how many queries of the search engine
contain more than 3 words. To do it in a non intrusive way, it is possible to
add custom counters, which will be handled by Hadoop as its own counters
and appear in the results of the job. Create a LONG _QUERY counter in the
mapper and increment it when the size of a query is at least 4. How many
long queries are there? Do not hesitate to look online for documentation
about counters. A counter can easily be added by declaring an enum in java,
and is incremented with the context object of the mapper.

Q 7: We now want to know, for each word, the 5 words which are the
most frequently associated with it in queries. Modify your code to perform
this computation. In the reducer, find a way to avoid loading all words in
memory before sorting them. When several Map-Reduce jobs are chained,
it is often more convenient to keep a binary format instead of parsing text.
You will probably need to use SequenceFileInputFormat and SequenceFile-
OutputFormat.



