Recommender Systems

Content-based systems

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

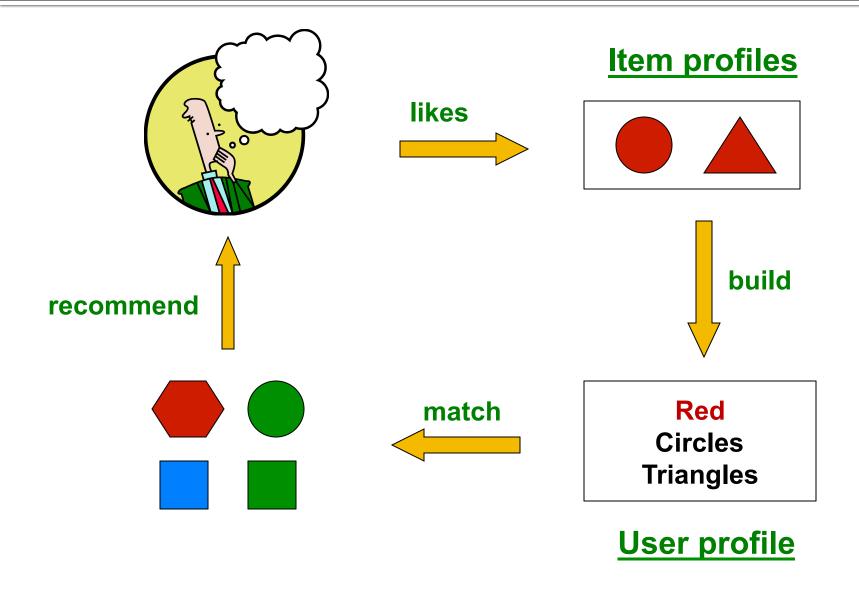
Content-based Recommendations

Main idea: Recommend items to customer **x** similar to previous items rated highly by **x**

Examples:

- Movies
 - Same actor(s), director, genre, ...
- Websites, blogs, news
 - Articles with "similar" content
- People
 - Recommend people with many common friends

Plan of Action



Item Profiles

- For each item, create an item profile
- Profile is a set of features
 - Movies: author, title, actor, director,...
 - Images, videos: metadata and tags
 - People: Set of friends
- Convenient to think of the item profile as a vector
 - One entry per feature (e.g., each actor, director,...)
 - Vector might be boolean or real-valued

Text features

- Profile = set of "important" words in item (document)
- How to pick important words?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF
scores, together with their scores

User Profiles

- User has rated items with profiles i₁,...,i_n
- Simple: (weighted) average of rated item profiles
- Variant: Normalize weights using average rating of user
- More sophisticated aggregations possible

Example 1: Boolean Utility Matrix

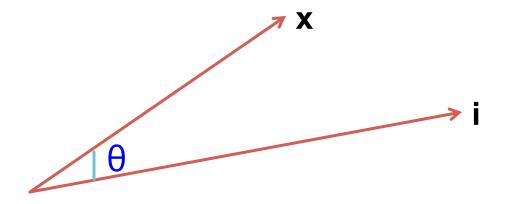
- Items are movies, only feature is "Actor"
 - Item profile: vector with 0 or 1 for each Actor
- Suppose user x has watched 5 movies
 - 2 movies featuring actor A
 - 3 movies featuring actor B
- User profile = mean of item profiles
 - Feature A's weight = 2/5 = 0.4
 - Feature B's weight = 3/5 = 0.6

Example 2: Star Ratings

- Same example, 1-5 star ratings
 - Actor A's movies rated 3 and 5
 - Actor B's movies rated 1, 2 and 4
- Useful step: Normalize ratings by subtracting user's mean rating (3)
 - Actor A's normalized ratings = 0, +2
 - Profile weight = (0 + 2)/2 = 1
 - Actor B's normalized ratings = -2, -1, +1
 - Profile weight = -2/3

Making predictions

- User profile x, Item profile i
- Estimate $U(\mathbf{x}, \mathbf{i}) = \cos(\theta) = (\mathbf{x} \cdot \mathbf{i})/(|\mathbf{x}| |\mathbf{i}|)$



Technically, the cosine distance is actually the angle θ And the cosine similarity is the angle $180-\theta$

For convenience, we use $cos(\theta)$ as our similarity measure and call it the "cosine similarity" in this context.

Pros: Content-based Approach

No need for data on other users

- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
 - No first-rater problem
- Explanations for recommended items
 - Content features that caused an item to be recommended

Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Cold-start problem for new users
 - How to build a user profile?