
28/09/16

1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/1

�
�
�
Distributed Database design:�
fragmentation & allocation�
 �
�
Material from: �
Principles of Distributed Database Systems�
Özsu, M. Tamer, Valduriez, Patrick, 3rd ed. 2011�
�
+ slides from H. Garcia Molina.�
�
Presented by C. Roncancio�
�
�
�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/4

Distribution Design�

• Top-down

➡  mostly in designing systems from scratch

➡  mostly in homogeneous systems

• Bottom-up

➡  when the databases already exist at a number of sites

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/6

Distribution Design Issues�

! Why fragment at all?

" How to fragment?

# How much to fragment?

$ How to test correctness?

% How to allocate?

& Information requirements?

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/7

Fragmentation�

• Can't we just distribute relations?

• What is a reasonable unit of distribution?

➡  relation

✦  views are subsets of relations 'locality

✦  extra communication

➡  fragments of relations (sub-relations)

✦  concurrent execution of a number of transactions that access different portions of
a relation

✦  views that cannot be defined on a single fragment will require extra processing

✦  semantic data control (especially integrity enforcement) more difficult

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/8

Fragmentation�

• Horizontal Fragmentation (HF)

➡  Primary Horizontal Fragmentation (PHF)

➡  Derived Horizontal Fragmentation (DHF)

• Vertical Fragmentation (VF)

• Hybrid Fragmentation (HF)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/9

Degree of Fragmentation�

Finding the suitable level of partitioning within this
range

tuples
or

attributes

relations

finite number of alternatives

28/09/16

2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/10

Fragmentation Alternatives –
Horizontal�

PROJ1 : projects with budgets less than
$200,000

PROJ2 : projects with budgets greater
than or equal to $200,000

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/11

Fragmentation Alternatives –
Horizontal�

PROJ1 : projects with budgets less than
$200,000

PROJ2 : projects with budgets greater
than or equal to $200,000

PROJ1

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

P4 Maintenance 310000 Paris

P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation 150000 Montreal

P2 Database Develop. 135000 New York

BUDGET

PROJ2

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/12

Correctness of Fragmentation�

• Completeness
➡  Decomposition of relation R into fragments R1, R2, ..., Rn is complete if and

only if each data item in R can also be found in some Ri

• Reconstruction
➡  If relation R is decomposed into fragments R1, R2, ..., Rn, then there should

exist some relational operator ∇ such that

R = ∇1≤i≤nRi

• Disjointness

➡  If relation R is decomposed into fragments R1, R2, ..., Rn, and data item di is in
Rj, then di should not be in any other fragment Rk (k ≠ j).

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/13

Allocation Alternatives�

• Non-replicated
➡  partitioned : each fragment resides at only one site

• Replicated
➡  fully replicated : each fragment at each site
➡  partially replicated : each fragment at some of the sites

• Rule of thumb:

If read-only queries
update queries

 << 1, replication is advantageous,

otherwise replication may cause problems

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/14

Full-replication Partial-replication Partitioning

QUERY
 PROCESSING Easy Same Difficulty

Same Difficulty DIRECTORY
MANAGEMENT

Easy or
Non-existant

CONCURRENCY
CONTROL Easy Difficult Moderate

RELIABILITY Very high High Low

Comparison of Replication
Alternatives�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/15

Information Requirements�

• Four categories:

➡  Database information

➡  Application information

➡  Communication network information

➡  Computer system information

28/09/16

3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/16

PHF – Information Requirements

• Database Information
➡  relationship

➡  cardinality of each relation: card(R)

TITLE, SAL
SKILL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/17

PHF - Information
Requirements�
• Application Information

➡  simple predicates : Given R[A1, A2, …, An], a simple predicate pj is

 pj : Ai θValue

 where θ ∈ {=,<,≤,>,≥,≠}, Value ∈ Di and Di is the domain of Ai.

 For relation R we define Pr = {p1, p2, …,pm}

 Example :

PNAME = "Maintenance"

BUDGET ≤ 200000

➡  minterm predicates : Given R and Pr = {p1, p2, …,pm}

 define M = {m1,m2,…,mr} as

 M = { mi | mi = ∧pj∈Pr pj* }, 1≤j≤m, 1≤i≤z

 where pj* = pj or pj* = ¬(pj).

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/18

PHF – Information Requirements�

Example

m1: PNAME="Maintenance" ∧ BUDGET≤200000

m2: NOT(PNAME="Maintenance") ∧ BUDGET≤200000

m3: PNAME= "Maintenance" ∧ NOT(BUDGET≤200000)

m4: NOT(PNAME="Maintenance") ∧ NOT(BUDGET≤200000)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/37

Derived Horizontal
Fragmentation�
• Defined on a member relation of a link according to a selection operation

specified on its owner.

➡  Each link is an equijoin.

➡  Equijoin can be implemented by means of semijoins.

TITLE, SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/38

DHF – Definition�

Given a link L where owner(L)=S and member(L)=R, the derived horizontal
fragments of R are defined as

 Ri = R ⋉F Si, 1≤i≤w

where w is the maximum number of fragments that will be defined on R and

Si = σFi
 (S)

where Fi is the formula according to which the primary horizontal fragment
Si is defined.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/39

Example�

28/09/16

4

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/40

Example�

TITLE

Mech. Eng.

Programmer

SAL

27000

24000

PAY1 PAY2

TITLE

Elect. Eng.

Syst. Anal.

SAL

40000

34000

Pay1 = σSAL≤30000(Pay)
Pay2 = σSAL>30000(Pay)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/41

Given link L1 where owner(L1)=Pay and member(L1)=EMP
EMP1 = EMP ⋉ Pay1

EMP2 = EMP ⋉ Pay2

Where
Pay1 = σSAL≤30000(Pay)

Pay2 = σSAL>30000(Pay)

DHF – Example�

ENO ENAME TITLE

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E5 B. Casey Syst. Anal.

EMP2

E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/43

DHF – Correctness�

• Completeness
➡  Referential integrity

➡  Let R be the member relation of a link whose owner is relation S which is
fragmented as FS = {S1, S2, ..., Sn}. Furthermore, let A be the join attribute
between R and S. Then, for each tuple t of R, there should be a tuple t' of S
such that

t[A] = t' [A]

• Reconstruction
➡  Same as primary horizontal fragmentation.

• Disjointness
➡  Simple join graphs between the owner and the member fragments.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/44

• Has been studied within the centralized context
➡  design methodology

➡  physical clustering

• More difficult than horizontal, because more alternatives exist.

 Two approaches :

➡  grouping

✦  attributes to fragments

➡  splitting

✦  relation to fragments

Vertical Fragmentation�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/45

Fragmentation Alternatives –
Vertical�

PROJ1: information about project
budgets

PROJ2: information about project
names and locations

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/46

Fragmentation Alternatives –
Vertical�

PROJ1: information about project
budgets

PROJ2: information about project
names and locations

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000
P5 500000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris
P5 CAD/CAM Boston

PROJ1 PROJ2

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

28/09/16

5

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/47

• Overlapping fragments

➡  grouping

• Non-overlapping fragments

➡  splitting

We do not consider the replicated key attributes to be overlapping.

 Advantage:

 Easier to enforce functional dependencies

 (for integrity checking etc.)

Vertical Fragmentation�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/48

VF – Information Requirements�

• Application Information
➡  Attribute affinities

✦  a measure that indicates how closely related the attributes are

✦  This is obtained from more primitive usage data

➡  Attribute usage values

✦  Given a set of queries Q = {q1, q2,…, qq} that will run on the relation
R[A1, A2,…, An],

 use(qi,•) can be defined accordingly

⎨use(qi,Aj) =
1 if attribute Aj is referenced by query qi

0 otherwise

⎧

⎩

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/49

VF – Definition of use(qi,Aj)�

Consider the following 4 queries for relation PROJ
q1: SELECT BUDGET q2: SELECT PNAME,BUDGET

 FROM PROJ FROM PROJ
 WHERE PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
 FROM PROJ FROM PROJ
 WHERE LOC=Value WHERE LOC=Value

Let A1= PNO, A2= PNAME, A3= BUDGET, A4= LOC

q1

q2

q3

q4

A1

1 0 1 0

0 0 1 1

0 0 1 1

0 0 1 1

A2 A3 A4

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/50

VF – Affinity Measure aff(Ai,Aj)�

The attribute affinity measure between two attributes Ai and Aj of a relation
R[A1, A2, …, An] with respect to the set of applications Q = (q1, q2, …, qq) is
defined as follows :

aff (Ai, Aj) = (query access)
all queries that access Ai and Aj
∑

query access = access frequency of a query * access

execution
all sites
∑

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/51

VF – Calculation of aff(Ai, Aj)�

4

q 1

q 2

q 3

q

S 1 S 2 S 3

15 20 10

5 0 0

25 25 25
3 0 0

A A A A 1 2 3 4

A
A
A
A

1

2

3

4

45 0 45 0
0 80 5 75

45 5 53 3
0 75 3 78

Assume each query in the previous example accesses the attributes once
during each execution.

Also assume the access frequencies

Then

aff(A1, A3) = 15*1 + 20*1+10*1
 = 45

and the attribute affinity matrix AA is

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/52

Assume each query in the previous example accesses the attributes once
during each execution.

Also assume the access frequencies

Then

aff(A1, A3) = 15*1 + 20*1+10*1
 = 45

and the attribute affinity matrix AA is

VF – Calculation of aff(Ai, Aj)�

4

q 1

q 2

q 3

q

S 1 S 2 S 3

15 20 10

5 0 0

25 25 25

3 0 0

A A A A 1 2 3 4

A
A
A
A

1

2

3

4

45 0 45 0
0 80 5 75

45 5 53 3
0 75 3 78

28/09/16

6

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/53

• Take the attribute affinity matrix AA and reorganize the attribute orders to
form clusters where the attributes in each cluster demonstrate high affinity
to one another.

• Bond Energy Algorithm (BEA) has been used for clustering of entities.
BEA finds an ordering of entities (in our case attributes) such that the
global affinity measure is maximized.

VF – Clustering Algorithm�

AM = (affinity of Ai and Aj with their neighbors)

j
∑

i
∑

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/62

VF – Correctness�

A relation R, defined over attribute set A and key K, generates the vertical
partitioning FR = {R1, R2, …, Rr}.

• Completeness
➡  The following should be true for A:

A = ∪ ARi

• Reconstruction

➡  Reconstruction can be achieved by

R = ⋈�K Ri, ∀Ri ∈ FR

• Disjointness

➡  TID's are not considered to be overlapping since they are maintained by the
system

➡  Duplicated keys are not considered to be overlapping

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/63

Hybrid Fragmentation�

R

HF HF

R1

VF VF VF VF VF

R11 R12 R21 R22 R23

R2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/64

Fragment Allocation�

• Problem Statement
Given

F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites
Q = {q1, q2,…, qq} applications

Find the "optimal" distribution of F to S.
• Optimality

➡  Minimal cost
✦  Communication + storage + processing (read & update)
✦  Cost in terms of time (usually)

➡  Performance
Response time and/or throughput

➡  Constraints
✦  Per site constraints (storage & processing)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/65

Information Requirements�

• Database information
➡  selectivity of fragments
➡  size of a fragment

• Application information
➡  access types and numbers
➡  access localities

• Communication network information
➡  unit cost of storing data at a site
➡  unit cost of processing at a site

• Computer system information
➡  bandwidth
➡  latency
➡  communication overhead

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/66

Allocation�

File Allocation (FAP) vs Database Allocation (DAP):

➡  Fragments are not individual files

✦  relationships have to be maintained

➡  Access to databases is more complicated

✦  remote file access model not applicable

✦  relationship between allocation and query processing

➡  Cost of integrity enforcement should be considered

➡  Cost of concurrency control should be considered

28/09/16

7

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/67

Allocation – Information
Requirements�
• Database Information

➡  selectivity of fragments
➡  size of a fragment

• Application Information
➡  number of read accesses of a query to a fragment
➡  number of update accesses of query to a fragment
➡  A matrix indicating which queries update which fragments
➡  A similar matrix for retrievals
➡  originating site of each query

• Site Information
➡  unit cost of storing data at a site
➡  unit cost of processing at a site

• Network Information
➡  communication cost/frame between two sites
➡  frame size

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/68

General Form

 min(Total Cost)

 subject to

 response time constraint

 storage constraint

 processing constraint

Decision Variable

Allocation Model�

xij =
1 if fragment Fi is stored at site Sj
0 otherwise

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/69

• Total Cost

• Storage Cost (of fragment Fj at Sk)

• Query Processing Cost (for one query)

 processing component + transmission component

Allocation Model�

(unit storage cost at Sk) * (size of Fj) * xjk

query processing cost +
all queries
∑

 cost of storing a fragment at a site

all fragments
∑

all sites
∑

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/70

Allocation Model�

• Query Processing Cost
Processing component

access cost + integrity enforcement cost + concurrency control cost

➡  Access cost

➡  Integrity enforcement and concurrency control costs

✦  Can be similarly calculated

(no. of update accesses+ no. of read accesses) *
all fragments
∑

all sites
∑

xij * local processing cost at a site

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/71

• Query Processing Cost
Transmission component

cost of processing updates + cost of processing retrievals

➡  Cost of updates

➡  Retrieval Cost

Allocation Model�

update message cost +

all fragments
∑

all sites
∑

 acknowledgment cost

all fragments
∑

all sites
∑

min all sites

all fragments
∑ (cost of retrieval command +

cost of sending back the result)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/72

Allocation Model�

• Constraints
➡  Response Time

execution time of query ≤ max. allowable response time for that query

➡  Storage Constraint (for a site)

➡  Processing constraint (for a site)

storage requirement of a fragment at that site ≤

all fragments
∑

storage capacity at that site

processing load of a query at that site ≤
all queries
∑

processing capacity of that site

28/09/16

8

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/73

Allocation Model�

• Solution Methods

➡  FAP is NP-complete

➡  DAP also NP-complete

• Heuristics based on

➡  single commodity warehouse location (for FAP)

➡  knapsack problem

➡  branch and bound techniques

➡  network flow

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/74

Allocation Model�

• Attempts to reduce the solution space

➡  assume all candidate partitionings known; select the “best” partitioning

➡  ignore replication at first

➡  sliding window on fragments

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/75

Fragmentation / sharding�

• A partition forms a « shard »

• Fragmentation based on FAQ or known access patterns

• Automatic partitioning, sharding?

• Sharding is often related to shared nothing architectures

Ch.
x/
75

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/76 7
6

Three common horizontal
partitioning techniques

• Round robin

• Hash partitioning

• Range partitioning

From H. Garcia Molina

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/77 7
7

•  Round robin

R D0 D1 D2

t1 t1
t2 t2
t3 t3
t4 t4
... t5

• Evenly distributes data
• Good for scanning full relation
• Not good for point or range queries

From H. Garcia Molina
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/78 7

8

•  Hash partitioning

R D0 D1 D2

t1→h(k1)=2 t1
t2→h(k2)=0 t2
t3→h(k3)=0 t3
t4→h(k4)=1 t4
...

• Good for point queries on key; also for joins
• Not good for range queries; point queries not on key
• If hash function good, even distribution

From H. Garcia Molina

28/09/16

9

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/79 7
9

•  Range partitioning

R D0 D1 D2

t1: A=5 t1
t2: A=8 t2
t3: A=2 t3
t4: A=3 t4
...

• Good for some range queries on A
• Need to select good vector: else unbalance

 → data skew
 → execution skew

4 7

partitioning
vector

V0 V1

From H. Garcia Molina
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/80

80

Conclusion

• Fragmentation
➡ Decomposition / reconstruction
➡  Queries & integrity constraints
➡ Horizontal simple / derived , vertical, hybrid
➡ Properties: reconstruction, completeness, disjunction

• Sharding
• Allocation / duplication

➡ Cost model
➡ Iterative approach

