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�
Distributed Database design:�
fragmentation & allocation�
 �
�
Material from: �
Principles of Distributed Database Systems�
Özsu, M. Tamer, Valduriez, Patrick, 3rd ed. 2011�
�
+ slides from H. Garcia Molina.�
�
Presented by C. Roncancio�
�
�
�
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Distribution Design�

• Top-down 

➡  mostly in designing systems from scratch 

➡  mostly in homogeneous systems 

• Bottom-up 

➡  when the databases already exist at a number of sites 
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Distribution Design Issues�

! Why fragment at all? 

" How to fragment? 

# How much to fragment? 

$ How to test correctness? 

% How to allocate? 

& Information requirements? 

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/7 

Fragmentation�

• Can't we just distribute relations? 

• What is a reasonable unit of distribution? 

➡  relation 

✦  views are subsets of relations 'locality  

✦  extra communication 

➡  fragments of relations (sub-relations) 

✦  concurrent execution of a number of transactions that access different portions of 
a relation 

✦  views that cannot be defined on a single fragment will require extra processing 

✦  semantic data control (especially integrity enforcement) more difficult 
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Fragmentation�

• Horizontal Fragmentation (HF) 

➡  Primary Horizontal Fragmentation (PHF) 

➡  Derived Horizontal Fragmentation (DHF) 

• Vertical Fragmentation (VF) 

• Hybrid Fragmentation (HF) 
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Degree of Fragmentation�

Finding the suitable level of partitioning within this 
range 
 

tuples 
or 

attributes 

relations 

finite number of alternatives 
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Fragmentation Alternatives – 
Horizontal�

PROJ1 :  projects with budgets less than 
$200,000 

PROJ2 :  projects with budgets greater 
than or equal to $200,000 

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 
P5 CAD/CAM 500000 Boston 
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Fragmentation Alternatives – 
Horizontal�

PROJ1 :  projects with budgets less than 
$200,000 

PROJ2 :  projects with budgets greater 
than or equal to $200,000 

PROJ1 

PNO PNAME BUDGET LOC 

P3  CAD/CAM 250000 New York 

P4 Maintenance 310000 Paris 

P5 CAD/CAM 500000 Boston 

PNO PNAME LOC 

P1 Instrumentation 150000 Montreal 

P2 Database Develop. 135000 New York 

BUDGET 

PROJ2 

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 
P5 CAD/CAM 500000 Boston 
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Correctness of Fragmentation�

• Completeness 
➡  Decomposition of relation R into fragments R1, R2, ..., Rn is complete if and 

only if each data item in R can also be found in some Ri 

• Reconstruction 
➡  If relation R  is decomposed into fragments R1, R2, ..., Rn, then there should 

exist some relational operator ∇ such that 

R = ∇1≤i≤nRi 

• Disjointness  

➡  If relation R is decomposed into fragments R1, R2, ..., Rn, and data item di is in 
Rj, then di should not be in any other fragment Rk (k ≠ j ). 
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Allocation Alternatives�

• Non-replicated 
➡  partitioned : each fragment resides at only one site 

• Replicated 
➡  fully replicated : each fragment at each site 
➡  partially replicated : each fragment at some of the sites 

• Rule of thumb: 
 
 

  

If read-only queries
update queries

 << 1, replication is advantageous,

otherwise replication may cause problems
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Full-replication Partial-replication Partitioning 

QUERY 
 PROCESSING Easy Same Difficulty 

Same Difficulty DIRECTORY 
MANAGEMENT  

Easy or 
Non-existant 

CONCURRENCY 
CONTROL Easy Difficult Moderate 

RELIABILITY Very high High Low 

Comparison of Replication 
Alternatives�
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Information Requirements�

• Four categories: 

➡   Database information 

➡   Application information 

➡   Communication network information 

➡   Computer system information 
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PHF – Information Requirements 

• Database Information 
➡  relationship 
 
 
 
 
 
 
 
 
 
 
➡  cardinality of each relation: card(R) 

TITLE, SAL 
SKILL 

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC 

ENO, PNO, RESP, DUR 

EMP PROJ 

ASG 
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PHF - Information 
Requirements�
• Application Information 

➡  simple predicates : Given R[A1, A2, …, An], a simple predicate pj  is 

  pj : Ai θValue 

 where θ ∈ {=,<,≤,>,≥,≠}, Value ∈ Di  and Di  is the domain of Ai. 

 For  relation R  we define Pr = {p1, p2, …,pm} 

 Example : 

PNAME = "Maintenance" 

BUDGET ≤ 200000 

➡  minterm predicates : Given  R and Pr = {p1, p2, …,pm} 

 define M = {m1,m2,…,mr} as 

   M = { mi | mi =  ∧pj∈Pr pj* }, 1≤j≤m, 1≤i≤z 

 where pj* = pj or pj* = ¬(pj). 

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/18 

PHF – Information Requirements�

Example 

m1: PNAME="Maintenance" ∧ BUDGET≤200000 

m2: NOT(PNAME="Maintenance") ∧ BUDGET≤200000 

m3: PNAME= "Maintenance" ∧ NOT(BUDGET≤200000) 

m4: NOT(PNAME="Maintenance") ∧ NOT(BUDGET≤200000) 
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Derived Horizontal 
Fragmentation�
• Defined on a member relation of a link according to a selection operation 

specified on its owner. 

➡  Each link is an equijoin. 

➡  Equijoin can be implemented by means of semijoins. 

TITLE, SAL 

PAY 

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC 

ENO, PNO, RESP, DUR 

EMP PROJ 

ASG 

L1 

L2 L3 
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DHF – Definition�

Given a link L where owner(L)=S and member(L)=R, the derived horizontal 
fragments of R are defined as 

  Ri = R ⋉F  Si, 1≤i≤w 

where w is the maximum number of fragments that will be defined on R and 

Si = σFi
 (S) 

where Fi is the formula according to which the primary horizontal fragment 
Si is defined. 

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/39 

Example�
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Example�

TITLE 

Mech. Eng. 

Programmer 

SAL 

27000 

24000 

PAY1 PAY2 

TITLE 

Elect. Eng. 

Syst. Anal. 

SAL 

40000 

34000 

Pay1 = σSAL≤30000(Pay)
Pay2 = σSAL>30000(Pay)
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Given link L1 where owner(L1)=Pay and member(L1)=EMP 
EMP1 = EMP ⋉ Pay1 

EMP2 = EMP ⋉ Pay2 

Where 
Pay1 = σSAL≤30000(Pay) 

Pay2 = σSAL>30000(Pay) 

DHF – Example�

ENO ENAME TITLE 

E3 A. Lee Mech. Eng. 
E4 J. Miller Programmer 
E7 R. Davis Mech. Eng. 

EMP1 

ENO ENAME TITLE 

E1 J. Doe Elect. Eng. 
E2 M. Smith Syst. Anal. 
E5 B. Casey Syst. Anal. 

EMP2 

E6 L. Chu Elect. Eng. 
E8 J. Jones Syst. Anal. 
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DHF – Correctness�

• Completeness 
➡  Referential integrity 

➡  Let R be the member relation of a link whose owner is relation S which is 
fragmented as FS = {S1, S2, ..., Sn}. Furthermore, let A be the join attribute 
between R and S. Then, for each tuple t of R, there should be a tuple t' of S 
such that 

t[A] = t' [A] 

• Reconstruction 
➡  Same as primary horizontal fragmentation. 

• Disjointness 
➡  Simple join graphs between the owner and the member fragments. 
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• Has been studied within the centralized context 
➡  design methodology 

➡  physical clustering 

• More difficult than horizontal, because more alternatives exist. 

 Two approaches : 

➡  grouping 

✦  attributes to fragments 

➡  splitting 

✦  relation to fragments 

Vertical Fragmentation�
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Fragmentation Alternatives – 
Vertical�

PROJ1:  information about project 
budgets 

PROJ2:  information about project 
names and locations 

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 
P5 CAD/CAM 500000 Boston 
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Fragmentation Alternatives – 
Vertical�

PROJ1:  information about project 
budgets 

PROJ2:  information about project 
names and locations 

PNO BUDGET 

P1 150000 

P3  250000 
P2 135000 

P4 310000 
P5 500000 

PNO PNAME LOC 

P1 Instrumentation Montreal 

P3  CAD/CAM New York 
P2 Database Develop. New York 

P4 Maintenance Paris 
P5 CAD/CAM Boston 

PROJ1 PROJ2 

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 
P5 CAD/CAM 500000 Boston 
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• Overlapping fragments 

➡  grouping 

• Non-overlapping fragments 

➡  splitting 

We do not consider the replicated key attributes to be overlapping. 

 Advantage: 

 Easier to enforce functional dependencies  

 (for integrity checking etc.) 

Vertical Fragmentation�
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VF – Information Requirements�

• Application Information 
➡  Attribute affinities 

✦  a measure that indicates how closely related the attributes are 

✦  This is obtained from more primitive usage data 

➡  Attribute usage values 

✦  Given a set of queries Q = {q1, q2,…, qq} that will run on the relation           
R[A1, A2,…, An], 

 

 

 

  

 use(qi,•) can be defined accordingly 

⎨use(qi,Aj) = 
1 if attribute Aj is referenced by query qi 

0 otherwise 

⎧

⎩
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VF – Definition of use(qi,Aj)�

Consider the following 4 queries for relation PROJ 
q1: SELECT  BUDGET  q2:  SELECT  PNAME,BUDGET 

  FROM  PROJ   FROM  PROJ 
  WHERE  PNO=Value 

q3: SELECT  PNAME  q4:  SELECT  SUM(BUDGET) 
  FROM  PROJ   FROM  PROJ 
  WHERE  LOC=Value   WHERE  LOC=Value 

Let A1= PNO, A2= PNAME, A3= BUDGET, A4= LOC 

q1 

q2 

q3 

q4 

A1 

1 0 1 0 

0 0 1 1 

0 0 1 1 

0 0 1 1 

A2 A3 A4 
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VF – Affinity Measure aff(Ai,Aj)�

The attribute affinity measure between two attributes Ai and Aj of a relation 
R[A1, A2, …, An] with respect to the set of applications  Q = (q1, q2, …, qq) is 
defined as follows :  

aff (Ai, Aj) = (query access) 
all queries that access Ai and Aj  
∑

      
query access = access frequency of a query * access 

execution 
all sites 
∑
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VF – Calculation of aff(Ai, Aj)�

4

q 1 

q 2 

q 3 

q 

S 1 S 2 S 3 

15 20 10 

5 0 0 

25 25 25 
3 0 0 

A A A A 1 2 3 4 

A 
A 
A 
A 

1 

2 

3 

4 

45 0 45 0 
0 80 5 75 

45 5 53 3 
0 75 3 78 

Assume each query in the previous example accesses the attributes once 
during each execution.  

Also assume the access frequencies 
 
 
 
 
 
 
Then  

aff(A1, A3)  = 15*1 + 20*1+10*1 
  = 45 

and  the attribute affinity matrix AA is 
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Assume each query in the previous example accesses the attributes once 
during each execution.  

Also assume the access frequencies 
 
 
 
 
 
 
Then  

aff(A1, A3)  = 15*1 + 20*1+10*1 
  = 45 

and  the attribute affinity matrix AA is 

VF – Calculation of aff(Ai, Aj)�

4 

q 1 

q 2 

q 3 

q 

S 1 S 2 S 3 

15 20 10 

5 0 0 

25 25 25 

3 0 0 

A A A A 1 2 3 4 

A 
A 
A 
A 

1 

2 

3 

4 

45 0 45 0 
0 80 5 75 

45 5 53 3 
0 75 3 78 
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• Take the attribute affinity matrix AA and reorganize the attribute orders to 
form clusters where the attributes in each cluster demonstrate high affinity 
to one another. 

• Bond Energy Algorithm (BEA) has been used for clustering of entities.  
BEA finds an ordering of entities (in our case attributes) such that the 
global affinity measure is maximized. 

VF – Clustering Algorithm�

      

AM = (affinity of Ai and Aj with their neighbors)  

j 
∑

i 
∑
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VF – Correctness�

A relation R, defined over attribute set A and key K, generates the vertical 
partitioning FR = {R1, R2, …, Rr}. 

• Completeness 
➡  The following should be true for A: 

A = ∪ ARi
 

• Reconstruction 

➡  Reconstruction can be achieved by 

R = ⋈�K Ri, ∀Ri ∈ FR 

• Disjointness 

➡  TID's are not considered to be overlapping since they are maintained by the 
system 

➡  Duplicated keys are not considered to be overlapping 
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Hybrid Fragmentation�

R 

HF HF 

R1 

VF VF VF VF VF 

R11 R12 R21 R22 R23 

R2 
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Fragment Allocation�

• Problem Statement 
Given  

F = {F1, F2, …, Fn}  fragments 
S ={S1, S2, …, Sm}  network sites  
Q = {q1, q2,…, qq}  applications  

Find the "optimal" distribution of F to S. 
• Optimality 

➡  Minimal cost 
✦  Communication + storage + processing (read & update) 
✦  Cost in terms of time (usually) 

➡  Performance 
Response time and/or throughput 

➡  Constraints 
✦  Per site constraints (storage & processing) 
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Information Requirements�

• Database information 
➡  selectivity of fragments  
➡  size of a fragment  

• Application information 
➡  access types and numbers  
➡  access localities  

• Communication network information  
➡  unit cost of storing data at a site  
➡  unit cost of processing at a site  

• Computer system information  
➡  bandwidth  
➡  latency  
➡  communication overhead  
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Allocation�

File Allocation (FAP) vs Database Allocation (DAP): 

➡  Fragments are not individual files 

✦  relationships have to be maintained 

➡  Access to databases is more complicated 

✦  remote file access model not applicable 

✦  relationship between allocation and query processing 

➡  Cost of integrity enforcement should be considered 

➡  Cost of concurrency control should be considered 
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Allocation – Information 
Requirements�
• Database Information 

➡  selectivity of fragments  
➡  size of a fragment  

• Application Information 
➡  number of read accesses of a query to a fragment 
➡  number of update accesses of query to a fragment 
➡  A  matrix indicating which queries update which fragments 
➡  A similar matrix for retrievals 
➡  originating site of each query  

• Site Information 
➡  unit cost of storing data at a site  
➡  unit cost of processing at a site 

• Network Information 
➡  communication cost/frame between two sites 
➡  frame size 
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General Form    

   min(Total Cost) 

  subject to 

   response time constraint 

   storage constraint 

   processing constraint 

 

Decision Variable 

Allocation Model�

xij =
1 if fragment Fi is stored at site Sj  
0 otherwise 
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• Total Cost 

 

 

 

 

• Storage Cost (of fragment Fj at Sk) 

  

• Query Processing Cost (for one query) 

 processing component + transmission component 

Allocation Model�

      

(unit storage cost at Sk) * (size of Fj) * xjk 

  

   

query processing cost +
all queries 
∑

         cost of storing a fragment at a site 

all fragments 
∑

all sites 
∑    
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Allocation Model�

• Query Processing Cost 
Processing component 

access cost + integrity enforcement cost + concurrency control cost 

➡  Access cost 

 

 

 

 

➡  Integrity enforcement and concurrency control costs 

✦  Can be similarly calculated 

      

  

                                          

(no. of update accesses+ no. of read accesses) * 
all fragments 
∑

all sites 
∑

xij * local processing cost at a site 
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• Query Processing Cost 
Transmission component 

cost of processing updates + cost of processing retrievals 

➡  Cost of updates 

 

 

 

 

➡  Retrieval Cost 

Allocation Model�

   

update message cost  +

all fragments 
∑

all sites 
∑

                 acknowledgment cost    

all fragments 
∑

all sites 
∑

   

min all sites 

all fragments 
∑ (cost of retrieval command  +  

cost of sending back the result) 
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Allocation Model�

• Constraints 
➡  Response Time 

execution time of query  ≤ max. allowable response time for that query        

➡  Storage Constraint (for a site) 

 

 

 

➡  Processing constraint (for a site)    

storage requirement of a fragment at that site  ≤      

all fragments 
∑

storage capacity at that site 

   

processing load of a query at that site  ≤     
all queries 
∑

processing capacity of that site 
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Allocation Model�

• Solution Methods 

➡  FAP is NP-complete 

➡  DAP also NP-complete 

• Heuristics based on 

➡  single commodity warehouse location (for FAP) 

➡  knapsack problem 

➡  branch and bound techniques 

➡  network flow 
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Allocation Model�

• Attempts to reduce the solution space 

➡  assume all candidate partitionings known; select the “best” partitioning 

➡  ignore replication at first 

➡  sliding window on fragments 
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Fragmentation / sharding�

• A partition forms a « shard » 

• Fragmentation based on FAQ or known access patterns 

• Automatic partitioning, sharding?  

• Sharding is often related to shared nothing architectures 

Ch.
x/
75 
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Three common horizontal 
partitioning techniques 

• Round robin 

• Hash partitioning 

• Range partitioning 

From H. Garcia Molina 
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•  Round robin 

R    D0   D1   D2 

t1          t1 
t2           t2 
t3            t3 
t4            t4 
...       t5 
 
• Evenly distributes data 
• Good for scanning full relation 
• Not good for point or range queries 

From H. Garcia Molina 
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8

•  Hash partitioning 

R    D0   D1   D2 

t1→h(k1)=2      t1 
t2→h(k2)=0  t2 
t3→h(k3)=0  t3 
t4→h(k4)=1    t4 
... 
 
• Good for point queries on key; also for joins 
• Not good for range queries; point queries not on key 
• If hash function good, even distribution 

From H. Garcia Molina 
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•  Range partitioning 

R      D0  D1  D2 

t1: A=5      t1 
t2: A=8       t2 
t3: A=2     t3 
t4: A=3     t4 
... 
 
• Good for some range queries on A 
• Need to select good vector: else unbalance   

      → data skew 
      → execution skew 

4 7

partitioning 
vector 

V0  V1 

From H. Garcia Molina 
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80 

Conclusion 

• Fragmentation  
➡ Decomposition / reconstruction 
➡  Queries & integrity constraints 
➡ Horizontal simple / derived , vertical, hybrid 
➡ Properties: reconstruction, completeness, disjunction 

• Sharding 
• Allocation / duplication 

➡ Cost model  
➡ Iterative approach 


