Distributed Database design: fragmentation & allocation

Material from: Principles of Distributed Database Systems

Principles of Distributed Database Systems Özsu, M. Tamer, Valduriez, Patrick, 3rd ed. 2011

+ slides from H. Garcia Molina.

Presented by C. Roncancio

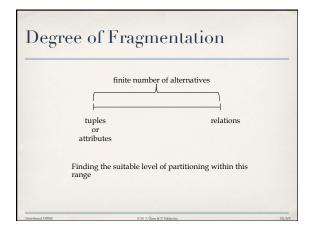
Distribution Design

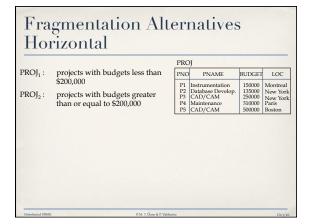
- Top-down
- mostly in designing systems from scratch
- mostly in homogeneous systems
- Bottom-up
- when the databases already exist at a number of sites

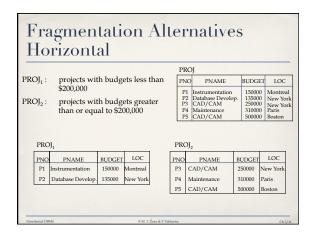
Distribution Design Issues

• Why fragment at all?

- How to fragment?
- B How much to fragment?
- How to test correctness?
- How to allocate?
- ⁶ Information requirements?


Fragmentation • Can't we just distribute relations? • What is a reasonable unit of distribution? • relation • views are subsets of relations →locality • extra communication • fragments of relations (sub-relations)

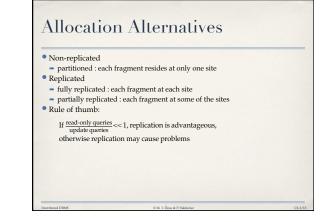

- concurrent execution of a number of transactions that access different portions of a relation
- views that cannot be defined on a single fragment will require extra processing
- semantic data control (especially integrity enforcement) more difficult


Fragmentation

• Horizontal Fragmentation (HF)

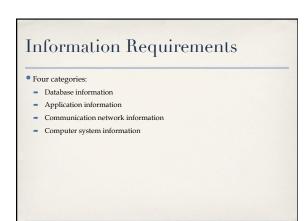
- Primary Horizontal Fragmentation (PHF)
- Derived Horizontal Fragmentation (DHF)
- Vertical Fragmentation (VF)
- Hybrid Fragmentation (HF)

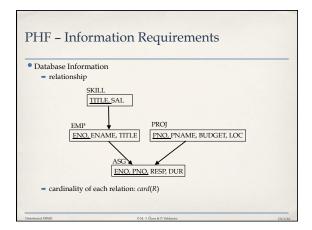
Correctness of Fragmentation

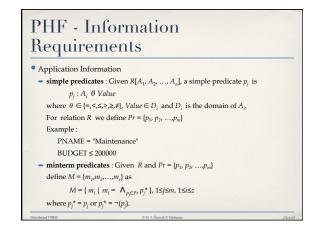

Completeness

- Decomposition of relation R into fragments R₁, R₂, ..., R_n is complete if and only if each data item in R can also be found in some R_i
- Reconstruction
- If relation R is decomposed into fragments $R_1, R_2, ..., R_n$, then there should exist some relational operator ∇ such that

 $R = \nabla_{1 \leq i \leq n} R_i$

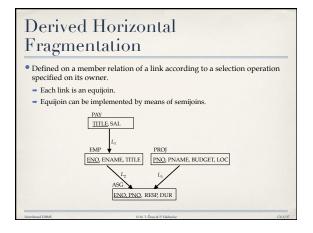

Disjointness


• If relation *R* is decomposed into fragments R_i , R_2 , \dots , $R_{n'}$ and data item d_i is in R_i , then d_i should not be in any other fragment R_k ($k \neq j$).



Comparison of Replication Alternatives

	Full-replication	Partial-replication	Partitioning	
QUERY PROCESSING	Easy	Same D	fficulty 🔶	
DIRECTORY MANAGEMENT	Easy or Non-existant	▲ Same D.	fficulty 🔸	
CONCURRENCY CONTROL	Moderate	Difficult	Easy	
RELIABILITY	Very high	High	Low	



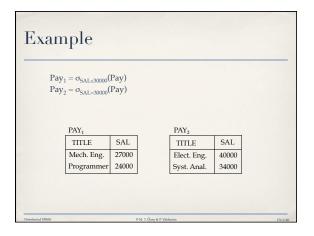
PHF Information Requirements

Example

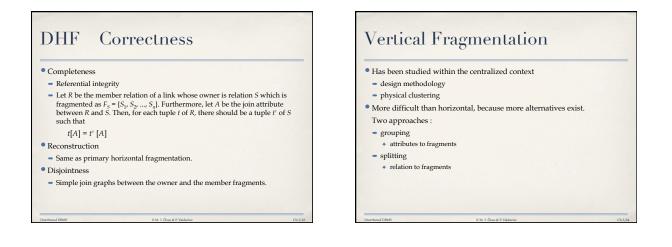
- m_1 : PNAME="Maintenance" \land BUDGET ≤ 200000
- *m*₂: **NOT**(PNAME="Maintenance") \land BUDGET≤200000
- $m_3: \texttt{PNAME= "Maintenance"} \land \textbf{NOT}(\texttt{BUDGET}{\leq}200000)$
- $m_4: \textbf{NOT}(PNAME="Maintenance") \land \textbf{NOT}(BUDGET \leq 200000)$

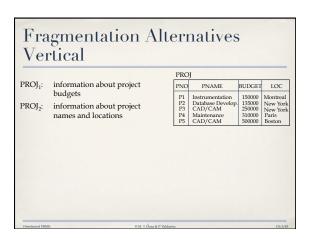
DHF Definition

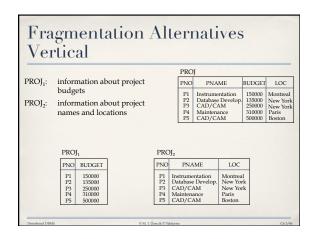
Given a link L where $owner(L)\!=\!S$ and $member(L)\!=\!R,$ the derived horizontal fragments of R are defined as


 $R_i = R \ltimes_F S_{i'} 1 \le i \le w$

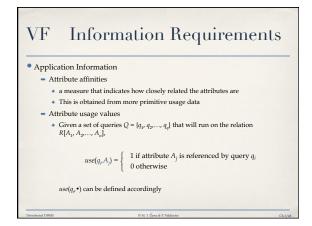
where w is the maximum number of fragments that will be defined on R and

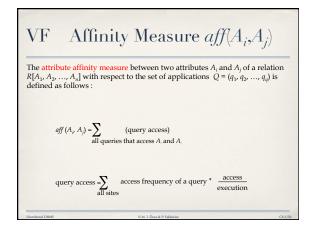

 $S_i = \sigma_{F_i}(S)$

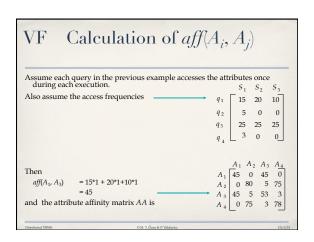

where F_i is the formula according to which the primary horizontal fragment S_i is defined.

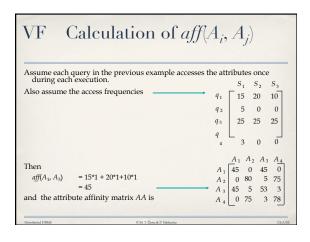


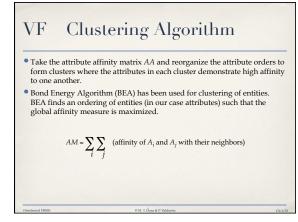
DE	IF	Ex	ample			
		L ₁ where o = EMP × Pay	wner(L ₁)=Pay a	and membe	$r(L_1)=EMP$	
		= EMP ⊠ Pay	-			
Where	-	= EMP ^ Pay	2			
I	Pay ₁ =	σ _{SAL≤30000} (Pa	y)			
Ι	Pay ₂ =	σ _{SAL>30000} (Pa	y)			
E	MP ₁			EMP ₂		
1	ENO	ENAME	TITLE	ENO	ENAME	TITLE
	E3	A. Lee	Mech. Eng.	E1	J. Doe	Elect. Eng.
	E4	J. Miller	Programmer	E2	M. Smith	Syst. Anal.
	E7	R. Davis	Mech. Eng.	E5	B. Casey	Syst. Anal.
				E6	L. Chu	Elect. Eng.
				E8	J. Jones	Syst. Anal.

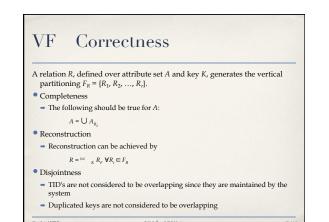


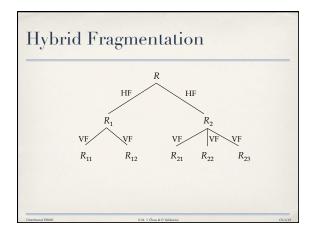


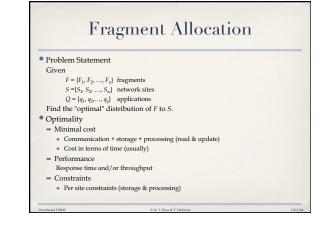

Vertical Fragmentation

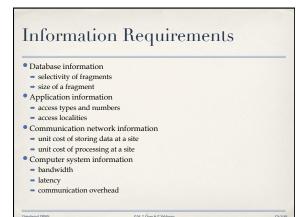

- Overlapping fragments
- grouping
- Non-overlapping fragments
- splitting
- We do not consider the replicated key attributes to be overlapping. Advantage:
 - Easier to enforce functional dependencies (for integrity checking etc.)

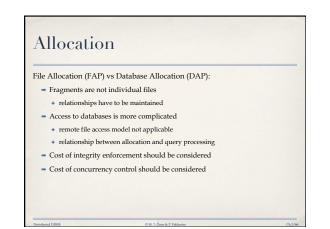


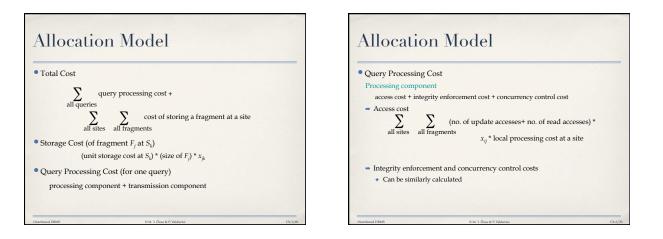

VF I	Definit	ioi	10	of ı	$use(q_i, A_j)$	
Consider the f	ollowing 4 que	eries fo	or rela	ation	PROJ	
q1:SELECT	BUDGET				PNAME,BUDGET	
FROM	PROJ	1-	FROM		PROJ	
WHERE	PNO=Value					
q3:SELECT	PNAME	q_4 :	SEL	ECT	SUM(BUDGET)	
FROM	PROJ		FRC	М	PROJ	
WHERE	LOC=Value		WH	ERE	LOC=Value	
Let $A_1 = PNO_1$	$A_2 = PNAME_{1}$	$A_3 = BU$	JDG	ЕТ <i>, А</i>	= LOC	
•		A1	A_2	A_3	A ₄	
	q_1	1	0	1	0	
	<i>q</i> ₂	0	1	1	0	
	q ₃	0	1	0	1	
	94	_ 0	0	1	1	
Distributed DBMS		ON	I. T. Özsu la	P. Valduriez		Ch:3/4

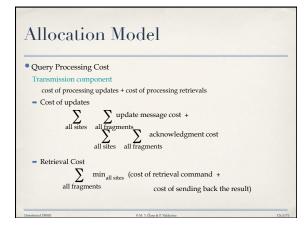


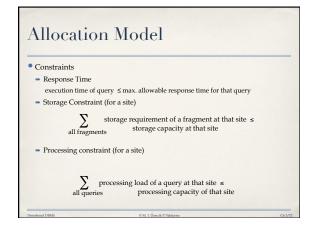




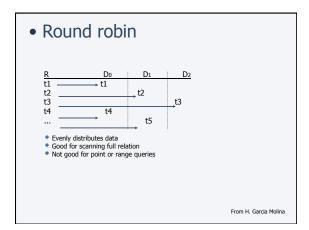


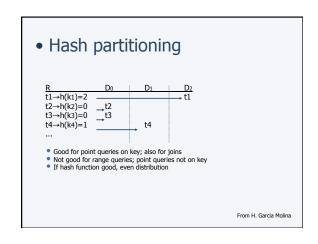


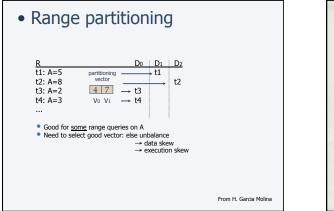


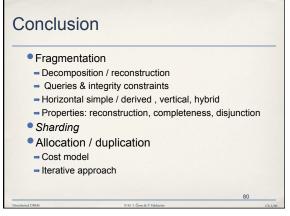


Allocation Information Allocation Model Requirements Database Information selectivity of fragments **General Form** min(Total Cost) size of a fragment subject to Application Information number of read accesses of a query to a fragment response time constraint number of update accesses of query to a fragment A matrix indicating which queries update which fragments storage constraint - A similar matrix for retrievals processing constraint originating site of each querySite Information Decision Variable unit cost of storing data at a site unit cost of processing at a site Network Information $x_{ij} = - \begin{bmatrix} 1 \text{ if fragment } F_i \text{ is stored at site } S_j \\ 0 \text{ otherwise} \end{bmatrix}$ - communication cost/frame between two sites ➡ frame size


Allocation Model


- Solution Methods
- ➡ FAP is NP-complete
- DAP also NP-complete
- Heuristics based on
- single commodity warehouse location (for FAP)
- knapsack problem
- branch and bound techniques
- network flow


Allocation Model


- Attempts to reduce the solution space
- assume all candidate partitionings known; select the "best" partitioning
- ignore replication at first
- sliding window on fragments

Fragmentation / sharding A partition forms a « shard » A ragmentation based on FAQ or known access patterns Automatic partitioning, sharding? Sharding is often related to shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many forms are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the shared nothing architectures A many form are shared and the sha

