
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/1

Distributed Transaction
Management�

�
�
�
 �
�
Material from: �
Principles of Distributed Database Systems�
Özsu, M. Tamer, Valduriez, Patrick, 3rd ed. 2011�
�
+ Presented by C. Roncancio�
�
�
�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/2

Transaction�

A transaction is a collection of actions that make consistent transformations
of system states while preserving system consistency.

➡  concurrency transparency

➡  failure transparency

Database in a
consistent

state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/3

Characterization�

• Read set (RS)
➡  The set of data items that are read by a transaction

• Write set (WS)

➡  The set of data items whose values are changed by this transaction

• Base set (BS)

➡  RS ∪ WS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/4

Principles of Transactions�

ATOMICITY

➡  all or nothing

CONSISTENCY

➡  no violation of integrity constraints

ISOLATION

➡  concurrent changes invisible ⇒ serializable

DURABILITY

➡  committed updates persist

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/5

Atomicity�

• Either all or none of the transaction's operations are performed.

• Atomicity requires that if a transaction is interrupted by a failure, its
partial results must be undone.

• The activity of preserving the transaction's atomicity in presence of
transaction aborts due to input errors, system overloads, or deadlocks is
called transaction recovery.

• The activity of ensuring atomicity in the presence of system crashes is
called crash recovery.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/6

Consistency�

• Internal consistency
➡  A transaction which executes alone against a consistent database leaves it in a

consistent state.

➡  Transactions do not violate database integrity constraints.

• Transactions are correct programs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/7

Isolation�

• Serializability
➡  If several transactions are executed concurrently, the results must be the same

as if they were executed serially in some order.

• Incomplete results
➡  An incomplete transaction cannot reveal its results to other transactions

before its commitment.

➡  Necessary to avoid cascading aborts.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/9

SQL-92 Isolation Levels�

Phenomena:

• Dirty read

➡  T1 modifies x which is then read by T2 before T1 terminates; T1 aborts ⇒ T2 has
read value which never exists in the database.

• Non-repeatable (fuzzy) read

➡  T1 reads x; T2 then modifies or deletes x and commits. T1 tries to read x again
but reads a different value or can’t find it.

• Phantom

➡  T1 searches the database according to a predicate while T2 inserts new tuples
that satisfy the predicate.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/10

SQL-92 Isolation Levels (cont’d)�

• Read Uncommitted
➡  For transactions operating at this level, all three phenomena are possible.

• Read Committed

➡  Fuzzy reads and phantoms are possible, but dirty reads are not.

• Repeatable Read

➡  Only phantoms possible.

• Anomaly Serializable

➡  None of the phenomena are possible.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/11

Durability�

• Once a transaction commits, the system must guarantee that the results of
its operations will never be lost, in spite of subsequent failures.

• Database recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/12

Characterization of Transactions�

• Based on
➡  Application areas

✦  Non-distributed vs. distributed

✦  Compensating transactions

✦  Heterogeneous transactions

➡  Timing

✦  On-line (short-life) vs batch (long-life)

➡  Structure

✦  Flat (or simple) transactions

✦  Nested transactions

✦  Workflows

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/17

Transactions Provide…�

• Atomic and reliable execution in the presence of failures

• Correct execution in the presence of multiple user accesses

• Correct management of replicas (if they support it)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/18

Transaction Processing Issues�

• Transaction structure (usually called transaction model)

➡  Flat (simple), nested

• Internal database consistency

➡  Semantic data control (integrity enforcement) algorithms

• Reliability protocols

➡  Atomicity & Durability

➡  Local recovery protocols

➡  Global commit protocols

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/19

Transaction Processing Issues�

• Concurrency control algorithms

➡  How to synchronize concurrent transaction executions (correctness criterion)

➡  Intra-transaction consistency, Isolation

• Replica control protocols

➡  How to control the mutual consistency of replicated data

➡  One copy equivalence and ROWA

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/20

Architecture Revisited�

Scheduling/
Descheduling

Requests

Transaction Manager
 (TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,

Commit, Abort

To data
processor

Results

Scheduler
 (SC)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/21

Centralized Transaction
Execution�

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/22

Distributed Transaction
Execution�

Begin_transaction,
Read, Write, EOT,

Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/23

Concurrency Control�
• The problem of synchronizing concurrent transactions such that the

consistency of the database is maintained while, at the same time,
maximum degree of concurrency is achieved.

• Anomalies:

➡  Lost updates

✦  The effects of some transactions are not reflected on the database.

➡  Inconsistent retrievals

✦  A transaction, if it reads the same data item more than once, should always read
the same value.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/24

Serializability in Distributed
DBMS�
• Somewhat more involved. Two histories have to be considered:

➡  local histories

➡  global history

• For global transactions (i.e., global history) to be serializable, two
conditions are necessary:

➡  Each local history should be serializable.

➡  Two conflicting operations should be in the same relative order in all of the
local histories where they appear together.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/25

Global Non-serializability �

• x stored at Site 1, y stored at Site 2

• LH1, LH2 are individually serializable (in fact serial), but the two
transactions are not globally serializable.

T1: Read(x) T2: Read(x)
 x ←x-100 Read(y)
 Write(x) Commit
 Read(y)
 y ←y+100
 Write(y)
 Commit

LH1={R1(x),W1(x), R2(x)}

LH2={R2(y), R1(y),W1(y)}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/26

Concurrency Control Algorithms�

• Pessimistic
➡  Two-Phase Locking-based (2PL)

✦  Centralized (primary site) 2PL
✦  Primary copy 2PL
✦  Distributed 2PL

➡  Timestamp Ordering (TO)
✦  Basic TO
✦  Multiversion TO
✦  Conservative TO

➡  Hybrid
• Optimistic

➡  Locking-based
➡  Timestamp ordering-based

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/27

Timestamp Ordering�

! Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
" Transaction manager attaches the timestamp to all operations issued by the

transaction.
# Each data item is assigned a write timestamp (wts) and a read timestamp

(rts):
➡  rts(x) = largest timestamp of any read on x
➡ wts(x) = largest timestamp of any write on x

$ Conflicting operations are resolved by timestamp order.

 Basic T/O:
 for Ri(x) for Wi(x)

 if ts(Ti) < wts(x) if ts(Ti) < rts(x) or ts(Ti) < wts(x)
 then reject Ri(x) then reject Wi(x)
 else {accept Ri(x), else { accept Wi(x),
 rts(x) ← ts(Ti)} wts(x) ← ts(Ti) }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/28

Multiversion Timestamp
Ordering�
• Do not modify the values in the database, create new values.

• A Ri(x) is translated into a read on one version of x.

➡  Find a version of x (say xv) such that ts(xv) is the largest timestamp less than
ts(Ti).

• A Wi(x) is translated into Wi(xw) and accepted if the scheduler has not yet
processed any Rj(xr) such that

ts(Ti) < ts(xr) < ts(Tj)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/29

Locking-Based Algorithms�

• Transactions indicate their intentions by requesting locks from the
scheduler (called lock manager).

• Locks are either read lock (rl) [also called shared lock] or write lock (wl)
[also called exclusive lock]

• Read locks and write locks conflict (because Read and Write operations are
incompatible

 rl wl

 rl yes no

 wl no no

• Locking works nicely to allow concurrent processing of transactions.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/30

Two-Phase Locking (2PL)�

!  A Transaction locks an object before using it.

"  When an object is locked by another transaction, the requesting
transaction must wait.

#  When a transaction releases a lock, it may not request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/31

Strict 2PL�

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration
period of
data item

use

N
o.

 o
f l

oc
ks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/32

Centralized 2PL�

• There is only one 2PL scheduler in the distributed system.

• Lock requests are issued to the central scheduler.

Data Processors at
 participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/33

Distributed 2PL�

• 2PL schedulers are placed at each site. Each scheduler handles lock
requests for data at that site.

• A transaction may read any of the replicated copies of item x, by obtaining
a read lock on one of the copies of x. Writing into x requires obtaining
write locks for all copies of x.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/34

Distributed 2PL Execution�
Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/35

Deadlock�

• A transaction is deadlocked if it is blocked and will remain blocked until
there is intervention.

• Locking-based CC algorithms may cause deadlocks.

• TO-based algorithms that involve waiting may cause deadlocks.

• Wait-for graph

➡  If transaction Ti waits for another transaction Tj to release a lock on an entity,
then Ti → Tj in WFG.

Ti
Tj

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/36

Local versus Global WFG�

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 waits
for a lock held by T4 which waits for a lock held by T1 which waits for a lock
held by T2 which, in turn, waits for a lock held by T3.

Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/37

Deadlock Management�

• Ignore
➡  Let the application programmer deal with it, or restart the system

• Prevention

➡  Guaranteeing that deadlocks can never occur in the first place. Check
transaction when it is initiated. Requires no run time support.

• Avoidance

➡  Detecting potential deadlocks in advance and taking action to insure that
deadlock will not occur. Requires run time support.

• Detection and Recovery

➡  Allowing deadlocks to form and then finding and breaking them. As in the
avoidance scheme, this requires run time support.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/38

Deadlock Detection�

• Transactions are allowed to wait freely.

• Wait-for graphs and cycles.

• Topologies for deadlock detection algorithms

➡  Centralized

➡  Distributed

➡  Hierarchical

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/39

Centralized Deadlock Detection�

• One site is designated as the deadlock detector for the system. Each
scheduler periodically sends its local WFG to the central site which merges
them to a global WFG to determine cycles.

• How often to transmit?

➡  Too often ⇒ higher communication cost but lower delays due to undetected
deadlocks

➡  Too late ⇒ higher delays due to deadlocks, but lower communication cost

• Would be a reasonable choice if the concurrency control algorithm is also
centralized.

• Proposed for Distributed INGRES

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/40

Build a hierarchy of detectors

Hierarchical Deadlock Detection�

Site 1 Site 2 Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DD0x

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/41

Distributed Deadlock Detection�

• Sites cooperate in detection of deadlocks.
• One example:

➡  The local WFGs are formed at each site and passed on to other sites. Each
local WFG is modified as follows:
!  Since each site receives the potential deadlock cycles from other sites, these

edges are added to the local WFGs
"  The edges in the local WFG which show that local transactions are waiting for

transactions at other sites are joined with edges in the local WFGs which
show that remote transactions are waiting for local ones.

➡  Each local deadlock detector:
✦  looks for a cycle that does not involve the external edge. If it exists, there is a

local deadlock which can be handled locally.
✦  looks for a cycle involving the external edge. If it exists, it indicates a

potential global deadlock. Pass on the information to the next site.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/42

“Relaxed” Concurrency Control�

• Non-serializable histories
➡  E.g., ordered shared locks

➡  Semantics of transactions can be used

✦  Look at semantic compatibility of operations rather than simply looking at reads
and writes

• Nested distributed transactions

➡  Closed nested transactions

➡  Open nested transactions

➡  Multilevel transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/43

Reliability�

Problem:

How to maintain

 atomicity

 durability

properties of transactions

Ch.10/43

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/44

Update Strategies�

• In-place update

➡  Each update causes a change in one or more data values on pages in the
database buffers

• Out-of-place update

➡  Each update causes the new value(s) of data item(s) to be stored separate from
the old value(s)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/45

In-Place Update Recovery
Information�
Database Log

 Every action of a transaction must not only perform the action, but must also
write a log record to an append-only file.

New
stable database

state

Database
Log

Update
Operation

Old
stable database

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/46

Logging�

The log contains information used by the recovery process to restore the
consistency of a system. This information may include

➡  transaction identifier

➡  type of operation (action)

➡  items accessed by the transaction to perform the action

➡  old value (state) of item (before image)

➡  new value (state) of item (after image)

 …

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/47

Why Logging?�

Upon recovery:
➡  all of T1's effects should be reflected in the database (REDO if necessary due to

a failure)

➡  none of T2's effects should be reflected in the database (UNDO if necessary)

0 t time

system
crash

T1 Begin End

Begin T2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/48

Out-of-Place Update Recovery
Information�
• Shadowing

➡  When an update occurs, don't change the old page, but create a shadow page
with the new values and write it into the stable database.

➡  Update the access paths so that subsequent accesses are to the new shadow
page.

➡  The old page retained for recovery.

• Differential files
➡  For each file F maintain

✦  a read only part FR
✦  a differential file consisting of insertions part DF+ and deletions part DF-

✦  Thus, F = (FR ∪ DF+) – DF-

➡  Updates treated as delete old value, insert new value

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/49

Distributed Reliability Protocols�

• Commit protocols
➡  How to execute commit command for distributed transactions.
➡  Issue: how to ensure atomicity and durability?
• Termination protocols

➡  If a failure occurs, how can the remaining operational sites deal with it.
➡  Non-blocking : the occurrence of failures should not force the sites to wait until

the failure is repaired to terminate the transaction.
• Recovery protocols

➡  When a failure occurs, how do the sites where the failure occurred deal with
it.

➡  Independent : a failed site can determine the outcome of a transaction without
having to obtain remote information.

• Independent recovery ⇒ non-blocking termination

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/50

Two-Phase Commit (2PC)�

Phase 1 : The coordinator gets the participants ready to write the results into
the database

Phase 2 : Everybody writes the results into the database
➡  Coordinator :The process at the site where the transaction originates and

which controls the execution
➡  Participant :The process at the other sites that participate in executing the

transaction

Global Commit Rule:
!  The coordinator aborts a transaction if and only if at least one participant

votes to abort it.
"  The coordinator commits a transaction if and only if all of the participants

vote to commit it.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/51

Centralized 2PC�

ready? yes/no commit/abort? commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/52

2PC Protocol Actions�
 Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No?
write abort

in log

ABORT COMMIT

COMMIT ABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

PREPARE

VOTE-ABORT

VOTE-COMMIT

U
ni

la
te

ra
l a

bo
rt

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/53

Linear 2PC�

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

≈
≈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/54

Distributed 2PC�

prepare
vote-abort/
vote-commit

global-commit/
 global-abort
 decision made
 independently

Phase 1

Coordinator Participants Participants

Phase 2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/55

Problem With 2PC�

• Blocking
➡  Ready implies that the participant waits for the coordinator

➡  If coordinator fails, site is blocked until recovery

➡  Blocking reduces availability

• Independent recovery is not possible

• However, it is known that:

➡  Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.

• So we search for these protocols – 3PC

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/59

Network Partitioning�

• Simple partitioning
➡  Only two partitions

• Multiple partitioning

➡  More than two partitions

• Formal bounds:

➡  There exists no non-blocking protocol that is resilient to a network partition if
messages are lost when partition occurs.

➡  There exist non-blocking protocols which are resilient to a single network
partition if all undeliverable messages are returned to sender.

➡  There exists no non-blocking protocol which is resilient to a multiple
partition.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/60

Independent Recovery Protocols
for Network Partitioning �
• No general solution possible

➡  allow one group to terminate while the other is blocked

➡  improve availability

• How to determine which group to proceed?
➡  The group with a majority

• How does a group know if it has majority?

➡  Centralized

✦  Whichever partitions contains the central site should terminate the transaction

➡  Voting-based (quorum)

