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Transaction�

A transaction is a collection of actions that make consistent transformations 
of system states while preserving system consistency. 

➡  concurrency transparency 

➡  failure transparency 

Database in a 
consistent 

state 

Database may be 
temporarily in an 
inconsistent state 
during execution 

Begin 
Transaction 

End 
Transaction 

Execution of 
Transaction 

Database in a 
consistent 

state 
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Characterization�

• Read set (RS) 
➡  The set of data items that are read by a transaction 

• Write set (WS) 

➡  The set of data items whose values are changed by this transaction 

• Base set (BS) 

➡  RS ∪ WS 
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Principles of Transactions�

ATOMICITY 

➡  all or nothing 

CONSISTENCY 

➡  no violation of integrity constraints 

ISOLATION 

➡  concurrent changes invisible  ⇒ serializable 

DURABILITY 

➡  committed updates persist 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/5 

Atomicity�

• Either all or none of the transaction's operations are performed. 

• Atomicity requires that if a transaction is interrupted by a failure, its 
partial results must be undone. 

• The activity of preserving the transaction's atomicity in presence of 
transaction aborts due to input errors, system overloads, or deadlocks is 
called transaction recovery. 

• The activity of ensuring atomicity in the presence of system crashes is 
called crash recovery. 
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Consistency�

• Internal consistency 
➡  A transaction which executes alone against a consistent database leaves it in a 

consistent state. 

➡  Transactions do not violate database integrity constraints. 

• Transactions are correct programs 
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Isolation�

• Serializability 
➡  If several transactions are executed concurrently, the results must be the same 

as if they were executed serially in some order. 

• Incomplete results 
➡  An incomplete transaction cannot reveal its results to other transactions 

before its commitment. 

➡  Necessary to avoid cascading aborts. 
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SQL-92 Isolation Levels�

Phenomena: 

• Dirty read 

➡  T1 modifies x which is then read by T2 before T1 terminates; T1 aborts ⇒ T2 has 
read value which never exists in the database. 

• Non-repeatable (fuzzy) read 

➡  T1 reads x; T2 then modifies or deletes x and commits. T1 tries to read x again 
but reads a different value or can’t find it.  

• Phantom 

➡  T1 searches the database according to a predicate while T2 inserts new tuples 
that satisfy the predicate. 
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SQL-92 Isolation Levels (cont’d)�

• Read Uncommitted 
➡  For transactions operating at this level, all three phenomena are possible. 

• Read Committed 

➡  Fuzzy reads and phantoms are possible, but dirty reads are not. 

• Repeatable Read 

➡  Only phantoms possible. 

• Anomaly Serializable 

➡  None of the phenomena are possible. 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/11 

Durability�

• Once a transaction commits, the system must guarantee that the results of 
its operations will never be lost, in spite of subsequent failures. 

• Database recovery 
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Characterization of Transactions�

• Based on 
➡  Application areas 

✦  Non-distributed vs. distributed 

✦  Compensating transactions 

✦  Heterogeneous transactions 

➡  Timing 

✦  On-line (short-life) vs batch (long-life) 

➡  Structure 

✦  Flat (or simple) transactions 

✦  Nested transactions 

✦  Workflows 
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Transactions Provide…�

• Atomic and reliable execution in the presence of  failures 

• Correct execution in the presence of multiple user accesses  

• Correct management of replicas (if they support it)  
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Transaction Processing Issues�

• Transaction structure (usually called transaction model) 

➡  Flat (simple), nested 

• Internal database consistency 

➡  Semantic data control (integrity enforcement) algorithms 

• Reliability protocols  

➡  Atomicity & Durability 

➡  Local recovery protocols 

➡  Global commit protocols 
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Transaction Processing Issues�

• Concurrency control algorithms 

➡  How to synchronize concurrent transaction executions (correctness criterion) 

➡  Intra-transaction consistency, Isolation 

• Replica control protocols 

➡  How to control the mutual consistency of replicated data 

➡  One copy equivalence and ROWA 
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Architecture Revisited�

Scheduling/ 
Descheduling 

Requests 

Transaction Manager 
 (TM) 

Distributed  
Execution Monitor 

With other  
SCs 

With other  
TMs 

Begin_transaction, 
Read, Write,  

Commit, Abort 

To data  
processor 

Results 

Scheduler 
 (SC) 
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Centralized Transaction 
Execution�

Begin_Transaction,  
Read, Write, Abort, EOT 

Results & 
User Notifications 

Scheduled 
Operations Results 

Results 

… 

Read, Write,  
Abort, EOT 

User 
Application  

User 
Application  

Transaction 
Manager 

(TM) 

Scheduler 
(SC) 

Recovery 
Manager 

(RM) 
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Distributed Transaction 
Execution�

Begin_transaction, 
Read, Write, EOT, 

Abort 

User application 

Results & 
User notifications 

Read, Write, 
EOT, Abort 

TM 

SC 

RM 

SC 

RM 

TM 

Local 
Recovery 
Protocol 

Distributed 
Concurrency Control 

Protocol 

Replica Control 
Protocol 

Distributed 
Transaction Execution 

Model 
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Concurrency Control�
• The problem of synchronizing concurrent transactions such that the 

consistency of the database is maintained while, at the same time, 
maximum degree of concurrency is achieved. 

• Anomalies: 

➡  Lost updates 

✦  The effects of some transactions are not reflected on the database. 

➡  Inconsistent retrievals 

✦  A transaction, if it reads the same data item more than once, should always read 
the same value. 
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Serializability in Distributed 
DBMS�
• Somewhat more involved. Two histories have to be considered: 

➡  local histories  

➡  global history 

• For global transactions (i.e., global history)  to be serializable, two 
conditions are necessary: 

➡  Each local history should be serializable. 

➡  Two conflicting operations should be in the same relative order in all of the 
local histories where they appear together. 
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Global Non-serializability �

• x stored at Site 1, y stored at Site 2 

• LH1, LH2 are individually serializable (in fact serial), but the two 
transactions are not globally serializable. 

T1:  Read(x)  T2:  Read(x) 
 x ←x-100   Read(y) 
 Write(x)   Commit 
 Read(y) 
 y ←y+100 
 Write(y)    
 Commit 

LH1={R1(x),W1(x), R2(x)} 

LH2={R2(y), R1(y),W1(y)} 
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Concurrency Control Algorithms�

• Pessimistic 
➡  Two-Phase Locking-based (2PL) 

✦  Centralized (primary site) 2PL 
✦  Primary copy 2PL 
✦  Distributed 2PL 

➡  Timestamp Ordering (TO) 
✦  Basic TO 
✦  Multiversion TO 
✦  Conservative TO 

➡  Hybrid 
• Optimistic 

➡  Locking-based 
➡  Timestamp ordering-based 
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Timestamp Ordering�

! Transaction (Ti) is assigned a globally unique timestamp ts(Ti). 
" Transaction manager attaches the timestamp to all operations issued by the 

transaction. 
# Each data item is assigned a write timestamp (wts) and a read timestamp 

(rts): 
➡  rts(x) = largest timestamp of any read on x 
➡ wts(x) = largest timestamp of any write on x 

$ Conflicting operations are resolved by timestamp order. 
 

 Basic T/O: 
 for Ri(x)  for Wi(x) 

 
 if ts(Ti) < wts(x)  if ts(Ti) < rts(x) or ts(Ti) < wts(x)  
 then reject Ri(x)  then reject Wi(x) 
 else {accept Ri(x),  else { accept Wi(x), 
 rts(x) ← ts(Ti)}  wts(x) ← ts(Ti) } 
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Multiversion Timestamp 
Ordering�
• Do not modify the values in the database, create new values. 

• A Ri(x) is translated into a read on one version of x.  

➡  Find a version of x (say xv) such that ts(xv) is the largest timestamp less than 
ts(Ti). 

• A Wi(x) is translated into Wi(xw) and accepted if the scheduler has not yet 
processed any Rj(xr) such that 

ts(Ti) < ts(xr) < ts(Tj)  
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Locking-Based Algorithms�

• Transactions indicate their intentions by requesting locks from the 
scheduler (called lock manager). 

• Locks are either read lock (rl) [also called shared lock] or write lock (wl) 
[also called exclusive lock] 

• Read locks and write locks conflict (because Read and Write operations are 
incompatible 

      rl   wl 

  rl   yes  no 

  wl   no  no 

• Locking works nicely to allow concurrent processing of transactions. 
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Two-Phase Locking (2PL)�

!  A Transaction locks an object before using it. 

"  When an object is locked by another transaction, the requesting 
transaction must wait. 

#  When a transaction releases a lock, it may not request another lock. 

Obtain lock 

Release lock 

Lock point 

Phase 1 Phase 2 

BEGIN END 

N
o.

 o
f l

oc
ks
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Strict 2PL�

Hold locks until the end. 

Obtain lock 

Release lock 

BEGIN END 
Transaction 

duration 
period of 
data item 

use 

N
o.

 o
f l

oc
ks
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Centralized 2PL�

• There is only one 2PL scheduler in the distributed system. 

• Lock requests are issued to the central scheduler. 

Data Processors at  
  participating sites  Coordinating TM Central Site LM 

Lock Request 

Lock Granted 

Operation 

End of Operation 

Release Locks 
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Distributed 2PL�

• 2PL schedulers are placed at each site. Each scheduler handles lock 
requests for data at that site. 

• A transaction may read any of the replicated copies of item x, by obtaining 
a read lock on one of the copies of x. Writing into x requires obtaining 
write locks for all copies of x. 
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Distributed 2PL Execution�
Coordinating TM Participating LMs Participating DPs 

Lock Request 
Operation 

End of Operation 

Release Locks 
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Deadlock�

• A transaction is deadlocked if it is blocked and will remain blocked until 
there is intervention. 

• Locking-based CC algorithms may cause deadlocks. 

• TO-based algorithms that involve waiting may cause deadlocks. 

• Wait-for graph 

➡  If transaction Ti waits for another transaction Tj to release a lock on an entity, 
then Ti → Tj in WFG. 

Ti 
Tj 
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Local versus Global WFG�

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 waits 
for a lock held by T4 which waits for a lock held by T1 which waits for a lock 
held by T2 which, in turn,  waits for a lock held by T3. 

Local WFG 

Global WFG 

T1 

Site 1 Site 2 

T2 

T4 

T3 

T1 

T2 

T4 

T3 
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Deadlock Management�

• Ignore 
➡  Let the application programmer deal with it, or restart the system 

• Prevention 

➡  Guaranteeing that deadlocks can never occur in the first place. Check 
transaction when it is initiated. Requires no run time support. 

• Avoidance 

➡  Detecting potential deadlocks in advance and taking action to insure that 
deadlock will not occur. Requires run time support. 

• Detection and Recovery 

➡  Allowing deadlocks to form and then finding and breaking them. As in the 
avoidance scheme, this requires run time support. 
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Deadlock Detection�

• Transactions are allowed to wait freely. 

• Wait-for graphs and cycles. 

• Topologies for deadlock detection algorithms 

➡  Centralized 

➡  Distributed 

➡  Hierarchical 
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Centralized Deadlock Detection�

• One site is designated as the deadlock detector for the system. Each 
scheduler periodically sends its local WFG to the central site which merges 
them to a global WFG to determine cycles. 

• How often to transmit? 

➡  Too often ⇒ higher communication cost but lower delays due to undetected 
deadlocks 

➡  Too late ⇒ higher delays due to deadlocks, but lower communication cost 

• Would be a reasonable choice if the concurrency control algorithm is also 
centralized. 

• Proposed for Distributed INGRES 
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Build a hierarchy of detectors 

Hierarchical Deadlock Detection�

Site 1 Site 2 Site 3 Site 4 

DD21 DD22 DD23 DD24 

DD11 DD14 

DD0x 
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Distributed Deadlock Detection�

• Sites cooperate in detection of deadlocks. 
• One example: 

➡  The local WFGs are formed at each site and passed on to other sites. Each 
local WFG is  modified as follows: 
!  Since each site receives the potential deadlock cycles from other sites, these 

edges are added to the local WFGs 
"  The edges in the local WFG which show that local transactions are waiting for 

transactions at other sites are joined with edges in the local WFGs which 
show that remote transactions are waiting for local ones. 

➡  Each local deadlock detector: 
✦  looks for a cycle that does not involve the external edge. If it exists, there is a 

local deadlock which can be handled locally. 
✦  looks for a cycle involving the external edge. If it exists, it indicates a 

potential global deadlock. Pass on the information to the next site. 
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“Relaxed” Concurrency Control�

• Non-serializable histories 
➡  E.g., ordered shared locks 

➡  Semantics of transactions can be used 

✦  Look at semantic compatibility of operations rather than simply looking at reads 
and writes 

• Nested distributed transactions 

➡  Closed nested transactions 

➡  Open nested transactions 

➡  Multilevel transactions 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/43 

Reliability�

Problem: 

How to maintain  

 atomicity 

 durability 

properties of transactions 

Ch.10/43 
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Update Strategies�

• In-place update 

➡  Each update causes a change in one or more data values on pages in the 
database buffers 

• Out-of-place update 

➡  Each update causes the new value(s) of data item(s) to be stored separate from 
the old value(s) 
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In-Place Update Recovery 
Information�
Database Log 

 Every action of a transaction must not only perform the action, but must also 
write a log record to an append-only file. 

New  
stable database 

state 

Database 
Log 

Update 
Operation 

Old  
stable database 

state 
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Logging�

The log contains information used by the recovery process to restore the 
consistency of a system. This information may include 

➡  transaction identifier 

➡  type of operation (action) 

➡  items accessed by the transaction to perform the action 

➡  old value (state) of item (before image) 

➡  new value (state) of item (after image) 

            … 
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Why Logging?�

Upon recovery: 
➡  all of T1's effects should be reflected in the database (REDO if necessary due to 

a failure) 

➡  none of T2's effects should be reflected in the database (UNDO if necessary) 

0 t time 

system  
crash 

T1 Begin End 

Begin T2 
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Out-of-Place Update Recovery 
Information�
• Shadowing 

➡  When an update occurs, don't change the old page, but create a shadow page 
with the new values and write it into the stable database. 

➡  Update the access paths so that subsequent accesses are to the new shadow 
page. 

➡  The old page retained for recovery.  

• Differential files 
➡  For each file F maintain  

✦  a read only part FR 
✦  a differential file consisting of insertions part DF+ and deletions part DF- 

✦  Thus, F = (FR ∪ DF+) – DF- 

➡  Updates treated as delete old value, insert new value 
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Distributed Reliability Protocols�

• Commit protocols 
➡  How to execute commit command for distributed transactions. 
➡  Issue: how to ensure atomicity and durability? 
• Termination protocols 

➡  If a failure occurs, how can the remaining operational sites deal with it. 
➡  Non-blocking : the occurrence of failures should not force the sites to wait until 

the failure is repaired to terminate the transaction. 
• Recovery protocols 

➡  When a failure occurs, how do the sites where the failure occurred deal with 
it. 

➡  Independent : a failed site can determine the outcome of a transaction without 
having to obtain remote information. 

• Independent recovery ⇒ non-blocking termination 
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Two-Phase Commit (2PC)�

Phase 1 : The coordinator gets the participants ready to write the results into 
the database 

Phase 2 : Everybody writes the results into the database 
➡  Coordinator :The process at the site where the transaction originates and 

which controls the execution 
➡  Participant :The process at the other sites that participate in executing the 

transaction 

Global Commit Rule: 
!  The coordinator aborts a transaction if and only if at least one participant 

votes to abort it. 
"  The coordinator commits a transaction if and only if all of the participants 

vote to commit it. 
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Centralized 2PC�

ready? yes/no commit/abort? commited/aborted 

Phase 1 Phase 2 

C C C 

P 

P 

P 

P 

P 

P 

P 

P 
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2PC Protocol Actions�
 Participant                      Coordinator                      

No 

Yes 

VOTE-COMMIT 

Yes GLOBAL-ABORT 

No 

write abort 
in log 

Abort 

Commit 
ACK 

ACK 

INITIAL 

write abort 
in log 

write ready 
in log 

write commit 
in log 

Type of 
msg 

WAIT 

Ready to 
Commit? 

write commit 
in log 

Any No? 
write abort 

in log 

ABORT COMMIT 

COMMIT ABORT 

write 
begin_commit 

in log 

write 
end_of_transaction 

in log 

READY 

INITIAL 

PREPARE 

VOTE-ABORT 

VOTE-COMMIT 

U
ni

la
te

ra
l a

bo
rt
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Linear 2PC�

Prepare VC/VA 

Phase 1 

Phase 2 

GC/GA 

VC/VA VC/VA VC/VA 

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort 

1 2 3 4 5 N 

GC/GA GC/GA GC/GA GC/GA 

≈
≈
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Distributed 2PC�

prepare 
vote-abort/ 
vote-commit 

global-commit/ 
 global-abort 
 decision made 
 independently 

Phase 1 

Coordinator Participants Participants 

Phase 2 
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Problem With 2PC�

• Blocking 
➡   Ready  implies that the participant waits for the coordinator  

➡   If coordinator fails, site is blocked until recovery 

➡   Blocking reduces availability 

• Independent recovery is not possible 

• However,  it is known that: 

➡  Independent recovery protocols exist only for single site failures; no 
independent recovery protocol exists which is resilient to multiple-site 
failures. 

• So we search for these protocols – 3PC 
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Network Partitioning�

• Simple partitioning 
➡  Only two partitions 

• Multiple partitioning 

➡  More than two partitions 

• Formal bounds: 

➡  There exists no non-blocking protocol that is resilient to a network partition if 
messages are lost when partition occurs. 

➡  There exist non-blocking protocols which are resilient to a single network 
partition if all undeliverable messages are returned to sender. 

➡  There exists no non-blocking protocol which is resilient to a multiple 
partition. 
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Independent Recovery Protocols 
for Network Partitioning �
• No general solution possible  

➡  allow one group to terminate while the other is blocked  

➡  improve availability 

• How to determine which group to proceed? 
➡  The group with a majority  

• How does a group know if it has majority? 

➡  Centralized 

✦  Whichever partitions contains the central site should terminate the transaction 

➡  Voting-based (quorum) 


